Skip to main content
Log in

Synthesis and Characterization of ZnO/CuO Nanocomposites as an Effective Photocatalyst and Gas Sensor for Environmental Remediation

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Current study delineates the synthesis and environmental applications of ZnO/CuO nanocomposite in photocatalysis and gas sensing. The ZnO/CuO nanocomposites (1:1, 1:2, and 2:1) were synthesized by a cost-effective and simple co-precipitation method. X-ray diffraction and high-resolution transmission electron microscopy investigation confirms the monoclinic crystal phase for the CuO and hexagonal wurtzite for ZnO in ZnO/CuO nanocomposites. The Raman spectroscopic analysis also revealed the monoclinic crystal phase for the CuO with C2h space group. The morphological features were explored by scanning electron microscopy. The successful synthesis of the ZnO/CuO nanocomposites with their very stable + II oxidation state is revealed by the X-ray photoelectron spectroscopy investigation. Optical properties and band gap measurements were explored by ultra-violet diffuse reflectance spectroscopy and the synthesized ZnO/CuO nanocomposite (1:1) was found to exhibit the direct band gap of 2.34 eV. The photocatalytic degradation by ZnO/CuO nanocomposite (1:1) was studied for the degradation of crystal violet (CV) dye. Nearly 90% photocatalytic degradation of CV dye was accomplished using this photocatalyst. The parameters like effect of pH, contact time, catalyst dose, kinetic study and scavenging study were investigated in the present study. The photocatalytic degradation products were analyzed by LC–MS analysis and fragmentation pathway has been depicted. Besides, the synthesized ZnO/CuO nanocomposites (1:1, 1:2, and 2:1) were studied as gas sensor for monitoring gases like LPG, ethanol, ammonia and NO2. ZnO/CuO nanocomposite was proved to be efficient ethanol gas sensor as compared to other tested gases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1
Fig. 13
Scheme 2
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. M. Venkataramanan, Causes and effects of global warming. Indian J. Sci. Technol. 4(3), 226–229 (2011)

    Article  Google Scholar 

  2. B.A. Black, J.F. Lamarque, C.A. Shields, L.T. Elkins-Tanton, J.T. Kiehl, Acid rain and ozone depletion from pulsed Siberian traps magmatism. Geology 42(1), 67–70 (2014). https://doi.org/10.1130/G34875.1

    Article  CAS  Google Scholar 

  3. P.M. Mannucci, S. Harari, I. Martinelli, M. Franchini, Effects on health of air pollution: a narrative review. Intern. Emerg. Med. 10(6), 657–662 (2015). https://doi.org/10.1007/s11739-015-1276-7

    Article  PubMed  Google Scholar 

  4. J. Han, Can urban sprawl be the cause of environmental deterioration? Based on the provincial panel data in China. Environ. Res. 189, 109954 (2020). https://doi.org/10.1016/j.envres.2020.109954

    Article  CAS  PubMed  Google Scholar 

  5. R.D. Saini, Textile organic dyes: polluting effects and elimination methods from textile waste water. Int. J. Chem. Eng. Res. 9(1), 121–136 (2017)

    Google Scholar 

  6. T. Henriksen, A. Dahlback, S.H. Larsen, J. Moan, UV-radiation and skin cancer dose effect curves. Photochem. Photobiol. 51(5), 579–582 (1990)

    Article  CAS  Google Scholar 

  7. A.E. Evans, J. Mateo-Sagasta, M. Qadir, E. Boelee, A. Ippolito, Agricultural water pollution: key knowledge gaps and research needs. Curr. Opin. Environ. Sustain. 36, 20–27 (2019). https://doi.org/10.1016/j.cosust.2018.10.003

    Article  Google Scholar 

  8. F.D. Owa, Water pollution: sources, effects, control and management. Mediterr J. Soc. Sci. 4(8), 65–65 (2013). https://doi.org/10.5901/mjss.2013.v4n8p65

    Article  Google Scholar 

  9. S.K. Guttikunda, K.A. Nishadh, P. Jawahar, Air quality, emissions, and source contributions analysis for the Greater Bengaluru region of India. Urban Clim. 27, 124–141 (2019). https://doi.org/10.1016/j.apr.2019.01.002

    Article  CAS  Google Scholar 

  10. M. Åhman, L.J. Nilsson, B. Johansson, Global climate policy and deep decarbonization of energy-intensive industries. Clim. Policy. 17(5), 634–649 (2017). https://doi.org/10.1080/14693062.2016.1167009

    Article  Google Scholar 

  11. N. Singh, Optical properties of high density barium borate glass for gamma ray shieldingapplications. Int. J. HomeSci. 2(3), 38–40 (2016). https://doi.org/10.1007/s11082-015-0274-3

    Article  CAS  Google Scholar 

  12. A.E. Al Prol, Study of environmental concerns of dyes and recent textile effluents treatment technology: a review. Asian J. Fish. Aquat. Res. (2019). https://doi.org/10.9734/ajfar/2019/v3i230032

    Article  Google Scholar 

  13. P.B. Koli, K.H. Kapadnis, U.G. Deshpande, Transition metal decorated ferrosoferric oxide (Fe3O4): an expeditious catalyst for photodegradation of carbol fuchsin in environmental remediation. J. Environ. Chem. Eng. 7(5), 103373 (2019). https://doi.org/10.1016/j.jece.2019.103373

    Article  CAS  Google Scholar 

  14. F. Yuan, Y.D. Wei, J. Gao, J.W. Chen, Water crisis, environmental regulations and location dynamics of pollution-intensive industries in China: a study of the Taihu Lakewatershed. J. Clean. Prod. 216, 311–322 (2019). https://doi.org/10.1016/j.jclepro.2019.01.177

    Article  Google Scholar 

  15. T. Shindhal, P. Rakholiya, S. Varjani, A. Pandey, H.H. Ngo, W. Guo, H.Y. Ng, M.J. Taherzadeh, A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered 12(1), 70–87 (2021). https://doi.org/10.1080/21655979.2020.1863034

    Article  CAS  PubMed  Google Scholar 

  16. P.B. Koli, K.H. Kapadnis, U.G. Deshpande, M.R. Patil, Fabrication and characterization of pure and modified Co3O4 nanocatalyst and their application for photocatalytic degradation of eosine blue dye: a comparative study. J. Nanostruct. Chem. 8(4), 453–463 (2018). https://doi.org/10.1007/s40097-018-0287-0

    Article  CAS  Google Scholar 

  17. P.B. Koli, K.H. Kapadnis, U.G. Deshpande, Nanocrystalline-modified nickel ferrite films: an effective sensor for industrial and environmental gas pollutant detection. J. Nanostruct. Chem. 9(2), 95–110 (2019). https://doi.org/10.1007/s40097-019-0300-2

    Article  CAS  Google Scholar 

  18. V.A. Adole, T.B. Pawar, P.B. Koli, B.S. Jagdale, Exploration of catalytic performance of nano-La2O3 as an efficient catalyst for dihydropyrimidinone/thione synthesis and gas sensing. J. Nanostruct. Chem. 9(1), 61–76 (2019). https://doi.org/10.1007/s40097-019-0298-5

    Article  CAS  Google Scholar 

  19. N. Wang, K. Mengersen, S. Tong, M. Kimlin, M. Zhou, L. Wang, P. Yin, Z. Xu, J. Cheng, Y. Zhang, W. Hu, Short-term association between ambient air pollution and lung cancer mortality. Environ. Res. 179, 108748 (2019). https://doi.org/10.1016/j.envres.2019.108748

    Article  CAS  PubMed  Google Scholar 

  20. M.J.V. Sakhvidi, E. Lequy, M. Goldberg, B. Jacquemin, Air pollution exposure and bladder, kidney and urinary tract cancer risk: a systematic review. Environ. Pollut. 267, 115328 (2020). https://doi.org/10.1016/j.envpol.2020.115328

    Article  CAS  Google Scholar 

  21. G. Nagel, M. Stafoggia, M. Pedersen, Z.J. Andersen, C. Galassi, J. Munkenast, A. Jaensch, J. Sommar, B. Forsberg, D. Olsson, B. Oftedal, Air pollution and incidence of cancers of the stomach and the upper aerodigestive tract in the European study of cohorts for air pollution effects (ESCAPE). Int. J. Cancer Res. 143(7), 1632–1643 (2018). https://doi.org/10.1002/ijc.31564

    Article  CAS  Google Scholar 

  22. L.G. Costa, T.B. Cole, K. Dao, Y.C. Chang, J. Coburn, J.M. Garrick, Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacol. Ther 210, 107523 (2020). https://doi.org/10.1016/j.pharmthera.2020.107523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. S. Sun, Q. Zhang, X. Sui, L. Ding, J. Liu, M. Yang, Q. Zhao, C. Zhang, J. Hao, X. Zhang, S. Lin, Associations between air pollution exposure and birth defects: a time series analysis. Environ. Geochem. Health (2021). https://doi.org/10.1007/s10653-021-00886-2

    Article  PubMed  Google Scholar 

  24. Z. Nateghian, E. Aliabadi, Aspects of environmental pollutants on male fertility and sperm parameters. J. Environ. Treat. Tech. 8(1), 299–309 (2020)

    Google Scholar 

  25. M.A.C. Vizcaíno, M. Gonzalez-Comadran, B. Jacquemin, Outdoor air pollution and human infertility: a systematic review. Fertil. Steril. 106(4), 897–904 (2016). https://doi.org/10.1016/j.fertnstert.2016.07.1110

    Article  CAS  Google Scholar 

  26. B.J. Lee, B. Kim, K. Lee, Air pollution exposure and cardiovascular disease. Toxicol. Res. 30(2), 71–75 (2014). https://doi.org/10.5487/TR.2014.30.2.071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. T. Boningari, P.G. Smirniotis, Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement. Curr. Opin. Chem. Eng. 13, 133–141 (2016). https://doi.org/10.1016/j.coche.2016.09.004

    Article  Google Scholar 

  28. F. Chen, Z. Qiao, Z. Fan, Q. Zheng, Y. Wu, M. Zhang, Y. Cui, Y. Deng, B. Luo, W. Zhang, K. Ji, The effects of Sulphur dioxide on acute mortality and years of life lost are modified by temperature in Chengdu, China. Sci. Total Environ. 576, 775–784 (2017). https://doi.org/10.1016/j.scitotenv.2016.10.161

    Article  CAS  PubMed  Google Scholar 

  29. M. Antonelli, D. Donelli, G. Barbieri, M. Valussi, V. Maggini, F. Firenzuoli, Forest volatile organic compounds and their effects on human health: a state-of-the-art review. Int. J. Environ. Res. Public Health 17(18), 6506 (2020). https://doi.org/10.3390/ijerph17186506

    Article  PubMed Central  Google Scholar 

  30. C. Wang, S. Zhou, J. Song, S. Wu, Human health risks of polycyclic aromatic hydrocarbons in the urban soils of Nanjing, China. Sci. Total Environ. 612, 750–757 (2018). https://doi.org/10.1016/j.scitotenv.2017.08.269

    Article  CAS  PubMed  Google Scholar 

  31. J. Huang, J. Li, P. Yin, L. Wang, X. Pan, M. Zhou, G. Li, Ambient nitrogen dioxide and years of life lost from chronic obstructive pulmonary disease in the elderly: a multicity study in China. Chemosphere 275, 130041 (2021). https://doi.org/10.1016/j.chemosphere.2021.130041

    Article  CAS  PubMed  Google Scholar 

  32. M. Kowalska, M. Skrzypek, M. Kowalski, J. Cyrys, Effect of NOx and NO2 concentration increase in ambient air to daily bronchitis and asthma exacerbation, Silesian Voivodeship in Poland. Int. J. Environ. Res. Public Health 17(3), 754 (2020). https://doi.org/10.3390/ijerph17030754

    Article  CAS  PubMed Central  Google Scholar 

  33. A.M. Mohammed, Y.H. Ibrahim, I.A. Saleh, NCD epidemic and sexual reproductive health issues in the infectious disease world. Afr. Health Sci. 19(4), 2892–2905 (2019). https://doi.org/10.4314/ahs.v19i4.1

    Article  PubMed  PubMed Central  Google Scholar 

  34. E. Amsalu, Y. Guo, H. Li, T. Wang, Y. Liu, A. Wang, X. Liu, L. Tao, Y. Luo, F. Zhang, X. Yang, Short-term effect of ambient sulfur dioxide (SO2) on cause-specific cardiovascular hospital admission in Beijing, China: a time series study. Atmos. Environ. 208, 74–81 (2019). https://doi.org/10.1016/j.atmosenv.2019.03.015

    Article  CAS  Google Scholar 

  35. P. Collart, D. Dubourg, A. Levêque, N.B. Sierra, Y. Coppieters, Short-term effects of nitrogen dioxide on hospital admissions for cardiovascular disease in Wallonia, Belgium. Int. J. Cardiol. 255, 231–236 (2018). https://doi.org/10.1016/j.ijcard.2017.12.058

    Article  PubMed  Google Scholar 

  36. J.Y. Lao, S.Y. Xie, C.C. Wu, L.J. Bao, S. Tao, E.Y. Zeng, Importance of dermal absorption of polycyclic aromatic hydrocarbons derived from barbecue fumes. Environ. Sci. Technol. 52(15), 8330–8338 (2018). https://doi.org/10.1021/acs.est.8b01689

    Article  CAS  PubMed  Google Scholar 

  37. D. Norbäck, J.H. Hashim, Z. Hashim, F. Ali, Volatile organic compounds (VOC), formaldehyde and nitrogen dioxide (NO2) in schools in Johor Bahru, Malaysia: associations with rhinitis, ocular, throat and dermal symptoms, headache and fatigue. Sci. Total Environ. 592, 153–216 (2017). https://doi.org/10.1016/j.scitotenv.2017.02.215

    Article  CAS  PubMed  Google Scholar 

  38. F.D. Guerra, M.F. Attia, D.C. Whitehead, F. Alexis, Nanotechnology for environmental remediation: materials and applications. Molecules 23(7), 1760 (2018). https://doi.org/10.3390/molecules23071760

    Article  CAS  PubMed Central  Google Scholar 

  39. S.J. Patil, A.V. Patil, C.G. Dighavkar, K.S. Thakare, R.Y. Borase, S.J. Nandre, N.G. Deshpande, R.R. Ahire, Semiconductor metal oxide compounds based gas sensors: a literature review. Front. Mater. Sci. 9(1), 14–37 (2015). https://doi.org/10.1007/s11706-015-0279-7

    Article  Google Scholar 

  40. A. Patil, U. Tupe, A.V. Patil, Reduced graphene oxide screen printed thick film as NO2 gas sensor at low temperature. Adv. Mat. Res. 1167, 43–55 (2021). https://doi.org/10.4028/www.scientific.net/AMR.1167.43

    Article  Google Scholar 

  41. M. Mousavi-Kamazani, S. Zinatloo-Ajabshir, M. Ghodrati, One-step sonochemical synthesis of Zn (OH)2/ZnV3O8 nanostructures as a potent material in electrochemical hydrogen storage. J. Mater. Sci. 31(20), 17332–17338 (2020). https://doi.org/10.1007/s10854-020-04289-4

    Article  CAS  Google Scholar 

  42. J. Singh, T. Dutta, K.H. Kim, M. Rawat, P. Samddar, P. Kumar, ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. 16(1), 1–24 (2018). https://doi.org/10.1186/s12951-018-0408-4

    Article  CAS  Google Scholar 

  43. J. Zhu, S. Wei, M. Chen, H. Gu, S.B. Rapole, S. Pallavkar, T.C. Ho, J. Hopper, Z. Guo, Magnetic nanocomposites for environmental remediation. Adv. Powder Technol. 24(2), 459–467 (2013). https://doi.org/10.1016/j.apt.2012.10.012

    Article  CAS  Google Scholar 

  44. D. Zhang, S. Wei, C. Kaila, X. Su, J. Wu, A.B. Karki, D.P. Young, Z. Guo, Carbon-stabilized iron nanoparticles for environmental remediation. Nanoscale 2(6), 917–919 (2010). https://doi.org/10.1039/C0NR00065E

    Article  CAS  PubMed  Google Scholar 

  45. A. Parmar, G. Kaur, S. Kapil, V. Sharma, M.K. Choudhary, S. Sharma, Novel biogenic silver nanoparticles as invigorated catalytic and antibacterial tool: a cleaner approach towards environmental remediation and combating bacterial invasion. Mater. Chem. Phys. 238, 121861 (2019). https://doi.org/10.1016/j.matchemphys.2019.121861

    Article  CAS  Google Scholar 

  46. R. Shanmuganathan, F. LewisOscar, S. Shanmugam, N. Thajuddin, S.A. Alharbi, N.S. Alharbi, K. Brindhadevi, A. Pugazhendhi, Core/shell nanoparticles: synthesis, investigation of antimicrobial potential and photocatalytic degradation of Rhodamine B. J. Photochem. Photobiol. B 202, 111729 (2020). https://doi.org/10.1016/j.jphotobiol.2019.111729

    Article  CAS  PubMed  Google Scholar 

  47. M. Saquib, R. Kaushik, A. Halder, Photoelectrochemical activity of Ag coated 2D-TiO2/RGO heterojunction for hydrogen evolution reaction and environmental remediation. ChemistrySelect 5(21), 6376–6388 (2020). https://doi.org/10.1002/slct.202000

    Article  Google Scholar 

  48. Y.M. Hunge, A.A. Yadav, S.B. Kulkarni, V.L. Mathe, A multifunctional ZnO thin film based devices for photoelectrocatalytic degradation of terephthalic acid and CO2 gas sensing applications. Sens. Actuators B 274, 1–9 (2018). https://doi.org/10.1016/j.snb.2018.07.117

    Article  CAS  Google Scholar 

  49. Y.M. Hunge, A.A. Yadav, S.W. Kang, H. Kim, Photocatalytic degradation of tetracycline antibiotics using hydrothermally synthesized two-dimensional molybdenum disulfide/titanium dioxide composites. J. Colloid Interface Sci. 606, 454–463 (2021). https://doi.org/10.1016/j.jcis.2021.07.151

    Article  CAS  PubMed  Google Scholar 

  50. Y.M. Hunge, A.A. Yadav, S.W. Kang, Porous nanoplate-like tungsten trioxide/reduced graphene oxide catalyst for sonocatalytic degradation and photocatalytic hydrogen production. Surf. Interfaces 24, 101075 (2021). https://doi.org/10.1016/j.surfin.2021.101075

    Article  CAS  Google Scholar 

  51. Y.M. Hunge, A.A. Yadav, S.W. Kang, Photocatalytic degradation of Rhodamine B using graphitic carbon nitride photocatalyst. J. Mater. Sci. (2021). https://doi.org/10.1007/s10854-021-06106-y

    Article  Google Scholar 

  52. P.B. Koli, S.G. Shinde, K.H. Kapadnis, A.P. Patil, M.P. Shinde, S.D. Khairnar, D.B. Sonawane, R.S. Ingale, Transition metal incorporated, modified bismuth oxide (Bi2O3) nano photo catalyst for deterioration of rosaniline hydrochloride dye as resource for environmental rehabilitation. J. Indian Chem. Soc. (2021). https://doi.org/10.1016/j.jics.2021.100225

    Article  Google Scholar 

  53. S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation and characterization of Nd2O3 nanostructures via a new facile solvent-less route. J. Mater. Sci. 26(8), 5658–5667 (2015). https://doi.org/10.1039/C5RA08394J

    Article  CAS  Google Scholar 

  54. V. Kale, Y.M. Hunge, S.A. Kamble, M. Deshmukh, S.V. Bhoraskar, V.L. Mathe, Modification of energy level diagram of nano-crystalline ZnO by its composites with ZnWO4 suitable for sunlight assisted photo catalytic activity. Mater. Today Commun. 26, 102101 (2021). https://doi.org/10.1016/j.mtcomm.2021.102101

    Article  CAS  Google Scholar 

  55. Y.M. Hunge, A. Uchida, Y. Tominaga, Y. Fujii, A.A. Yadav, S.W. Kang, N. Suzuki, I. Shitanda, T. Kondo, M. Itagaki, M. Yuasa, Visible light-assisted photocatalysis using spherical-shaped BiVO4 photocatalyst. Catalysts 11(4), 460 (2021). https://doi.org/10.3390/catal11040460

    Article  CAS  Google Scholar 

  56. S. Zinatloo-Ajabshir, M. Mousavi-Kamazani, Recent advances in nanostructured Sn−Ln mixed-metal oxides as sunlight-activated nanophotocatalyst for high-efficient removal of environmental pollutants. Ceram. Int. 47(17), 23702–23724 (2021). https://doi.org/10.1016/j.ceramint.2021.05.155

    Article  CAS  Google Scholar 

  57. S. Zinatloo-Ajabshir, S.A. Heidari-Asil, M. Salavati-Niasari, Rapid and green combustion synthesis of nanocomposites based on Zn–Co–O nanostructures as photocatalysts for enhanced degradation of acid brown 14 contaminant under sunlight. Sep. Purif. Technol. 280, 119841 (2021). https://doi.org/10.1016/j.seppur.2021.119841

    Article  CAS  Google Scholar 

  58. H. Etemadi, S. Afsharkia, S. Zinatloo-Ajabshir, E. Shokri, Effect of alumina nanoparticles on the antifouling properties of polycarbonate-polyurethane blend ultrafiltration membrane for water treatment. Polym. Eng. Sci. 61(9), 2364–2375 (2021). https://doi.org/10.1002/pen.25764

    Article  CAS  Google Scholar 

  59. S. Zinatloo-Ajabshir, M. Baladi, M. Salavati-Niasari, Sono-synthesis of MnWO4 ceramic nanomaterials as highly efficient photocatalysts for the decomposition of toxic pollutants. Ceram. Int. 47(21), 30178–30187 (2021). https://doi.org/10.1016/j.ceramint.2021.07.197

    Article  CAS  Google Scholar 

  60. S. Zinatloo-Ajabshir, M. Baladi, O. Amiri, M. Salavati-Niasari, Sonochemical synthesis and characterization of silver tungstate nanostructures as visible-light-driven photocatalyst for waste-water treatment. Sep. Purif. Technol. 248, 117062 (2021). https://doi.org/10.1016/j.seppur.2020.117062

    Article  CAS  Google Scholar 

  61. S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, Schiff-base hydrothermal synthesis and characterization of Nd2O3 nanostructures for effective photocatalytic degradation of eriochrome black T dye as water contaminant. J. Mater. Sci. 28(23), 17849–17859 (2017). https://doi.org/10.1007/s10854-017-7726-4

    Article  CAS  Google Scholar 

  62. S. Zinatloo-Ajabshir, S.A. Heidari-Asil, M. Salavati-Niasari, Recyclable magnetic ZnCo2O4-based ceramic nanostructure materials fabricated by simple sonochemical route for effective sunlight-driven photocatalytic degradation of organic pollution. Ceram. Int. 47(7), 8959–8972 (2021). https://doi.org/10.1016/j.ceramint.2020.12.018

    Article  CAS  Google Scholar 

  63. S.G. Shinde, V.S. Shrivastava, Ni and Zn modified acid activated montmorillonite clay for effective removal of carbol fuchsin dye from aqueous solution. SN Appl. Sci. 2(4), 1–11 (2020). https://doi.org/10.1007/s42452-020-2295-1

    Article  CAS  Google Scholar 

  64. V.R. Bagul, G.R. Bhagure, S.A. Ahire, A.V. Patil, V.A. Adole, P.B. Koli, Fabrication, characterization and exploration of cobalt (II) ion doped, modified zinc oxide thick film sensor for gas sensing characteristics of some pernicious gases. J. Indian Chem. Soc. 98(11), 100187 (2021). https://doi.org/10.1016/j.jics.2021.100187

    Article  Google Scholar 

  65. V.V. Deshmane, A.V. Patil, Synergy of semiconductor (Hematite) & catalytic (Ni) properties enhance gas sensing behavior to NO2. Mater. Res. Express 6(7), 075910 (2019). https://doi.org/10.1088/2053-1591/ab165e

    Article  CAS  Google Scholar 

  66. P.B. Koli, K.H. Kapadnis, U.G. Deshpande, U.J. Tupe, S.G. Shinde, R.S. Ingale, Fabrication of thin film sensors by spin coating using sol-gel LaCrO3 Perovskite material modified with transition metals for sensing environmental pollutants, greenhouse gases and relative humidity. Environ.l Chall. 3, 100043 (2021). https://doi.org/10.1016/j.envc.2021.100043

    Article  Google Scholar 

  67. V.V. Deshmane, A.V. Patil, Cobalt oxide doped hematite as a petrol vapor sensor. Mater. Chem. Phys. 246, 122813 (2020). https://doi.org/10.1016/j.matchemphys.2020.122813

    Article  CAS  Google Scholar 

  68. V.S. Shinde, K.H. Kapadnis, C.P. Sawant, P.B. Koli, R.P. Patil, Screen print fabricated In 3+ decorated perovskite lanthanum chromium oxide (LaCrO3) thick film sensors for selective detection of volatile petrol vapors. J. Inorg. Organomet. Polym. Mater. 30(12), 5118–5132 (2020). https://doi.org/10.1007/s10904-020-01660-0

    Article  CAS  Google Scholar 

  69. V.V. Deshmane, A.V. Patil, Study of In2O3 and α-Fe2O3 nano-composite as a petrol vapor sensor. Mater. Res. Express 6(2), 025904 (2018). https://doi.org/10.1088/2053-1591/aaed90

    Article  CAS  Google Scholar 

  70. S.G. Shinde, M.P. Patil, G.D. Kim, V.S. Shrivastava, Multi-doped ZnO photocatalyst for solar induced degradation of indigo carmine dye and as an antimicrobial agent. J. Inorg. Organomet. Polym. Mater. 30(4), 1141–1152 (2020). https://doi.org/10.1007/s10904-019-01273-2

    Article  CAS  Google Scholar 

  71. R.A. Waghchaure, P.B. Koli, V.A. Adole, B.S. Jagdale, T.B. Pawar, Transition metals Ni2+, Fe3+ incorporated modified Zno thick film sensors to monitor the environmental and industrial pollutant gases. Orient. J. Chem. 36(6), 1049–1065 (2020). https://doi.org/10.13005/ojc/360607

    Article  CAS  Google Scholar 

  72. N.B. Tanvir, O. Yurchenko, C. Wilbertz, G. Urban, Investigation of CO2 reaction with copper oxide nanoparticles for room temperature gas sensing. J. Mater. Chem. A 4(14), 5294–5302 (2016). https://doi.org/10.1039/C5TA09089J

    Article  CAS  Google Scholar 

  73. J.M. Kum, S.H. Yoo, G. Ali, S.O. Cho, Photocatalytic hydrogen production over CuO and TiO2 nanoparticles mixture. Int. J. Hydrog. Energy 38(31), 13541–13546 (2013). https://doi.org/10.1016/j.ijhydene.2013.08.004

    Article  CAS  Google Scholar 

  74. S.D. Khairnar, M.R. Patil, V.S. Shrivastava, Hydrothermally synthesized nanocrystalline Nb2O5 and its visible-light photocatalytic activity for the degradation of congo red and methylene blue. Iran. J. Catal. 8, 143–150 (2018)

    CAS  Google Scholar 

  75. N.L.U. Vo, T.T. Van Nguyen, T. Nguyen, P.A. Nguyen, V.M. Nguyen, N.H. Nguyen, V.L. Tran, N.A. Phan, K.P.H. Huynh, Antibacterial shoe insole-coated CuO-ZnO nanocomposite synthesized by the sol-gel technique. J. Nanomater. (2020). https://doi.org/10.1155/2020/8825567

    Article  Google Scholar 

  76. M.A. Rafea, N. Roushdy, Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by SILAR technique. J. Phys. D 42(1), 015413 (2008). https://doi.org/10.1088/0022-3727/42/1/015413

    Article  CAS  Google Scholar 

  77. P.B. Koli, K.H. Kapadnis, U.G. Deshpande, B.P. More, U.J. Tupe, Sol-gel fabricated transition metal Cr3+, Co2+ doped lanthanum ferric oxide (LFO-LaFeO3) thin film sensors for the detection of toxic, flammable gases: a comparativestudy. Mater. Sci. Res. India 17, 70–83 (2020). https://doi.org/10.13005/msri/170110

    Article  CAS  Google Scholar 

  78. S.A. Ahire, P.B. Koli, A.V. Patil, B.S. Jagadale, A.A. Bachhav, T.B. Pawar, Designing of screen-printed stannous oxide (SnO2) thick film sensors modified by cobalt and nitrogen elements for sensing some toxic gases and volatile organic compounds. Curr. Res. Green. Sustain. Chem. 4, 100213 (2021). https://doi.org/10.1016/j.crgsc.2021.100213

    Article  Google Scholar 

  79. S.D. Khairnar, V.S. Shrivastava, Photocatalytic degradation of chlorpyrifos and methylene blue using α-Bi2O3 nanoparticles fabricated by sol–gel method. SN Appl. Sci. 1, 762 (2019). https://doi.org/10.1007/s42452-019-0761-4

    Article  CAS  Google Scholar 

  80. A. Nezamzadeh-Ejhieh, M. Karimi-Shamsabadi, Decolorization of a binary azo dyes mixture using CuO incorporated nanozeolite-X as a heterogeneous catalyst and solar irradiation. Chem. Eng. J. 228, 631–664 (2013). https://doi.org/10.1016/j.cej.2013.05.035

    Article  CAS  Google Scholar 

  81. M.R. Patil, S.D. Khairnar, V.S. Shrivastava, Synthesis, characterisation of polyaniline–Fe3O4 magnetic nanocomposite and its application for removal of an acid violet 19 dye. Appl. Nanosci. 6, 495–502 (2016). https://doi.org/10.1007/s13204-015-0465-z

    Article  CAS  Google Scholar 

  82. A.N. Ejhieh, M. Khorsandi, Photodecolorization of eriochrome black T using NiS–P zeolite as a heterogeneous catalyst. J. Hazard. Mater. 176, 629–637 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.077

    Article  CAS  PubMed  Google Scholar 

  83. S.D. Khairnar, A.N. Kulkarni, S.G. Shinde, S.D. Marathe, Y.V. Marathe, S.D. Dhole, V.S. Shrivastava, Synthesis and characterization of 2-D La-doped Bi2O3 for photocatalytic degradation of organic dye and pesticide. J. Photochem. Photobiol. A (2021). https://doi.org/10.1016/j.jpap.2021.100030

    Article  Google Scholar 

  84. S.D. Khairnar, V.S. Shrivastava, Facile synthesis of nickel oxide nanoparticles for the degradation of Methylene blue and Rhodamine B dye: a comparative study. J. Taibah Univ. Sci. 13, 1108–1118 (2019). https://doi.org/10.1080/16583655.2019.1686248

    Article  Google Scholar 

  85. S.G. Shinde, M.P. Patil, G.-D. Kim, V.S. Shrivastava, Ni, C, N, S multi-doped ZrO2 decorated on multi-walled carbon nanotubes for effective solar induced degradation of anionic dye. J. Environ. Chem. Eng. (2020). https://doi.org/10.1016/j.jece.2020.103769

    Article  Google Scholar 

  86. M.P. Patil, R.D. Singh, P.B. Koli, K.T. Patil, B.S. Jagadale, A.R. Tipare, G.D. Kim, Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microb. Pathog. 121, 184–189 (2018)

    Article  CAS  Google Scholar 

  87. N. Omrani, A. Nezamzadeh-Ejhieh, A comprehensive study on the enhanced photocatalytic activity of Cu2O/BiVO4/WO3 nanoparticles. J. Photochem. Photobiol. A 389, 112223 (2020). https://doi.org/10.1016/j.jphotochem.2019.112223

    Article  CAS  Google Scholar 

  88. S.D. Khairnar, D.S. Shirsath, P.S. Patil, V.S. Shrivastava, Adsorptive and photocatalytic removal of carcinogenic methylene blue dye by SnO2 nanorods: an equilibrium, kinetic and thermodynamics exploration. SN Appl. Sci. 2, 822 (2020). https://doi.org/10.1007/s42452-020-2607-5

    Article  CAS  Google Scholar 

  89. Y. Ju, J. Fang, X. Liu, Z. Xu, X. Ren, C. Sun, S. Yang, Q. Ren, Y. Ding, K. Yu, L. Wang, Photodegradation of crystal violet in TiO2 suspensions using UV–vis irradiation from two microwave-powered electrodeless discharge lamps (EDL-2): products, mechanism and feasibility. J. Hazard. Mater. 185(2–3), 1489–1498 (2011). https://doi.org/10.1016/j.jhazmat.2010.10.074

    Article  CAS  PubMed  Google Scholar 

  90. H. Khalilian, A. Semnani, M. Nekoeinia, Photocatalytic degradation of crystal violet by thiourea-doped TiO2 thin film fixed bed photoreactors under visible irradiation: optimisation using central composite designs and kinetics studies by multivariate curve resolution. Bull. Chem. Soc. Ethiop. 31(3), 383–396 (2017). https://doi.org/10.4314/bcse.v31i3.3

    Article  CAS  Google Scholar 

  91. S. Ameen, M.S. Akhtar, M. Nazim, H.S. Shin, Rapid photocatalytic degradation of crystal violet dye over ZnO flower nanomaterials. Mater. Lett. 96, 228–232 (2013). https://doi.org/10.1016/j.matlet.2013.01.034

    Article  CAS  Google Scholar 

  92. N. Omrani, A. Nezamzadeh-Ejhieh, A comprehensive study on the mechanism pathways and scavenging agents in the photocatalytic activity of BiVO4/WO3 nano-composite. J. Water Process. Eng. 33, 101094 (2020). https://doi.org/10.1016/j.jwpe.2019.101094

    Article  Google Scholar 

  93. C. Qin, Y. Wang, Y. Gong, Z. Zhang, J. Cao, CuO-ZnO hetero-junctions decorated graphitic carbon nitride hybrid nanocomposite: hydrothermal synthesis and ethanol gassensingapplication. J. Alloys Compd. 770, 972–980 (2018). https://doi.org/10.1016/j.jallcom.2018.08.205

    Article  CAS  Google Scholar 

  94. N.F. Khairol, N. Sapawe, M. Danish, Photocatalytic study of ZnO/CuO/ES on degradation of Congo red. Mater. Today 19, 1333–1339 (2019). https://doi.org/10.1016/j.matpr.2019.11.146

    Article  CAS  Google Scholar 

  95. K. Sahu, A. Bisht, S. Kuriakose, S. Mohapatra, Two-dimensional CuO-ZnO nanohybrids with enhanced photocatalytic performance for removal of pollutants. J. Phys. Chem. Solids 137, 109223 (2020). https://doi.org/10.1016/j.jpcs.2019.109223

    Article  CAS  Google Scholar 

  96. L. Xu, Y. Zhou, Z. Wu, G. Zheng, J. He, Y. Zhou, Improved photocatalytic activity of nanocrystalline ZnO by coupling with CuO. J. Phys. Chem. Solids 106, 29–36 (2017). https://doi.org/10.1016/j.jpcs.2017.03.00

    Article  CAS  Google Scholar 

  97. E.D.J. Sherly, J. Vijaya, L. JohnKennedy, Visible-light-induced photocatalytic performances of ZnO–CuO nanocomposites for degradation of 2, 4-dichlorophenol. Chin. J. Catal. 36(8), 1263–1272 (2015). https://doi.org/10.1016/S1872-2067(15)60886-5

    Article  CAS  Google Scholar 

  98. N. Kumaresan, M. Maria AngelinSinthiya, K. Ramamurthi, R. RameshBabu, K. Sethuraman, Visible light driven photocatalytic activity of ZnO/CuO nanocomposites coupled with rGO heterostructures synthesized by solid-state method for RhB dye degradation. Arab. J. Chem. 13(2), 3910–3928 (2020). https://doi.org/10.1016/j.arabjc.2019.03.002

    Article  CAS  Google Scholar 

  99. C. Chen, X. Liu, Q. Fang, X. Chen, T. Liu, M. Zhang, Self-assembly synthesis of CuO/ZnO hollow microspheres and their photocatalytic performance undernaturalsunlight. Vacuum 174, 109198 (2020). https://doi.org/10.1016/j.vacuum.2020.109198

    Article  CAS  Google Scholar 

  100. S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, Preparation, characterization and photocatalytic degradation of methyl violet pollutant of holmium oxide nanostructures prepared through a facile precipitation method. J. Mol. Liq. 231, 306–313 (2017). https://doi.org/10.1016/j.molliq.2017.02.002

    Article  CAS  Google Scholar 

  101. S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, Nd2O3-SiO2 nanocomposites: a simple sonochemical preparation, characterization and photocatalytic activity. Ultrason. Sonochem. 42, 171–182 (2018). https://doi.org/10.1016/j.ultsonch.2017.11.026

    Article  CAS  PubMed  Google Scholar 

  102. S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, Nd2Sn2O7 nanostructures as highly efficient visible light photocatalyst: green synthesis using pomegranate juice and characterization. J. Clean. Prod. 198, 11–18 (2018). https://doi.org/10.1016/j.jclepro.2018.07.031

    Article  CAS  Google Scholar 

  103. N.M. Vuong, N.D. Chinh, B.T. Huy, Y.I. Lee, CuO-decorated ZnO hierarchical nanostructures as efficient and established sensing materials for H 2 S gas sensors. Sci. Rep. 6(1), 1–13 (2016). https://doi.org/10.1038/srep26736

    Article  CAS  Google Scholar 

  104. T.T. Li, N. Bao, A.F. Geng, H. Yu, Y. Yang, X.T. Dong, Study on room temperature gas-sensing performance of CuO film-decorated ordered porous ZnO composite by In2O3 sensitization. R. Soc. Open Sci. 5(2), 171788 (2018). https://doi.org/10.1098/rsos.171788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. B. Behera, S. Chandra, An innovative gas sensor incorporating ZnO–CuO nanoflakes in planar MEMS technology. Sens. Actuators B 229, 414–424 (2016). https://doi.org/10.1016/j.snb.2016.01.079

    Article  CAS  Google Scholar 

  106. P.P. Subha, M.K. Jayaraj, Enhanced room temperature gas sensing properties of low temperature solution processed ZnO/CuO heterojunction. BMC Chem. 13(1), 1–11 (2019). https://doi.org/10.1186/s13065-019-0519-5

    Article  Google Scholar 

  107. C. Fan, F. Sun, X. Wang, M. Majidi, Z. Huang, P. Kumar, B. Liu, Enhanced H2 S gas sensing properties by the optimization of p-CuO/n-ZnO composite nanofibers. J. Mater. Sci. 55, 7702–7714 (2020)

    Article  CAS  Google Scholar 

  108. M. Bahu, K. Kumar, T. Bahu, CuO-ZnO semiconductor gas sensor for ammonia at room temperature. J. Electron. Devices 14, 1137–1141 (2012)

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to the management of the M. G. Vidyamandir, Nasik for providing the necessary research facilities. Authors are very thankful to KBC-NMU, Jalgaon for XRD and SEM results. Authors are gratefully acknowledge to IIT-Roorkee for XPS results, Savitribai Phule Pune University for Raman spectroscopy analysis, SAIF, Cochin University, Kerala for HR-TEM results and UV-DRS results. Authors are also sincerely acknowledged to NH-RDF, Chehadi, (Nashik) for LC-MS analysis. Authors are gratefully acknowledge to department of Physics and Department of Chemistry, Manmad, Nanochemistry research laboratory, Nandurbar, Department of Physics, SICES Degree College, Ambarnath, Thick and thin film laboratory, MSG College, Malegaon, Department of Chemistry, ACS College, Satana for providing necessary laboratory research facility.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Vitthal Patil.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest of any sort for the present research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinde, R.S., Khairnar, S.D., Patil, M.R. et al. Synthesis and Characterization of ZnO/CuO Nanocomposites as an Effective Photocatalyst and Gas Sensor for Environmental Remediation. J Inorg Organomet Polym 32, 1045–1066 (2022). https://doi.org/10.1007/s10904-021-02178-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02178-9

Keywords

Navigation