Skip to main content
Log in

Iterative methods for solving variational inequalities in Euclidean space

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

An Erratum to this article was published on 19 September 2015

Abstract

In this paper, we investigate the convergence properties of an iterative method for solving variational inequalities in Euclidean space. We show that under certain assumptions the method can be applied to variational inequalities defined over the common fixed point set of a given infinite family of cutter operators. The main step of our method consists in the computation of the metric projection onto a certain superhalf- space, which is constructed using the input data defining the problem. Moreover, in the case where the common fixed point set is a finite intersection of the fixed point sets of cutters for which Opial’s closedness principle holds, we show that the iterative method can be easily combined with either sequential, composition or convex combination type methods. We also discuss ways of applying our method to more general classes of operators such as quasi-nonexpansive and demi-contractive ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Aoyama, F. Kohsaka, Viscosity approximation process for a sequence of quasinonexpansive mappings. Fixed Point Theory Appl. 2014 (2014), doi:10.1186/1687-1812-2014-17, 11 pages

  2. Bauschke H.H.: The approximation of fixed points of composition of nonexpansive mappings in Hilbert space. J. Math. Anal. Appl. 202, 150–159 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bauschke H.H., Borwein J.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Valued Anal. 1, 185–212 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bauschke H.H., Borwein J.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bauschke H.H., Combettes P.L.: A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces. Math. Oper. Res. 26, 248–264 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bauschke H.H., Combettes P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  7. Bauschke H.H., Matoušková E., Reich S.: Projection and proximal point methods: Convergence results and counterexamples. Nonlinear Anal. 56, 715–738 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bauschke H.H., Wang C., Wang X., Xu J.: On subgradient projectors. SIAM J. Optim. 25, 1064–1082 (2015)

    Article  MathSciNet  Google Scholar 

  9. Bruck R.E.: Random products of contractions in metric and Banach spaces. J. Math. Anal. Appl. 8, 319–332 (1982)

    Article  MathSciNet  Google Scholar 

  10. A. Cegielski, Generalized relaxations of nonexpansive operators and convex feasibility problems. In: Nonlinear Analysis and Optimization. I. Nonlinear Analysis, Contemp. Math. 513, Amer. Math. Soc., Providence, RI, 2010, 111–123

  11. A. Cegielski, Iterative Methods for Fixed Point Problems in Hilbert Spaces. Springer, Heidelberg, 2012

  12. Cegielski A.: Extrapolated simultaneous subgradient projection method for variational inequality over the intersection of convex subsets. J. Nonlinear Convex Anal. 15, 211–218 (2014)

    MATH  MathSciNet  Google Scholar 

  13. A. Cegielski, Application of quasi-nonexpansive operators to an iterative method for variational inequality. In preparation

  14. A. Cegielski and Y. Censor, Opial-type theorems and the common fixed point problem. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer Optim. Appl. 49, Springer, New York, 2011, 155–183

  15. Cegielski A., Gibali A., Reich S., Zalas R.: An algorithm for solving the variational inequality problem over the fixed point set of a quasi-nonexpansive operator in Euclidean space. Numer. Funct. Anal. Optim. 34, 1067–1096 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cegielski A., Zalas R.: Methods for variational inequality problem over the intersection of fixed point sets of quasi-nonexpansive operators. Numer. Funct. Anal. Optim. 34, 255–283 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cegielski A., Zalas R.: Properties of a class of approximately shrinking operators and their applications. Fixed Point Theory 15, 399–426 (2014)

    MATH  MathSciNet  Google Scholar 

  18. Y. Censor and A. Gibali, Projections onto super-half-spaces for monotone variational inequality problems in finite-dimensional space. J. Nonlinear Convex Anal. 9, 461–75 (2008)

  19. Censor Y., Segal A.: On the string averaging method for sparse common fixed point problems. Int. Trans. Oper. Res. 16, 481–494 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Y. Censor and A. Segal, Sparse string-averaging and split common fixed points. In: Nonlinear Analysis and Optimization. I. Nonlinear Analysis, Contemp. Math. 513, Amer. Math. Soc., Providence, RI, 2010, 125–142

  21. P. L. Combettes, Quasi-Fejérian analysis of some optimization algorithms. In: Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications (Haifa, 2000), Stud. Comput. Math. 8, North-Holland, Amsterdam, 2001, 115–152

  22. Crombez G.: A hierarchical presentation of operators with fixed points on Hilbert spaces. Numer. Funct. Anal. Optim. 27, 259–277 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Deutsch F.: Best Approximation in Inner Product Spaces. Springer, New York (2001)

    Book  MATH  Google Scholar 

  24. Deutsch F., Yamada I.: Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings. Numer. Funct. Anal. Optim. 19, 33–56 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Dotson W.G. Jr.: On the Mann iterative process. Trans. Amer. Math. Soc. 149, 65–73 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  26. F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems. Volumes I and II, Springer, New York, 2003

  27. Fletcher R.: Practical Methods of Optimization. John Wiley, Chichester (1987)

    MATH  Google Scholar 

  28. Fukushima M.: A relaxed projection method for variational inequalities. Math. Program. 35, 58–70 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  29. Genel A., Lindenstrauss J.: An example concerning fixed points. Israel J. Math. 22, 81–86 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  30. Goldstein A.A.: Convex programming in Hilbert space. Bull. Amer. Math. Soc. 70, 709–710 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  31. Halperin I.: The product of projection operators. Acta Sci. Math. (Szeged) 23, 96–99 (1962)

    MATH  MathSciNet  Google Scholar 

  32. Hirstoaga S.A.: Iterative selection methods for common fixed point problems. J. Math. Anal. Appl. 324, 1020–1035 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Kinderlehrer D., Stampacchia G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  34. Levitin E.S., Polyak B.T.: Constrained minimization methods. Zh. Vychisl. Mat. Mat. Fiz. 6, 787–823 (1966)

    MATH  Google Scholar 

  35. Măruşter Şt.: The solution by iteration of nonlinear equations in Hilbert spaces. Proc. Amer. Math. Soc. 63, 69–73 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  36. Măruşter Şt.: Quasi-nonexpansivity and the convex feasibility problem. An. Ştiinţ. Univ. Al. I. Cuza Iaşi Inform. (N.S.) 15, 47–56 (2005)

    MATH  Google Scholar 

  37. Măruşter Şt., Popirlan C.: On the Mann-type iteration and the convex feasibility problem. J. Comput. Appl. Math. 212, 390–396 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  38. Noor M.A.: Some developments in general variational inequalities. Appl. Math. Comput. 152, 199–277 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  39. Opial Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73, 591–597 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  40. Reich S., Zaslavski A.J.: Attracting mappings in Banach and hyperbolic spaces. J. Math. Anal. Appl. 253, 250–268 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  41. Schott D.: Ball intersection model for Fejér zones of convex closed sets. Discuss. Math. Differ. Incl. Control Optim. 21, 51–79 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  42. A. Segal, Directed operators for common fixed point problems and convex programming problems. PhD thesis, University of Haifa, Haifa, Israel, 2008

  43. Song Y.: On a Mann type implicit iteration process for continuous pseudocontractive mappings. Nonlinear Anal. 67, 3058–3063 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  44. Takahashi W., Takeuchi Y., Kubota R.: Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 341, 276–286 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  45. Tricomi F.: Un teorema sulla convergenza delle successioni formate delle successive iterate di una funzione di una variabile reale. Giorn. Mat. Battaglini 54, 1–9 (1916)

    Google Scholar 

  46. V. V. Vasin and A. L. Ageev, Ill-Posed Problems with a priori Information. VSP, Utrecht, 1995

  47. Xiu N., Zhang J.: Some recent advances in projection-type methods for variational inequalities. J. Comput. Appl. Math. 152, 559–585 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  48. Xu H.-K., Kim T.H.: Convergence of hybrid steepest-descent methods for variational inequalities. J. Optim. Theory Appl. 119, 185–201 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  49. I. Yamada, The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings. In: Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications (Haifa, 2000), Stud. Comput. Math. 8, North-Holland, Amsterdam, 2001, 473–504

  50. Yamada I., Ogura N.: Hybrid steepest descent method for variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings. Numer. Funct. Anal. Optim. 25, 619–655 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  51. I. Yamada, M. Yukawa and M. Yamagishi, Minimizing the Moreau envelope of nonsmooth convex functions over the fixed point set of certain quasinonexpansive mappings. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer Optim. Appl. 49, Springer, New York, 2011, 345–390

  52. M. Zaknoon, Algorithmic developments for the convex feasibility problem. PhD thesis, University of Haifa, Haifa, Israel, 2003

  53. R. Zalas, Variational inequalities for fixed point problems of quasi-nonexpansive operators. PhD thesis, University of Zielona Góra, Zielona Góra, Poland, 2014 (in Polish).

  54. Zeidler E.: Nonlinear Functional Analysis and Its Applications. III. Variational Methods and Optimization. Springer, New York (1985)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simeon Reich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gibali, A., Reich, S. & Zalas, R. Iterative methods for solving variational inequalities in Euclidean space. J. Fixed Point Theory Appl. 17, 775–811 (2015). https://doi.org/10.1007/s11784-015-0256-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-015-0256-x

Mathematics Subject Classification

Keywords

Navigation