Skip to main content
Log in

Comparison of Nusselt number and stream function in tall and narrow enclosures in the mixed convection of hybrid nanofluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this research, the average Nusselt number in tall and narrow enclosures in the presence of mixed convection of a water-based nanofluid (H2O–Cu–TiO2) is determined and compared. The effect of quantities such as Richardson number of 0.01–100, the volume fractions of 0–2% and geometric shape of the enclosure on average Nusselt number and maximum value of flow function is numerically investigated. The FVM and SIMPLER algorithm are used for resolving the nonlinear equations. According to numerical results, for all the Richardson number and two tall and narrow enclosures, the average Nusselt number rises with growing the nanoparticles volume fractions. Comparison of the tall and narrow enclosures shows that for obtaining the highest heat transfer, by growing the nanoparticles volume fractions under similar conditions, it is better to use tall enclosures for large Richardson number and narrow enclosures for small Richardson number. The highest enhancement of the average Nusselt number with increasing the nanoparticles volume fractions for narrow enclosures was 10.44% at the Ri = 0.01. Whereas in the tall enclosures, the highest increase in the average Nusselt number was 14.51% at Ri = 100. For all the Richardson number and two tall and narrow enclosures, the maximum flow function value of the nanoparticles increases with increasing volume fractions. This increase in small Richardson number is greater than in large Richardson number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

c P :

Specific heat at constant pressure (J kg−1 K−1)

g :

Gravitational acceleration (m s−2)

H :

Cavity height (m)

k :

Thermal conductivity (W m−1 K−1)

Nu:

Nusselt number

P :

Pressure (Pa)

Re:

Reynolds number

Ri:

Richardson number

Pr:

Prandtl number

T :

Temperature (K)

u :

Velocity component (x)

v :

Velocity component (y)

U :

Dimensionless velocity (X)

V :

Dimensionless velocity (Y)

α :

Thermal diffusivity (m2 s−1)

β :

Coefficient of thermal expansion (K−1)

ρ :

Density (kg m−3)

θ :

Dimensionless temperature

υ :

Kinematic viscosity (m2 s−1)

φ :

Volume fraction of nanoparticles

ψ :

Stream function (m2 s−1)

Ψ :

Dimensionless stream function

avg:

Average

c:

Cold

h:

Hot

nf:

Nanofluid

np:

Nanoparticle

References

  1. Ali HM, Arshad A, Jabbal M, Verdin PG. Thermal management of electronics devices with PCMs filled pin–fin heat sinks: a comparison. Int J Heat Mass Transf. 2018;117:1199–204.

    CAS  Google Scholar 

  2. Rehman T-U, Ali HM, Saieed A, Pao W, Ali M. Copper foam/PCMs based heat sinks: an experimental study for electronic cooling systems. Int J Heat Mass Transf. 2018;127:381–93.

    CAS  Google Scholar 

  3. Baig W, Ali HM. An experimental investigation of performance of a double pass solar air heater with foam aluminum thermal storage medium. Case Stud Therm Eng. 2019;14:100440.

    Google Scholar 

  4. Bashir MA, Giovannelli A, Ali HM. Design of high-temperature solar receiver integrated with short-term thermal storage for dish-micro gas turbine systems. Sol Energy. 2019;190:156–66.

    Google Scholar 

  5. Khan MMA, Ibrahim NI, Mahbubul IM, Ali HM, Saidur R, Al-Sulaiman FA. Evaluation of solar collector designs with integrated latent heat thermal energy storage: a review. Sol Energy. 2018;166:334–50.

    CAS  Google Scholar 

  6. Kalbasi R, Izadi F, Talebizadehsardari P. Improving performance of AHU using exhaust air potential by applying exergy analysis. J Therm Anal Calorim. 2020;139(4):2913–23.

    CAS  Google Scholar 

  7. Kalbasi R, Ruhani B, Rostami S. Energetic analysis of an air handling unit combined with enthalpy air-to-air heat exchanger. J Therm Anal Calorim. 2020;139(4):2881–90.

    CAS  Google Scholar 

  8. Yari M, Kalbasi R, Talebizadehsardari P. Energetic–exergetic analysis of an air handling unit to reduce energy consumption by a novel creative idea. Int J Numer Methods Heat Fluid Flow. 2019;29(10):3959–75.

    Google Scholar 

  9. Karthickeyan V, Ashok B, Nanthagopal K, Thiyagarajan S, Edwin Geo V. Investigation of novel Pistacia khinjuk biodiesel in DI diesel engine with post combustion capture system. Appl Therm Eng. 2019;159:113969.

    CAS  Google Scholar 

  10. Karthickeyan V, Thiyagarajan S, Edwin Geo V, Ashok B, Nanthagopal K, Chyuan OH, Vignesh R. Simultaneous reduction of NOx and smoke emissions with low viscous biofuel in low heat rejection engine using selective catalytic reduction technique. Fuel. 2019;255:115854.

    CAS  Google Scholar 

  11. Choa CC, Chenb CL, Chena CK. Natural convection heat transfer and entropy generation in wavy-wall enclosure containing water-based nanofluid. Int J Heat Mass Transf. 2013;61:749–58.

    Google Scholar 

  12. Moraveji MK, Hejazian M. Natural convection in a rectangular enclosure containing an oval-shaped heat source and filled with Fe3O4/water nanofluid. Int Commun Heat Mass Transf. 2013;44:135–46.

    Google Scholar 

  13. Sheikholeslamia M, Gorji-Bandpya M, Seyyedia SM, Ganjia DD, Roknia HB, Soleimanic S. Application of LBM in simulation of natural convection in a nanofluid filled square cavity with curve boundaries. Powder Technol. 2013;247:87–94.

    Google Scholar 

  14. Kalteh M, Hasani H. Lattice Boltzmann simulation of nanofluid free convection heat transfer in an L-shaped enclosure. Superlattices Microstruct. 2014;66:112–28.

    CAS  Google Scholar 

  15. Parvina S, Chamkha AJ. An analysis on free convection flow, heat transfer and entropy generation in an odd-shaped cavity filled with nanofluid. Int Commun Heat Mass Transf. 2014;54:8–17.

    Google Scholar 

  16. Saidi M, Karimi G. Free convection cooling in modified L-shape enclosures using copper–water nanofluid. Energy. 2014;70:251–71.

    CAS  Google Scholar 

  17. Cho CC. Heat transfer and entropy generation of natural convection in nanofluid-filled square cavity with partially-heated wavy surface. Int J Heat Mass Transf. 2014;77:818–27.

    CAS  Google Scholar 

  18. Mansour MA, Mohamed RA, Abd-Elaziz MM, Ahmed SE. Numerical simulation of mixed convection flows in a square lid-driven cavity partially heated from below using nanofluid. Int Commun Heat Mass Transf. 2010;37(10):1504–12.

    CAS  Google Scholar 

  19. Ghasemi B, Aminossadati SM. Mixed convection in a lid-driven triangular enclosure filled with nanofluids. Int Commun Heat Mass Transf. 2010;37(8):1142–8.

    CAS  Google Scholar 

  20. Pishkar I, Ghasemi B. Cooling enhancement of two fins in a horizontal channel by nanofluid mixed convection. Int J Therm Sci. 2012;59:141–51.

    CAS  Google Scholar 

  21. Chamkhaa AJ, Abu-Nada E. Mixed convection flow in single- and double-lid driven square cavities filled with water–Al2O3 nanofluid: effect of viscosity models. Eur J Mech B/Fluids. 2012;36:82–96.

    Google Scholar 

  22. Guo G, Sharif MAR. Mixed convection in rectangular cavities at various aspect ratios with nanofluids. Int J Therm Sci. 2004;43:465–75.

    Google Scholar 

  23. Tiwari RK, Das MK. Heat transfer augmentation in a two-sides lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf. 2007;50:2002–18.

    CAS  Google Scholar 

  24. Li Z, Barnoon P, Toghraie D, Dehkordi RB, Afrand M. Mixed convection of non-Newtonian nanofluid in an H-shaped cavity with cooler and heater cylinders filled by a porous material: two phase approach. Adv Powder Technol. 2019;30(11):2666–85.

    CAS  Google Scholar 

  25. Mostafazadeh A, Toghraie D, Mashayekhi R, Akbari OA. Effect of radiation on laminar natural convection of nanofluid in a vertical channel with single- and two-phase approaches. J Therm Anal Calorim. 2019;138:779–94.

    CAS  Google Scholar 

  26. Yan SR, Sedeh S, Toghraie D, Afrand M, Foong LK. Analysis and manegement of laminar blood flow inside a cerebral blood vessel using a finite volume software program for biomedical engineering. Comput Methods Programs Biomed. 2020;190:105384.

    PubMed  Google Scholar 

  27. Yan S-R, Zarringhalam M, Toghraie D, Foong LK, Talebizadehsardari P. Numerical investigation of non-Newtonian blood flow within an artery with cone shape of stenosis in various stenosis angles. Comput Methods Programs Biomed. 2020;4:105434.

    Google Scholar 

  28. Sharifzadeh B, Kalbasi R, Jahangiri M, Toghraie D, Karimipour A. Computer modeling of pulsatile blood flow in elastic artery using a software program for application in biomedical engineering. Comput Methods Programs Biomed. 2020;192:105442.

    PubMed  Google Scholar 

  29. Tian M-W, Yan S-R, Tian X-X, Kazemi M, Nojavan S, Jermsittiparsert K. Risk-involved stochastic scheduling of plug-in electric vehicles aggregator in day-ahead and reserve markets using downside risk constraints method. Sustain Cities Soc. 2020;55:102051. https://doi.org/10.1016/j.scs.2020.102051.

    Article  Google Scholar 

  30. Tian M-W, Wang L, Yan S-R, Tian X-X, Liu Z-Q, Rodrigues JJPC. Research on Financial Technology Innovation and Application Based on 5G Network. IEEE Access. 2019;7:138614–23. https://doi.org/10.1109/ACCESS.2019.2936860.

    Article  Google Scholar 

  31. Tian M, Yan S, Tian X. Discrete approximate iterative method for fuzzy investment portfolio based on transaction cost threshold constraint. Open Phys. 2019;17(1):41–7. https://doi.org/10.1515/phys-2019-0005.

    Article  Google Scholar 

  32. Tian M-W, Wang S, Yan S-R. Damage assessment of marine pollution disasters to biological resources based on numerical models. Acta Microsc. 2019;28(3):490–7.

    Google Scholar 

  33. Tian M-W, Yan S-R, Tian X-X, Liu J-A. Research on image recognition method of bank financing bill based on binary tree decision. J Vis Commun Image Represent. 2019;60:123–8.

    Google Scholar 

  34. Yan S-R, Foroughi MM, Safaei M, Jahani S, Ebrahimpoor N, Borhani F, Baravati NRZ, Aramesh-Boroujeni Z, Foong LK. A review: recent advances in ultrasensitive and highly specific recognition aptasensors with various detection strategies. Int J Biol Macromol. 2020;155:15. https://doi.org/10.1016/j.ijbiomac.2020.03.173.

    Article  CAS  Google Scholar 

  35. Yan S-R, Mehrizi MZ, KokFoong L. Synthesis of NiAl–WC composite by the thermal explosion of elemental powders. Ceram Int. 2020. https://doi.org/10.1016/j.ceramint.2020.03.050.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yan S-R, Shirani N, Zarringhalam M, Toghraie D, Nguyen Q, Karimipour A. Prediction of boiling flow characteristics in rough and smooth microchannels using molecular dynamics simulation: investigation the effects of boundary wall temperatures. J Mol Liq. 2020;306:112937.

    CAS  Google Scholar 

  37. Wang S, Karthickeyan V, Sivakumar E, Lakshmikandan M. Experimental investigation on pumpkin seed oil methyl ester blend in diesel engine with various injection pressure, injection timing and compression ratio. Fuel. 2020;264(15):116868.

    CAS  Google Scholar 

  38. Karthickeyan V. Experimental investigation on combined effect of ignition promoters and ceramic coating fuelled with papaya seed oil methyl ester in DI diesel engine. Renew Energy. 2020;148:772–89.

    CAS  Google Scholar 

  39. He W, Toghraie D, Lotfipour A, Pourfattah F, Karimipour A, Afrand M. Effect of twisted-tape inserts and nanofluid on flow field and heat transfer characteristics in a tube. Int Commun Heat Mass Transf. 2020;110:104440.

    CAS  Google Scholar 

  40. Viswanathan K, Balasubramanian D, Subramanian T, et al. Investigating the combined effect of thermal barrier coating and antioxidants on pine oil in DI diesel engine. Environ Sci Pollut Res. 2019;26:15573–99. https://doi.org/10.1007/s11356-019-04649-6.

    Article  CAS  Google Scholar 

  41. Tian M-W, Ebadi AG, Jermsittiparsert K, Kadyrov M, Ponomarev A, Javanshir N, Nojavan S. Risk-based stochastic scheduling of energy hub system in the presence of heating network and thermal energy management. Appl Therm Eng. 2019;159:113825. https://doi.org/10.1016/j.applthermaleng.2019.113825.

    Article  Google Scholar 

  42. Tian M-W, Yuen H-C, Yan S-R, Huang W-L. The multiple selections of fostering applications of hydrogen energy by integrating economic and industrial evaluation of different regions. Int J Hydrog Energy. 2019;44:29390–8. https://doi.org/10.1016/j.ijhydene.2019.07.089.

    Article  CAS  Google Scholar 

  43. Nadooshan AA, Kalbasi R, Afrand M. Perforated fins effect on the heat transfer rate from a circular tube by using wind tunnel: an experimental view. Heat Mass Transf. 2018;54(10):3047–57.

    Google Scholar 

  44. Tian M-W, Yan S-R, Tian X-X, Nojavan S, Jermsittiparsert K. Risk and profit-based bidding and offering strategies for pumped hydro storage in the energy market. J Clean Prod. 2020;256:120715. https://doi.org/10.1016/j.jclepro.2020.120715.

    Article  Google Scholar 

  45. Gholipour S, Afrand M, Kalbasi R. Improving the efficiency of vacuum tube collectors using new absorbent tubes arrangement: introducing helical coil and spiral tube adsorbent tubes. Renew Energy. 2020;151:772–81.

    Google Scholar 

  46. Karthickeyan V, Thiyagarajan S, Ashok B, Edwin Geo V, Azad AK. Experimental investigation of pomegranate oil methyl ester in ceramic coated engine at different operating condition in direct injection diesel engine with energy and exergy analysis. Energy Convers Manag. 2020;205:112334.

    CAS  Google Scholar 

  47. Tian M-W, Parikhani T, Jermsittiparsert K, Ashraf MA. Exergoeconomic optimization of a new double-flash geothermal-based combined cooling and power (CCP) system at two different cooling temperatures assisted by boosters. J Clean Prod. 2020. https://doi.org/10.1016/j.jclepro.2020.120921.

    Article  Google Scholar 

  48. Liu W, Kalbasi R, Afrand M. Solutions for enhancement of energy and exergy efficiencies in air handling units. J Clean Prod. 2020;257:120565.

    Google Scholar 

  49. Mir S, Akbari OA, Toghraie D, Sheikhzadeh G, Marzban A, Mir S, Talebizadehsardari P. A comprehensive study of two-phase flow and heat transfer of water/Ag nanofluid in an elliptical curved mini channel. Chin J Chem Eng. 2019;28(2):383–402.

    Google Scholar 

  50. Rostami S, Toghraie D, Esfahani MA, et al. Predict the thermal conductivity of SiO2/water–ethylene glycol (50:50) hybrid nanofluid using artificial neural network. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09426-z.

    Article  Google Scholar 

  51. Rostami S, Toghraie D, Shabani B, et al. Measurement of the thermal conductivity of MWCNT–CuO/water hybrid nanofluid using artificial neural networks (ANNs). J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09458-5.

    Article  Google Scholar 

  52. Ghadikolaei SS, Yassari M, Sadeghi H, Hosseinzadeh K, Ganji DD. Investigation on thermophysical properties of TiO2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technol. 2017;322:428–38.

    CAS  Google Scholar 

  53. Gholinia M, Moosavi SAHK, Pourfallah M, Gholinia S, Ganji DD. A numerical treatment of the TiO2/C2H6O2–H2O hybrid base nanofluid inside a porous cavity under the impact of shape factor in MHD flow. Int J Ambient Energy. 2019;57:1–8.

    Google Scholar 

  54. Javed S, Ali HM, Babar H, Khan MS, Janjua MM, Bashir MA. Internal convective heat transfer of nanofluids in different flow regimes: a comprehensive review. Phys A Stat Mech Appl. 2020;538:122783.

    CAS  Google Scholar 

  55. Yan S-R, Gholami T, Amiri O, Salavati-Niasari M, Seifi S, Amiri M, Sabet M, Foong LK. Effect of adding TiO2, SiO2 and graphene on of electrochemical hydrogen storage performance and coulombic efficiency of CoAl2O4 spinel. J Alloys Compd. 2020;828(5):54353. https://doi.org/10.1016/j.jallcom.2020.154353.

    Article  CAS  Google Scholar 

  56. Yan S-R, Kalbasi R, Nguyen Q, Karimipour A. Rheological behavior of hybrid MWCNTs–TiO2/EG nanofluid: a comprehensive modeling and experimental study. J Mol Liq. 2020. https://doi.org/10.1016/j.molliq.2020.113058.

    Article  Google Scholar 

  57. Incropera FP, DeWitt DP, Bergman TL, Lavine AS. Introduction to heat transfer. 5th ed. New York: Wiley; 2007.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key project of the National Social Science Foundation of the year 2018 (18AJY013); The 2017 National Social Science Foundation Project (17CJY072); The 2018 planning project of philosophy and social science of Zhejiang Province (18NDJC086YB); The 2018 Fujian Social Science Planning Project (FJ2018B067); The Planning Fund Project of Humanities and Social Sciences Research of the Ministry of Education in 2019 (19YJA790102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Karimipour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, SR., Kalbasi, R., Parvin, A. et al. Comparison of Nusselt number and stream function in tall and narrow enclosures in the mixed convection of hybrid nanofluid. J Therm Anal Calorim 143, 1599–1609 (2021). https://doi.org/10.1007/s10973-020-09809-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09809-2

Keywords

Navigation