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Abstract
Several iterative methods have been proposed in the literature for solving the varia-
tional inequalities in Hilbert or Banach spaces, where the underlying operator A is
monotone and Lipschitz continuous. However, there are very few methods known for
solving the variational inequalities, when the Lipschitz continuity of A is dispensed
with. In this article, we introduce a projection-type algorithm for finding a common
solution of the variational inequalities and fixed point problem in a reflexive Banach
space, where A is pseudo-monotone and not necessarily Lipschitz continuous. Also,
we present an application of our result to approximating solution of pseudo-monotone
equilibrium problem in a reflexive Banach space. Finally, we present some numerical
examples to illustrate the performance of our method as well as comparing it with
related method in the literature.
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1 Introduction

In 1959, A. Signorini posed a contact problem (well known as “Signorini Problem”),
which was reformulated as VI by Fichera [1] in 1963. In 1964, the first cornerstone
for the theory of VI was recorded by Stampacchia [2]. Later in 1966, Hartman and
Stampacchia [3] proved the first existence theorem for the solution of the VI. In
1967, the first exposition result for the existence and uniqueness of solution of the VI
appeared in the work of Lion and Stampacchia [4]. Since then, the VI has served as
an important tool in studying a wide class of unilateral optimization problems arising
in several branches of pure and applied sciences in a general framework (see, for
example, [5]). Several methods have also been developed for solving a VI (1) and
related optimization problems; see [6–8] and references therein.
One of the important methods for solving the VI is the extragradient method (EM)
introduced by Korpelevich [9] (also by Antipin [10] independently) for solving VI in a
finite dimensional space. The EM requires two projections onto the feasible set C and
two evaluations of A per each iteration (a fact which affect the usage of the EM). This
method was further extended to infinite-dimensional spaces by many authors; see, for
example, [11]. In order to improve the EM, Censor et al. [12] introduced a subgradient
extragradient method (SEM), which involves only one projection onto the feasible set
and another projection onto a constructible half-space. The weak convergence of the
SEM was proved in [12] and, by modifying the SEM with Halpern iterative scheme
(see [13,14]), some authors proved the strong convergences of the SEM under certain
mild conditions (see, for instance, [12,15–17]).
An obvious disadvantage of the EM and SEM is the assumption that the underlying
operator A admits a Lipschitz constant, which is known or can be estimated. In fact, in
many problems, operators may not satisfy the Lipschitz condition. Iusem and Svaiter
[18] introduced a projection-type algorithm, which does not require the Lipschitz
continuity of A and proved a weak convergence result for approximating solutions of
VI (1) in a finite dimensional space, where A is a monotone operator. The projection
method was later extended to an infinite dimensional Hilbert space by Bello Cruz and
Iusem [19]. Recently, Kanzow and Shehu [20] proved a strong convergence theorem
for solving VI (1) by combining the projection method with a Halpern method in a
real Hilbert space H . Very recently, Gibali [21] proposed a new Bregman projection
method for solving the VI in a Hilbert space. Gibali’s algorithm is an extension of
the SEM with Bregman projection, which makes only one projection per iteration.
The Bregman projection is well known as a generalization of the metric projection.
Several other alternatives to the EM or its modifications have also been proposed in
the literature by many authors; see, for example, [7,22,23] and references there in.
It is worth mentioning that many important real life problems are generally defined in
Banach spaces. Hence, it is of interest to consider solving the VI in a Banach space,
which is more general than the Hilbert space. Some recent attempts in this direction
are the works of Cai et al. [24] and Chidume and Nnakwe [25] in a 2-uniformly convex
and uniformly smooth Banach space E . It is also important to find the solutions of
variational inequalities, which are also the fixed point of a particular mapping due to
its possible application to mathematical models, whose constraint can be expressed
as fixed point and variational inequalities. This happens, in particular, in the practical
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problems such as signal processing, network resource allocation and image recovery;
see, for instance, [26–28].
Motivated by the works of Gibali [21], Cai et al. [24], Chidume and Nnakwe [25]
and Kanzow and Shehu [20], in this paper, we present a new projection-type algo-
rithm for approximating a common solution of VI (1) and fixed point of Bregman
quasi-nonexpansive mapping in a real reflexive Banach space. We also take A to be a
pseudo-monotone operator and prove a strong convergence theorem for the sequence
generated by our algorithm. This result extends and generalizes many other results in
the literature.

2 Preliminaries

In this section, we present some basic notions and results that are needed in the sequel.
Throughout this paper, E∗ denotes the dual space of a Banach space E and C is a
nonempty, closed and convex subset of E . The norm and the duality pairing between
E and E∗ are denoted by || · || and 〈·, ·〉, respectively. Also, the strong and weak
convergence of a sequence {xn} ⊆ E to a point p ∈ E are denoted by xn → p and
xn⇀p, respectively.
Let f : E →] − ∞,+∞] be a proper, convex and lower semicontinuous function.
The Fenchel conjugate of f is the functional f ∗ : E∗ →] − ∞,+∞] defined by
f ∗(ξ) = sup{〈ξ, x〉 − f (x) : x ∈ E}.
The domain of f is defined by dom f := {x ∈ E : f (x) < +∞} and if dom f 	= ∅,
we say that f is proper.
Let x ∈ int(dom f ), for any y ∈ E , the directional derivative of f at x is defined by

f o(x, y) = limt↓0
f (x + t y) − f (x)

t
. If the limit as t ↓ 0 exists for each y, then f is

said to be Gâteaux differentiable at x . When the limit as t ↓ 0 is attained uniformly for
any y ∈ E with ||y|| = 1, we say that f is Fréchet differentiable at x . Throughout this
paper, we take f to be an admissible function, i.e., a proper, convex and lower semi-
continuous function. Under this condition, we know that f is continuous in int(dom f );
see, [29].
Let E be a reflexive Banach space. The function f is called Legendre if and only if it
satisfies the following two conditions:

(L1) f is Gâteaux differentiable, int(dom f ) 	= ∅ and dom ∇ f = int(dom f ),
(L2) f ∗ is Gâteaux differentiable, int(dom f ∗) 	= ∅ and dom ∇ f ∗ = int(dom f ∗).

Since E is reflexive, we know that (∇ f )−1 = ∇ f ∗, this together with conditions
(L1) and (L2) implies that ran∇ f = dom∇ f ∗ = int(dom f ∗) and ran∇ f ∗ =
dom∇ f = int(dom f ).

The variational inequalities (VI) is defined as finding a point x∗ ∈ C such that

〈Ax∗, y − x∗〉 ≥ 0, ∀y ∈ C, (1)

where A : E → E∗ is a single-valued mapping. The set of solutions of a VI is denoted
by V I (C, A).
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Definition 2.1 [30] The operator A is said to be

(a) strongly monotone on C, if there exists γ > 0 such that 〈Au − Av, u − v〉 ≥
γ ||u − v||2 ∀ u, v ∈ C;

(b) monotone on C, if 〈Au − Av, u − v〉 ≥ 0 ∀ u, v ∈ C;
(c) strongly pseudo-monotone on C, if there exists γ > 0 such that

〈Au, v − u〉 ≥ 0 ⇒ 〈Av, v − u〉 ≥ γ ||u − v||2, for all u, v ∈ C;

(d) pseudo-monotone on C, if for all u, v ∈ C 〈Au, v − u〉 ≥ 0 ⇒ 〈Av, v − u〉 ≥ 0;
Remark 2.1 It is easy to see that the following implications hold: (a) ⇒ (b) ⇒ (d) and
(a) ⇒ (c) ⇒ (d) .

Recall that a point x ∈ C is called a fixed point of an operator T : C → C, if T x = x .

We shall denote the set of fixed points of T by F(T ). It is well known that in a real
Hilbert space, x∗ solves the VI (1) if and only if x∗ solves the fixed point equation
x∗ = PC (x∗ − λAx∗), or equivalently, x∗ solves the residual equation

rλ(x∗) = x∗ − PC (x∗ − λAx∗) = 0,

where λ > 0 and PC is the metric projection from H onto C . Hence, the knowledge
of fixed point algorithms can be used to solve the VI (1); see, for example, [6].

Definition 2.2 Let f : E → R ∪ {+∞} be a Gâteaux differentiable function. The
function
D f : dom f × int(dom f ) → [0,+∞[ defined by

D f (y, x) := f (y) − f (x) − 〈∇ f (x), y − x〉 (2)

is called the Bregman distance with respect to f (see, [31,32]). The Bregman distance
does not satisfy the well-known properties of a metric, but it has the following impor-
tant property, called three point identity (see, [29]): for any x ∈ dom f and y, z ∈
int(dom f ),

D f (y, z) + D f (z, x) − D f (y, x) = 〈∇ f (z) − ∇ f (x), z − y〉. (3)

Definition 2.3 Let f : E →] − ∞,+∞] be a convex and Gâteaux differentiable
function. The function f is called:

(i) totally convex at x if its modulus of totally convexity at x ∈ int(dom f ), that is,
the bifunction
v f : int(dom f ) × [0,+∞[→ [0,+∞[ defined by v f (x, t) := inf{D f (y, x) :
y ∈ dom f , ||y − x || = t} is positive for any t > 0.

(ii) cofinite if dom f ∗ = E∗; coercive if lim||x ||→+∞

(
f (x)
||x ||

)
= +∞; and sequentially

consistent if for any two sequences {xn} and {yn} in E such that {xn} is bounded,
lim

n→∞ D f (yn, xn) = 0 ⇒ lim
n→∞ ||yn − xn|| = 0. For further details and examples

on totally convex functions; see, [33–36].
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Remark 2.2 [36,37] The function f : E → R is totally convex on bounded subsets, if
and only if it is sequentially consistent. Also, if f is Fréchet differentiable and totally
convex, then, f is cofinite.

The function V f : E × E∗ → [0,∞[ associated with f is defined by

V f (x, x∗) = f (x) − 〈x∗, x〉 + f ∗(x∗), ∀x ∈ E, x∗ ∈ E∗.

V f is non-negative and V f (x, x∗) = D f (x,∇ f ∗(x∗)) for all x ∈ E and x∗ ∈
E∗. It is known that V f is convex in the second variable, i.e., for all z ∈ E,

D f

(
z,∇ f ∗(

∑N
i=1 ti∇ f (xi ))

)
≤ ∑N

i=1 ti D f (z, xi ),where {xi } ⊂ E and {ti } ⊂]0, 1[
with

∑N
i=1 ti = 1.

The Bregman projection Proj f
C : int(dom f )→ C is defined as the necessarily

unique vector Proj f
C (x) ∈ C satisfying D f (Proj f

C (x), x) = inf{D f (y, x) : y ∈ C}.
The Bregman projection is characterized by the following properties (see, [38]): for
x ∈int(dom f ) and x̂ ∈ C , then the following conditions are equivalent:

(i) the vector x̂ is the Bregman projection of x onto C , with respect to f ,
(ii) the vector x̂ is the unique solution of the variational inequality

〈∇ f (x) − ∇ f (z), z − y〉 ≥ 0 ∀y ∈ C, (4)

(iii) the vector x̂ is the unique solution of the inequality

D f (y, z) + D f (z, x) ≤ D f (y, x) ∀y ∈ C . (5)

A point x∗ ∈ C is said to be an asymptotic fixed point of T if C contains a sequence
{xn}∞n=1, which converges weakly to x∗ and lim

n→∞ ||xn − T xn|| = 0 (see, [39]). The

set of asymptotic fixed points of T is denoted by F̂(T ). A mapping T : C → int(dom
f ) is called

(i) Bregman Firmly Nonexpansive (BFNE for short) if

〈∇ f (T x) − ∇ f (T y), T x − T y〉 ≤ 〈∇ f (x) − ∇ f (y), T x − T y〉 ∀x, y ∈ C .

(6)

(ii) Bregman quasi-nonexpansive (BQNE) if F(T ) 	= ∅ and D f (p, T x) ≤
D f (p, x) ∀x ∈ C, p ∈ F(T ).

It is easy to see that if F̂(T ) = F(T ) 	= ∅, then B F N E ⊂ B QN E .

Definition 2.4 (see, [40]) TheMintyVariational Inequality (MVI) is defined as finding
a point x̄ ∈ C such that 〈Ay, y − x̄〉 ≥ 0, ∀y ∈ C . We denote by M(C, A), the set
of solution of MVI. Some existence results for the MVI have been presented in [41].
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Lemma 2.1 (see, p. 69, Proposition 2.9 of [42]) Let f be a totally convex and Gâteaux
differentiable such that dom f = E. Then for all x∗ ∈ E∗ \ {0}, ỹ ∈ E, x ∈ H+ and
x̄ ∈ H−, it holds that

D f (x̄, x) ≥ D f (x̄, z) + D f (z, x),

where z = argminy∈H D f (y, x) and H = {y ∈ E : 〈x∗, y − ỹ〉 = 0}, H+ = {y ∈
E : 〈x∗, y − ỹ〉 ≥ 0} and H− = {y ∈ E : 〈x∗, y − ỹ〉 ≤ 0}.

3 Main Results

In this section, we give a precise statement of our projection-type method and discuss
some of its convergence analysis.
Let E be a real reflexive Banach space and let C be a nonempty, closed and convex
subset of E . Let f : E → R be a coercive, Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E such that
C ⊂ int(dom f ). Let A : E → E∗ be a continuous pseudo-monotone operator and
T : C → C be a Bregman quasi-nonexpansive mapping such that Γ := V I (C, A) ∩
F(T ) 	= ∅. Let {αn} and {βn} be nonnegative sequences in ]0, 1[.
Algorithm 3.1
Step 0: Select the initial points x1, u ∈ E, let γ, σ ∈]0, 1[ and s > 0. Choose
λn ∈ [a, b] such that 0 < a ≤ b and set n = 1.
Step 1: Compute

zn = ∇ f ∗(∇ f (xn) − λn Axn). (7)

Step 2: If xn = Proj f
C (zn) and xn = T xn: STOP. Else, let yn(t) := (1 − t)xn +

t Proj f
C (zn) for t ∈ R. Compute tn as the maximum of the numbers s, sγ, sγ 2, . . .

such that

〈Ayn(tn), xn − Proj f
C (zn)〉 ≥ σ D f (Proj f

C zn, xn)

λn
, (8)

and define yn = yn(tn).
Step 3: Construct the set Qn define by Qn = {y ∈ E : 〈Ayn, y − yn〉 = 0} and
compute

⎧⎪⎪⎨
⎪⎪⎩

un = Proj f
Qn

(∇ f (xn) − λn Ayn),

vn = Proj f
C (un),

xn+1 = ∇ f ∗
(
αn∇ f (u) + (1 − αn)(βn∇ f (vn) + (1 − βn)∇ f (T vn))

)
.

(9)

Set n ← n + 1 and go to Step 1.
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Remark 3.1 Note that if xn − Proj f
C (zn) = 0 and xn − T xn = 0, then we are at a

common solution of the VI (1) and fixed point of the Bregman quasi-nonexpansive
mapping. In our convergence analysis, we will implicitly assume that this does
not occur after finitely many iterations so that Algorithm 3.1 generates an infinite
sequences.

We first show that Algorithm 3.1 is well defined. To do this, it is sufficient to show
that the inner loop in the stepsize rule in Step 2 is well defined.

Lemma 3.1 (i) The stepsize process in Step 2 of Algorithm 3.1 is well defined.
(ii) Let {xn} and {yn} be sequences generated by Algorithm 3.1, then 〈Ayn, xn − yn〉 >

0.

Proof (i) Assume that (8) does not hold for n ∈ N. This implies that

〈Ayn(tn), xn − Proj f
C zn〉 <

σ D f (Proj f
C zn, xn)

λn
f or n ∈ N.

Thus, we have

〈A((1 − sγ m)xn + sγ m Proj f
C zn), xn − Proj f

C zn〉 <
σ D f (Proj f

C zn, xn)

λn
∀m ≥ 0.

Since A is continuous and yn(tn) → xn as m → ∞, it follows that

〈λn Axn, xn − Proj f
C zn〉 < σ D f (Proj f

C zn, xn),

equivalently, by (7), we have

〈∇ f (xn) − ∇ f (zn), xn − Proj f
C zn〉 < σ D f (Proj f

C zn, xn).

Applying the three point identity (3) to the left-hand side of the above inequality,
we obtain

D f (Proj f
C zn, xn) + D f (xn, zn) − D f (Proj f

C zn, zn) < σ D f (Proj f
C zn, xn).

Since f is strictly convex and σ ∈ (0, 1), then D f (xn, zn) < D f (Proj f
C zn, zn).

This contradicts the definition of the Bregman projection. Hence, the stepsize rule
in Step 2 of Algorithm 3.1 is well defined.

(ii) Furthermore, from (8), we have

〈Ayn, xn − yn〉 = 〈Ayn, xn − (1 − tn)xn − tn Proj f
C zn〉 = tn〈Ayn, xn − Proj f

C zn〉

≥ σ tn D f (Proj f
C zn, xn)

λn
> 0.

��
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In order to establish our main result, we make the following assumptions:

(C1) lim
n→∞ αn = 0 and

∞∑
n=0

αn = ∞.

(C2) 0 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < 1.

We proceed to prove the following lemmas before proving the convergence of our
main Algorithm 3.1.

Lemma 3.2 The sequence {xn} generated by Algorithm 3.1 is bounded.

Proof For each n ∈ N, define the sets:

Q−
n := {u ∈ E : 〈Axn, u − xn〉 ≤ 0}, Qn := {u ∈ E : 〈Axn, u − xn〉 = 0}, and Q+

n

:= {u ∈ E : 〈Axn, u − xn〉 ≥ 0}.

Let p ∈ Γ , then since A is pseudo-monotone, we have 〈Ap, x − p〉 ≥ 0 ⇒ 〈Ax, x −
p〉 ≥ 0 ∀x ∈ E . This implies that p ∈ Q−

n for all n ∈ N. Furthermore, since we
implicitly assumed that Algorithm 3.1 does not terminate after finitely many steps
with an exact solution, we have from Lemma 3.1(ii) that 〈Ayn, xn − yn〉 > 0. This
implies that xn ∈ Q+

n and xn /∈ Q−
n for all n ∈ N . Therefore, using Lemma 2.1, we

obtain
D f (p, xn) ≥ D f (p, un) + D f (un, xn). (10)

Now, since vn = Proj f
C (un), then from (5), we have

D f (p, un) ≥ D f (p, vn) + D f (vn, un). (11)

Combining (10) and (11), we have

D f (p, xn) ≥ D f (p, vn) + D f (vn, un) + D f (un, xn).

This implies that

D f (p, vn) ≤ D f (p, xn) − D f (vn, un) − D f (un, xn). (12)

From (9) and (12), we have

D f (p, xn+1) ≤ D f

(
p,∇ f ∗(αn∇ f (u) + (1 − αn)(βn∇ f (vn) + (1 − βn)∇ f (T vn))

))
,

≤ αn D f (p, u) + (1 − αn)βn D f (p, vn) + (1 − αn)(1 − βn)D f (p, T vn)

≤ αn D f (p, u) + (1 − αn)D f (p, xn)

≤ max{D f (p, u), D f (p, xn)} ≤ · · · ≤ max{D f (p, u), D f (p, x1)}.

Hence {D f (p, xn)} is bounded. Then by using Lemma 3.1 of [37], p. 31, we obtain
{xn} is bounded. Consequently, {yn}, {Ayn}, {un}, {vn} and {T vn} are bounded. ��
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Lemma 3.3 Let {xn}, {yn}, {zn} and {un} be sequences generated by Algorithm 3.1.
Suppose there exist subsequences {xnk } and {unk } of {xn} and {un} respectively such
that lim

k→∞ ||xnk − unk || = 0. Let {ynk } and {znk } be subsequences of {yn} and {zn}
respectively, then

(a) lim
k→∞〈Aynk , xnk − ynk 〉 = 0,

(b) lim
k→∞ ||Proj f

C (znk ) − xnk || = 0,

(c) 0 ≤ lim inf
k→∞ 〈Axnk , x − xnk 〉, for all x ∈ C.

Proof (a) Since un ∈ Qn , then we have 0 = 〈Aynk , unk − ynk 〉 = 〈Aynk , unk −xnk 〉+
〈Aynk , xnk − ynk 〉, which implies that

〈Aynk , xnk − ynk 〉 = 〈Aynk , xnk − unk 〉 ≤ ||Aynk ||∗||xnk − unk ||.

Taking the limit of the above inequality as k → ∞ yields lim
k→∞〈Aynk , xnk −ynk 〉 =

0.
(b) Let {tnk } be a subsequence of {tn}. We consider the following two cases based on

the behaviour of tnk .
Case I: Suppose lim

k→∞ tnk 	= 0; i.e., there exists some δ > 0 such that

tnk ≥ δ > 0 for all k ∈ N. It follows from Step 2 of Algorithm 3.1 that

〈Aynk , xnk − ynk 〉 ≥ σ D f (Proj f
C znk , xnk )

λn
. Hence, from Lemma 3.3(a), we have

lim
k→∞ D f (Proj f

C znk , xnk ) = 0 ⇒ lim
k→∞ ||Proj f

C znk − xnk || = 0.

Case II: On the other hand, suppose tnk → 0 as k → ∞. Let tnk < s so that the stepsize
get reduced at least once for all iterations belonging to this subsequence. This implies
that the trial stepsize does not satisfy the test from Step 2 of Algorithm 3.1. Assume
that lim

k→∞ D f (Proj f
C znk , xnk ) 	= 0, i.e., there exists a positive constant δ < +∞ such

that lim sup
k→∞

(Proj f
C znk , xnk ) = δ.

Define ȳk = (1−tnk )xnk +tnk Proj f
C (znk ). Then ȳk−xnk = tnk (Proj f

C znk −xnk ).Since

{Proj f
C znk −xnk } is bounded and tnk → 0 as k → ∞, it follows that lim

k→∞ ||ȳk−xnk || =
0. From the stepsize rule in Step 2 and the definition of ȳk , we have 〈Aȳk, xnk −
Proj f

C znk 〉 <
σ D f (Proj f

C znk , xnk )

λnk

∀k ∈ N. Since A is uniformly continuous on

bounded subsets of C and σ ∈ (0, 1), we obtain that there exists N ∈ N such that

〈λnk Axnk , xnk − Proj f
C znk 〉 < D f (Proj f

C znk , xnk ) ∀k ∈ N, k ≥ N .

Therefore

〈∇ f (xnk ) − ∇ f (znk ), xnk − Proj f
C znk 〉 < D f (Proj f

C znk , xnk ), ∀k ∈ N, k ≥ N .
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Using the three points identity (3) in the last inequality, we get

D f (Proj f
C znk , xnk ) + D f (xnk , znk ) − D f (Proj f

C znk , znk ) < D f (Proj f
C znk , znk )

∀k ≥ N .

Hence D f (xnk , znk ) < D f (Proj f
C znk , znk ) ∀k ≥ N . This contradicts the definition

of the Bregman projection. Hence limk→∞ D f (Proj f
C znk , xnk ) = 0. Therefore, by

using Proposition 2.5 in [36], we obtain that lim
k→∞ ||Proj f

C znk − xnk || = 0.

(c) From (4), we have that 〈∇ f (znk )−∇ f (Proj f
C znk ), y − Proj f

C znk 〉 ≤ 0 ∀y ∈ C .

This implies from (7) that

〈∇ f (xnk ) − ∇ f (Proj f
C znk ), y − Proj f

C znk 〉 ≤ 〈λnk Axnk , y − Proj f
C znk 〉 ∀y ∈ C .

Therefore

〈∇ f (xnk ) − ∇ f (Proj f
C znk ), y − Proj f

C znk 〉 + 〈λnk Axnk , Proj f
C znk − xnk 〉

≤ 〈λnk Axnk , y − xnk 〉. (13)

Thus, we have from (b) that lim
k→∞ ||∇ f (Proj f

C (znk )) − ∇ f (xnk )||∗ = 0. Tak-

ing the limit of the inequality in (13) and noting that {λnk } ⊂ [a, b], we have
0 ≤ lim inf

k→∞ 〈Axnk , y − xnk 〉 ∀y ∈ C . ��

Lemma 3.4 The sequence {xn} generated by Algorithm 3.1 satisfies the following
estimates:

(i) sn+1 ≤ (1 − αn)sn + αnbn,
(ii) −1 ≤ lim sup

n→∞
bn < +∞,

where p ∈ Γ , sn = D f (p, xn), bn = 〈∇ f (u) − ∇ f (p), xn+1 − p〉.
Proof (i) Let wn = ∇ f ∗(βn∇ f (vn) + (1 − βn)∇ f (T vn)) and p ∈ Γ , then from

(9), we have

D f (p, xn+1) = D f (p,∇ f ∗(αn∇ f (u) + (1 − αn)∇ f (wn)))

≤ V f

(
p, αn∇ f (u) + (1 − αn)∇ f (wn) − αn(∇ f (u) − ∇ f (p))

)

+〈αn(∇ f (u) − ∇ f (p)), xn+1 − p〉
= V f

(
p, αn∇ f (p) + (1 − αn)∇ f (wn)

)
+ αn〈∇ f (u)

−∇ f (p), xn+1 − p〉
≤ (1 − αn)D f (p, wn) + αn〈∇ f (u) − ∇ f (p), xn+1 − p〉 (14)

= (1 − αn)
(

D f (p,∇ f ∗(βn∇ f (vn) + (1 − βn)∇ f (T vn)))
)

+αn〈∇ f (u) − ∇ f (p), xn+1 − p〉
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≤ (1 − αn)βn D f (p, vn) + (1 − αn)(1 − βn)D f (p, T vn)

+αn〈∇ f (u) − ∇ f (p), xn+1 − p〉
≤ (1 − αn)D f (p, vn) + αn〈∇ f (u) − ∇ f (p), xn+1 − p〉. (15)

Therefore from (12), we have

D f (p, xn+1) ≤ (1 − αn)
(

D f (p, xn) − D f (vn, un) − D f (un, xn)
)

+αn〈∇ f (u) − ∇ f (p), xn+1 − p〉. (16)

Since {αn} ⊂]0, 1[, then

D f (p, xn+1) ≤ (1 − αn)D f (p, xn) + αn〈∇ f (u) − ∇ f (p), xn+1 − p〉. (17)

This established (i).
(ii) Since {xn} is bounded, then we have

sup
n≥0

bn ≤ sup ||∇ f (u) − ∇ f (p)||∗||xn+1 − p|| < ∞.

This implies that lim sup
n→∞

bn < ∞. Next, we show that lim sup
n→∞

bn ≥ −1. Assume

the contrary, i.e. lim sup
n→∞

bn < −1. Then there exists n0 ∈ N such that bn < −1,

for all n ≥ n0. Then for all n ≥ n0, we get from (i) that

sn+1 ≤ (1 − αn)sn + αnbn < (1 − αn)sn − αn = sn − αn(sn + 1) ≤ sn − αn .

Taking lim sup of the last inequality, we have

lim sup
n→∞

sn ≤ sn0 − lim
n→∞

n∑
i=n0

αi = −∞.

This contradicts the fact that {sn} is a non-negative real sequence. Therefore
lim sup

n→∞
bn ≥ −1.

��
We are now in position to state and prove our main theorem.

Theorem 3.1 Let {xn} be the sequence generated by Algorithm 3.1. Then, {xn} con-
verges strongly to a point x̄ = Proj f

Γ (u), where Proj f
Γ is the Bregman projection

from C onto Γ .

Proof Let p ∈ Γ , and denote D f (p, xn) by Φn . We consider the following two
possible cases.
CASE A: Suppose there exists n0 ∈ N such that Φn is monotonically nonincreasing
for all n ≥ n0. Since Φn is bounded, then it is convergent and so Φn − Φn+1 → 0 as
n → ∞.
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We first show that ||xn − un|| → 0, ||vn − T vn|| → 0 and ||xn+1 − xn|| → 0 as
n → ∞. Since {αn} ⊂ (0, 1), we obtain from (16) that

(1 − αn)D f (un, xn) ≤ (1 − αn)D f (p, xn) − D f (p, xn+1) + αn〈∇ f (u)

−∇ f (p), xn+1 − p〉.

Using condition(C1), we obtain that D f (un, xn) → 0 as n → ∞. Using Lemma 3.1
in [37], p. 31, we have

lim
n→∞ ||un − xn|| = 0. (18)

Similarly from (16), we can obtain

lim
n→∞ ||vn − un|| = 0 ⇒ lim

n→∞ ||vn − xn|| = 0. (19)

Recall that wn = ∇ f ∗(βn∇ f (vn) + (1 − βn)∇ f (T vn)). Thus, we have

D f (p, wn) = D f (p,∇ f ∗(βn∇ f (vn) + (1 − βn)∇ f (T vn)))

≤ βn D f (p, vn) + (1 − βn)D f (p, T vn)

−βn(1 − βn)ρr (||∇ f (vn) − ∇ f (T vn)||∗)
≤ D f (p, vn) − βn(1 − βn)ρr (||∇ f (vn) − ∇ f (T vn)||∗). (20)

Thus from (12), (14) and (20), we have

D f (p, xn+1) ≤ (1 − αn)D f (p, vn) − (1 − αn)βn(1 − βn)ρr (||∇ f (vn) − ∇ f (T vn)||)
+αn〈∇ f (u) − ∇ f (p), xn+1 − p〉

≤ (1 − αn)D f (p, xn) − (1 − αn)βn(1 − βn)ρr (||∇ f (vn) − ∇ f (T vn)||∗)

+αn〈∇ f (u) − ∇ f (p), xn+1 − p〉.

Hence

(1 − αn)βn(1 − βn)ρr (||∇ f (vn) − ∇ f (T vn)||) ≤ (1 − αn)D f (p, xn) − D f (p, xn+1)

+αn〈∇ f (u) − ∇ f (p), xn+1 − p〉.

It follows from conditions (C1), (C2) and the properties of ρr that

lim
n→∞ ||∇ f (vn) − ∇ f (T vn)||∗ = 0. (21)

Since f is uniformly Fréchet differentiable on bounded subsets of E , it is also uni-
formly continuous and∇ f is norm-to-norm uniformly continuous on bounded subsets
of E , hence from (21), we have

lim
n→∞ || f (vn) − f (T vn)|| = 0 and lim

n→∞ ||vn − T vn|| = 0. (22)
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In addition, it is easy to see fromdefinition ofBregmandistance that D f (vn, T vn) → 0
as n → ∞. Thus

D f (vn, xn+1) ≤ αn D f (vn, u) + (1 − αn)βn D f (vn, vn)

+(1 − αn)(1 − βn)D f (vn, T vn).

This implies that lim
n→∞ ||vn − xn+1|| = 0 ⇒ lim

n→∞ ‖xn+1 − xn‖ = 0.

Next, we show that Ωw(xn) ⊂ V I (C, A) ∩ F(T ), where Ωw(xn) is the weak
subsequential limit of {xn}. Let x̄ ∈ Ωw(xn), there exists a subsequence {xnk }
of {xn} such that xnk ⇀x̄ as k → ∞. Consequently from (22), vnk ⇀x̄ . Since
||vnk − T vnk || → 0, then x̄ ∈ F̂(T ) = F(T ). Furthermore, let z ∈ C be an
arbitrary point and {εk} be a sequence of decreasing nonnegative numbers such that
εk → 0 as k → ∞. Using Lemma 3.3(c), we can find a large enough Nk such that
〈Axnk , z − xnk 〉 + εk ≥ 0, ∀k ≥ Nk . This implies that

〈Axnk , z + εk tk − xnk 〉 ≥ 0, ∀k ≥ Nk, (23)

for some tk ∈ E satisfying 1 = 〈Axnk , tk〉 (since Axnk 	= 0). Since A is pseudo-
monotone, then we have from (23) that 〈A(z + εk tk), z + εk tk − xnk 〉 ≥ 0, ∀k ≥ Nk .

This implies that

〈Az, z − xnk 〉 ≥ 〈Az − A(z + εk tk), z + εk tk − xnk 〉 − εk〈Az, tnk 〉 ∀k ≥ Nk .(24)

Since εk → 0 and A is continuous, then the right-hand side of (24) tends to zero.
Thus, we obtain that lim inf

k→∞ 〈Az, z − xnk 〉 ≥ 0, ∀z ∈ C . In view of Lemma 3.3(c),

we have that

〈Az, z − x̄〉 = lim
k→∞〈Az, z − xnk 〉 ≥ 0, ∀z ∈ C .

WeknowfromLemma2.2 of [40], p. 2090 and the above inequality that x̄ ∈ V I (C, A).

Therefore x̄ ∈ Γ := V I (C, A) ∩ F(T ).
We now show that {xn} converges strongly to x∗ = Proj f

Γ u. It is easy to show that

lim sup
n→∞

〈∇ f (u) − ∇ f (x∗), xn+1 − x∗〉 ≤ 0.

NowusingLemma2.5 of [43], p. 243withLemma3.4(i),weobtain that D f (x∗, xn) →
0 as n → ∞. Hence, lim

n→∞ ||xn − x∗|| = 0. Therefore, {xn} converges strongly to

x∗ = Proj f
Γ u.

CASE B: Suppose {D f (p, xn)} is not monotonically decreasing. Let φ : N → N for
all n ≥ n0 (for some n0 large enough) be defined by φn = max{k ∈ N : φk ≤ φk+1}.
Clearly, φ is nondecreasing, φ(n) → ∞ as n → ∞ and

0 ≤ D f (p, xφ(n)) ≤ D f (p, xφ(n)+1), ∀n ≥ n0.
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Following similar argument as in CASE A, we obtain

||xφ(n) − uφ(n)|| → 0, ||vφ(n) − T vφ(n)|| → 0, ||xφ(n)+1 − xφ(n)|| → 0

as n → ∞ and Ωw(xφ(n)) ⊂ V I (C, A) ∩ F(T ), where Ωw(xφ(n)) is the weak
subsequential limit of {xφ(n)}. Also,

lim sup
n→∞

〈∇ f (u) − ∇ f (p), xφ(n)+1 − p〉 ≤ 0. (25)

From Lemma 3.4(i), we have that D f (p, xφ(n)+1) ≤ (1 − αφ(n))D f (p, xφ(n)) +
αφ(n)〈∇ f (u) − ∇ f (p), xφ(n)+1 − p〉. Since D f (p, xφ(n)) ≤ D f (p, xφ(n)+1), then

0 ≤ D f (p, xφ(n)+1) − D f (p, xφ(n))

≤ (1 − αφ(n))D f (p, xφ(n)) + αφ(n)〈∇ f (u) − ∇ f (p), xφ(n)+1 − p〉 − D f (p, xφ(n)).

Hence from (25), we obtain

D f (p, xφ(n)) ≤ 〈∇ f (u) − ∇ f (p), xφ(n)+1 − p〉 → 0, as n → ∞.

As a consequence, we obtain that for all n ≥ n0,

0 ≤ D f (p, xn) ≤ max{D f (p, xφ(n)), D f (p, xφ(n)+1)} = D f (p, xφ(n)+1).

Hence lim
n→∞ D f (p, xn) = 0 ⇒ lim

n→∞ ||xn − p|| = 0. This implies that {xn} converges
strongly to p. This completes the proof. ��

4 Application to Equilibrium Problems

Let E be a real reflexive Banach space and C be a nonempty, closed and convex subset
of E . Let g : C × C → R be a bifunction such that g(x, x) = 0 for all x ∈ C . The
equilibrium problem (shortly, EP) with respect to g on C is stated as follows:

Find x∗ ∈ C such that g(x∗, y) ≥ 0, ∀ y ∈ C . (26)

We denote the solution set of EP (26) by E P(C, g). The bifunction g : C × C → R

is said to be

(i) monotone on C if g(x, y) + g(y, x) ≤ 0 ∀ x, y ∈ C;
(ii) pseudo-monotone on C if g(x, y) ≥ 0 ⇒ g(y, x) ≤ 0 ∀ x, y ∈ C .

Remark 4.1 [44] Every monotone bifunction on C is pseudo-monotone but the con-
verse is not true. A mapping A : C → E∗ is pseudo-monotone if and only if the
bifunction g(x, y) = 〈Ax, y − x〉 is pseudo-monotone on C .
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Several algorithms have been introduced for solving the EP (26) when the bifunction
g is monotone (see, for instance, [45–48]). However, when g is pseudo-monotone,
very few iterative methods are known for solving the EP.
Assume that the bifunction g satisfies the following:

Assumption 4.1 (A1) g is weakly continuous on C × C ,

(A2) g(x, ·) is convex lower semicontinuous and subdifferentiable on C for every
fixed x ∈ C ,

(A3) for each x, y, z ∈ C , lim supt↓0 g(t x + (1 − t)y, z) ≤ g(y, z).

Lemma 4.1 [49] Let E be a nonempty convex subset of a Banach space E and f :
E → R be a convex and subdifferentiable function, then f is minimal at x ∈ E if and
only if

0 ∈ ∂ f (x) + NC (x),

where NC (x) is the normal cone of C at x, that is, NC (x) := {x∗ ∈ E∗ : 〈x∗, x − z〉 ≥
0, ∀z ∈ C}.
Lemma 4.2 [50] Let E be a real reflexive Banach space. If f and g are two convex
functions such that there is a point x0 ∈ dom f ∩ dom g where f is continuous, then
∂( f + g)(x) = ∂ f (x) + ∂g(x) ∀x ∈ E .

Proposition 4.1 Let E be a real reflexive Banach space and C be a nonempty, closed
and convex subset of E. Let g : C ×C → R be a bifunction such that g(x, x) = 0 and
f : E → R be a Legendre and totally coercive function. Then a point x∗ ∈ E P(C, g)

if and only if x∗ solves the following minimization problem:

min

{
λg(x, y) + D f (y, x) : y ∈ C

}
, where x ∈ C, and λ > 0.

Proof Let x∗ = argminy∈C

{
λg(x, y) + D f (y, x)

}
, then from Lemmas 4.1 and 4.2,

we have

0 ∈ ∂λg(x, x∗) + ∇D f (x∗, x) + NC (x∗).

Hence, there exist w ∈ ∂g(x, x∗) and w̄ ∈ NC (x∗) such that

λw + ∇ f (x∗) − ∇ f (x) + w̄ = 0. (27)

Since w̄ ∈ NC (x∗), then 〈w̄, z −x∗〉 ≤ 0 for all z ∈ C . This together with (27) implies
that

〈λw + ∇ f (x∗) − ∇ f (x), z − x∗〉 ≥ 0 ∀ z ∈ C,
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and hence

λ〈w, z − x∗〉 ≥ 〈∇ f (x∗) − ∇ f (x), x∗ − z〉 ∀ z ∈ C . (28)

Also, since w ∈ ∂g(x, x∗), then we have g(x, z)− g(x, x∗) ≥ 〈w, z − x∗〉 ∀ z ∈ C .

This together with (28) yields

λ
(

g(x, z) − g(x, x∗)
)

≥ 〈∇ f (x∗) − ∇ f (x), x∗ − z〉 ∀ z ∈ C . (29)

Replacing x with x∗ in (29), we have g(x∗, z) ≥ 0, ∀z ∈ C . Therefore, x∗ ∈
E P(C, g). The converse follows clearly. ��
It is easy to show that, if x ∈ V I (C, A), then x is the unique solution of the mini-
mization problem

min

{
λ〈Au, y − u〉 + D f (y, u) : y ∈ C

}
,

where u ∈ C and λ > 0. By setting 〈Ax, y − x〉 = g(x, y) in Theorem 3.1, we
have the following result for approximating solution of pseudo-monotone equilibrium
problem.

Theorem 4.1 Let E be a real reflexive Banach space, and let C be a nonempty, closed
and convex subset of E. Let f : E → R be a coercive, Legendre function which is
bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of
E such that C ⊂ int(dom f ). Let g : C × C → R be a pseudo-monotone bifunction
such that g(x, x) = 0 for all x ∈ C and satisfying Assumption 4.1. Let T : C → C
be a Bregman quasi-nonexpansive mapping with F̂(T ) = F(T ) such that Γ :=
E P(C, g) ∩ F(T ) 	= ∅. Let {αn} and {βn} be nonnegative sequences in ]0, 1[ and
such that conditions (C1) and (C2) are satisfied. Let {xn} be generated by the following
algorithm:

Algorithm 4.1
Step 0: Select the initial points x1, u ∈ E, let γ, σ ∈]0, 1[ and s > 0. Choose
λn ∈ [a, b] such that 0 < a ≤ b and set n = 1.
Step 1: Compute

zn = argmin

{
λng(xn, y) + D f (y, xn) : y ∈ C

}
.

Step 2: If xn = zn and xn = T xn: STOP. Otherwise, let yn(t) := (1 − t)xn + t zn for
t ∈ R. Compute tn as the maximum of the numbers s, sγ, sγ 2, . . . such that

g(yn(tn), xn − zn) ≥ σ D f (zn, xn)

λn
,
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and define yn = yn(tn).
Step 3: Set wn = ∇ f (xn) − λn yn. Compute un = Proj f

Qn
(wn) where Qn := {x ∈

E : 〈w̄n, x − wn〉 = 0}, w̄n ∈ ∂g(wn, x − wn). Then compute

{
vn = Proj f

C (un),

xn+1 = ∇ f ∗
(
αn∇ f (u) + (1 − αn)(βn∇ f (vn) + (1 − βn)∇ f (T vn))

)
.

(30)

Set n ← n + 1 and go to Step 1.

Then, the sequence {xn} converges strongly to a point x̄ = Proj f
Γ (u), where Proj f

Γ

is the Bregman projection from C onto Γ .

5 Numerical Examples

In this section,wepresent twonumerical exampleswhichdemonstrate the performance
of our Algorithm 3.1.

Example 5.1 Let E = R
n with standard topology and T : Rn → R

n be defined by
T x = − 1

2 x . Consider an operator A : R
m → R

m (m = 20, 50, 100, 200) define
by Ax = Mx + q where M = N N T + S + D, N is a m × m matrix, S is an
m ×m skew-symmetric matrix, D is a m ×m diagonal matrix, whose diagonal entries
are non-negative so that M is positive definite and q is a vector in R

m . The feasible
set C ⊂ R

m is closed and convex (polyhedron), which is defined as C = {x =
(x1, x2, . . . , xm) ∈ R

m : Qx ≤ b}, where Q is a l × m matrix and b is a non-
negative vector. Clearly, A is monotone (hence, pseudo-monotone) and L-Lipschitz
continuous with L = ||M ||. For experimental purpose, all the entries of N , S, D
and b are generated randomly as well as the starting point x1 ∈ [0, 1]m and q is
equal to the zero vector. In this case, the solution to the corresponding variational
inequality is {0} and thus, Γ := V I (C, A) ∩ F(T ) = {0}. We fix the stopping

criterion as ‖xn+1−xn‖2
‖x2−x1‖2 = ε < 10−5, σ = 0.7, γ = 0.9, s = 10, λn = 0.15

and let αn = 1
n+1 and βn = 1

4 . The projection onto the feasible set C is carry-out
by using the MATLAB solver ‘fmincon’ and the projection onto an hyperplane
Q = {x ∈ R

m : 〈a, x〉 = 0} is defined by PQ(x) = x − 〈a,x〉
||a||2 a. Since A is monotone,

we compare the output of our Algorithm 3.1 with Algorithm 3.3 of [20] (Alg 1.5).
The numerical result is reported in Fig. 1 and Table 1. We see that our Algorithm 3.1
converges faster than Algorithm 3.3 of [20]. This is expected because the stepsize rule
in STEP 2 of our algorithm tends to determine a larger stepsize closer to the solution
of the problem (Tables 2, 3).

Finally, we give a concrete example in �p space (1 ≤ p < ∞ with p 	= 2), which
is not a Hilbert space. It is well known that the dual space (�p)

∗ is isomorphic to �q

provided that 1
q + 1

p = 1 (see, for instance, [51], Lemma 2.2, p. 11). Also, the �p

space is a reflexive Banach space and in this case, we take f (x) = 1
p ||x ||p.
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Table 1 Comparison between Algorithm 3.1 and Algorithm 3.3 of [20] for Example 5.1

Algorithm 3.1 Algorithm 3.3 of [20] (Alg. 1.5)

m = 20 CPU time (s) 0.0065 0.0105

No. of iter. 23 38

m = 50 CPU time (s) 0.0118 0.0178

No. of iter. 24 39

m = 100 CPU time (s) 0.0189 0.0263

No. of iter. 25 40

m = 200 CPU time (s) 0.0160 0.0306

No. of iter. 25 42

Table 2 Computation result for Example 5.2, Case I; Time: 0.1336 s

Iter. xn+1 ||xn+1 − xn ||�3
1 (0.3241, 0.5387,−0.1256, 0, 0, 0, . . . )

2 (0.4549, 1.0860,−0.4436, 0, 0, 0, . . . ) 0.5831

3 (0.6304, 2.1364,−1.6952, 0, 0, 0, . . . ) 1.4617

4 (0.3343, 1.3639,−2.1382, 0, 0, 0, . . . ) 0.1507

5 (0.4774, 1.2958,−2.1483, 0, 0, 0, . . . ) 0.1481

10 (0.8247, 1.2461,−2.1254, 0, 0, 0, . . . ) 0.0335

20 (0.9056, 1.2781,−2.1054, 0, 0, 0, . . . ) 0.0015

30 (0.9101, 1.2793,−2.1043, 0, 0, 0, . . . ) 0.0001

40 (0.9104, 1.2794,−2.1042, 0, 0, 0, . . . ) 9.6527 e−6

50 (0.9105, 1.2794,−2.1042, 0, 0, 0, . . . ) 8.1868 e−7

59 (0.9105, 1.2794,−2.1042, 0, 0, 0, . . . ) 8.8898 e−8

Example 5.2 Let E = �3(R) define by �3(R) := {x̄ = (x1, x2, x3, . . . ), xi ∈
R : ∑∞

i=1 |xi |3 < ∞}, with norm || · ||�3 : �3 → [0,∞) defined by ||x̄ ||�3 =(∑∞
i=1 |xi |3

) 1
3 , for arbitrary x̄ = (x1, x2, x3, . . . ) in �3. Let C := {x ∈ E : ||x ||�3 ≤

1} and define the mapping A : C → (�3)
∗ by Ax = 2x + (1, 1, 1, 0, 0, 0, . . . ), with

(x1, x2, x3, . . . ) ∈ �3(R). It is easy to show that A is monotone (hence, pseudo mono-
tone). Take T x = x

2 , αn = 1
100n+1 , βn = 3n+5

7n+8 , σ = 0.14, γ = 0.4, s = 3, λ = 0.78.
The projections onto the feasibility set are carried out using optimization tool box in
MATLAB.We carried out two numerical tests for approximating the common solution
of the VI and FPP using Algorithm 3.1. The initial value of x1 and fixed u used are

Case I: x1 = (0.3241, 0.5387,−0.1256, 0, 0, 0, . . . ) and u = (−0.0988, 0.2679,
0.2890, 0, 0, 0, . . . )

Case II: x1 = (−4.5289,−1.2345, 5.2238, 0, 0, 0 . . . ) and u = (1.3268,−5.3420,

3.2890, 0, 0, 0, . . . ), with stopping criterion
||xn+1−xn ||�3||x2−x1||�3 < 10−7 in each

case. The following are the computational results obtain for these tests.
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Table 3 Computation result for Example 5.2, Case 2; Time: 0.2182 s

Iter. xn+1 ||xn+1 − xn ||�3
1 (−4.5289,−1.2345, 5.2238, 0, 0, 0 . . . )

2 (2.1415,−5.7883, 3.9968, 0, 0, 0, . . . ) 5.3096

3 (2.8089,−5.6600, 3.4229, 0, 0, 0, . . . ) 2.0383

4 (2.9175,−5.6352, 3.0466, 0, 0, 0, . . . ) 0.7875

5 (2.9970,−5.5380, 3.0342, 0, 0, 0, . . . ) 0.3794

10 (2.9923,−5.5568, 2.9463, 0, 0, 0, . . . ) 0.0333

20 (2.9978,−5.5481, 2.9573, 0, 0, 0, . . . ) 0.0045

30 (2.9985,−5.5470, 2.9588, 0, 0, 0, . . . ) 0.0006

40 (2.9986,−5.5468, 2.9590, 0, 0, 0, . . . ) 0.0001

50 (2.9986,−5.5470, 2.9573, 0, 0, 0, . . . ) 1.1574 e−5

60 (2.9986,−5.5470, 2.9573, 0, 0, 0, . . . ) 1.5821 e−5

70 (2.9986,−5.5470, 2.9573, 0, 0, 0, . . . ) 2.1626 e−7

74 (2.9986,−5.5470, 2.9573, 0, 0, 0, . . . ) 9.7559 e−8

Remark 5.1 The numerical experiments showed that the performance of the algorithm
is essentially independent of the value of x1 used in the computation.

6 Conclusions

In this paper, we have proposed a strong convergence projection-type algorithm for
solving pseudo-monotoneVI andfixedpoint ofBregmanquasi-nonexpansivemapping
in a real reflexive Banach space. A convergence theorem was established without a
Lipschitz condition imposed on the cost operator of the VI.We also give an application
of our results to approximating the solution of pseudo-monotone equilibriumproblems
in reflexiveBanach spaces. Somenumerical examples are also provided to demonstrate
the behavior of our algorithm. The following are the contributions made in this paper:

(i) The main result in this paper extends the result of Denisov et al [52] and Kanzow
and Shehu [20] from Hilbert space to a reflexive Banach space and also from
monotone variational inequality to pseudo-monotone variational inequalities.

(ii) The operator involved in our method need not be Lipschitz continuous. Our main
result extends many recent results (e.g., [16,24,25]) on VI, where the underlying
operator is monotone and Lipschitz continuous.

(iii) The (w, s) sequential continuity of a pseudo-monotone operator A, assumed by
Ceng et al. [53] and Yao and Postolache [54] to establish weak and strong conver-
gence results for solvingVI in aHilbert space, was relaxed in our result and also the
strong convergence result obtained in this paper improves the weak convergence
result of Vuong [55] in a real Hilbert space.
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