Skip to main content
Log in

On optimization of electrospun SnO2-ZnO nanofibers for low concentration ethanol sensing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

One dimensional (1-D) nano-structures are expected to be the most suitable candidates for analyte sensing, owing to their high surface area to volume ratio. In the present work, SnO2-ZnO composite solutions with different viscosity have been synthesized and thickness of electrospun nanofibers is optimized to obtain uniformly distributed nanofibers without formation of bead-like structures. The nanofibers in the range of 75 to 250 nm have been successfully deposited on Interdigitated gold electrode (IDGE) for ethanol analyte sensing. The effect of the fiber width on the analyte sensing properties of the nanofibers has been studied to provide the optimum fiber thickness for ethanol sensing. The SnO2-ZnO nanofibers-based sensor, with the average fiber thickness 106.2 nm, has shown response of 41.66% towards 0.5 ppm ethanol with fast response time of 11 s. The crystallite size of the SnO2-ZnO composite is observed to 44.38 nm. The sensor has exhibited significant and appreciable selectivity towards ethanol as compared to other tested volatile organic compounds (VOCs). The crystallographic structure, valence states analysis and surface morphological analysis has been provided using XRD, XPS and FESEM characterization. The formation of n–n heterojunction further enhances the response of the sensor and the ethanol analyte sensing mechanism based on redox reaction at the surface and heterojunction interface is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data can be provided on reasonable request.

References

  1. M. Imran, N. Motta, M. Shafiei, Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials. Beilstein J. Nanotechnol. 9, 2128–2170 (2018). https://doi.org/10.3762/bjnano.9.202

    Article  CAS  Google Scholar 

  2. B. Yang, N.V. Myung, T.T. Tran, 1D Metal oxide semiconductor materials for chemiresistive gas sensors: a review. Adv. Electron. Mater. 7, 1–37 (2021). https://doi.org/10.1002/aelm.202100271

    Article  CAS  Google Scholar 

  3. N. Kaur, M. Singh, E. Comini, One-dimensional nanostructured oxide chemoresistive sensors. Langmuir 36, 6326–6344 (2020). https://doi.org/10.1021/acs.langmuir.0c00701

    Article  CAS  Google Scholar 

  4. L. Muthukrishnan, An overview on electrospinning and its advancement toward hard and soft tissue engineering applications. Colloid Polym. Sci. 300, 875–901 (2022). https://doi.org/10.1007/s00396-022-04997-9

    Article  CAS  Google Scholar 

  5. B. Ding, M. Wang, J. Yu, G. Sun, Gas sensors based on electrospun nanofibers. Sensors 9, 1609–1624 (2009). https://doi.org/10.3390/s90301609

    Article  CAS  Google Scholar 

  6. G. Korotcenkov, Electrospun metal oxide nanofibers and their conductometric gas sensor application. Part 2: gas sensors and their advantages and limitations. Nanomaterials (2021). https://doi.org/10.3390/nano11061555

    Article  Google Scholar 

  7. A. Dey, Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 229, 206–217 (2018). https://doi.org/10.1016/j.mseb.2017.12.036

    Article  CAS  Google Scholar 

  8. J. Liu, F. Yi, Fabrication and properties of ZnO nanorods on silicon nanopillar surface for gas sensor application. J. Mater. Sci. Mater. Electron. 30, 11404–11411 (2019). https://doi.org/10.1007/s10854-019-01489-5

    Article  CAS  Google Scholar 

  9. P. Hong, Y. Li, X. Zhang, S. Peng, R. Zhao, Y. Yang, Z. Wang, T. Zou, Y. Wang, Nanoporous network SnO2 constructed with ultra-small nanoparticles for methane gas sensor. J. Mater. Sci. Mater. Electron. 30, 14325–14334 (2019). https://doi.org/10.1007/s10854-019-01802-2

    Article  CAS  Google Scholar 

  10. M. Gardon, J.M. Guilemany, A review on fabrication, sensing mechanisms and performance of metal oxide gas sensors. J. Mater. Sci. Mater. Electron. 24, 1410–1421 (2013). https://doi.org/10.1007/s10854-012-0974-4

    Article  CAS  Google Scholar 

  11. S. Yang, G. Lei, H. Xu, Z. Lan, Z. Wang, H. Gu, Metal oxide based heterojunctions for gas sensors: a review. Nanomaterials 11, 1–26 (2021). https://doi.org/10.3390/nano11041026

    Article  CAS  Google Scholar 

  12. S.K. Lalwani, A. Beniwal, Sunny, Enhancing room temperature ethanol sensing using electrospun Ag-doped SnO2–ZnO nanofibers. J. Mater. Sci. Mater. Electron. 31, 17212–17224 (2020). https://doi.org/10.1007/s10854-020-04276-9

    Article  CAS  Google Scholar 

  13. E. Espid, F. Taghipour, Development of highly sensitive ZnO/In2O3 composite gas sensor activated by UV-LED. Sens Actuators B Chem. 241, 828–839 (2017). https://doi.org/10.1016/j.snb.2016.10.129

    Article  CAS  Google Scholar 

  14. H. Du, J. Wang, M. Su, P. Yao, Y. Zheng, N. Yu, Formaldehyde gas sensor based on SnO2/In2O3 hetero-nanofibers by a modified double jets electrospinning process. Sens Actuators B Chem. 166–167, 746–752 (2012). https://doi.org/10.1016/j.snb.2012.03.055

    Article  CAS  Google Scholar 

  15. H. Wu, K. Kan, L. Wang, G. Zhang, Y. Yang, H. Li, L. Jing, P. Shen, L. Li, K. Shi, Electrospinning of mesoporous p-type In2O3/TiO2composite nanofibers for enhancing NOx gas sensing properties at room temperature. CrystEngComm 16, 9116–9124 (2014). https://doi.org/10.1039/c4ce01248h

    Article  CAS  Google Scholar 

  16. V.T. Duoc, C.M. Hung, H. Nguyen, N. Van Duy, N. Van Hieu, N.D. Hoa, Room temperature highly toxic NO2 gas sensors based on rootstock/scion nanowires of SnO2/ZnO, ZnO/SnO2, SnO2/SnO2 and ZnO/ZnO. Sens Actuators B Chem (2021). https://doi.org/10.1016/j.snb.2021.130652

    Article  Google Scholar 

  17. J. Liu, T. Wang, B. Wang, P. Sun, Q. Yang, X. Liang, H. Song, G. Lu, Highly sensitive and low detection limit of ethanol gas sensor based on hollow ZnO/SnO2 spheres composite material. Sens Actuators Chem. (2017). https://doi.org/10.1016/j.snb.2017.01.148

    Article  Google Scholar 

  18. S.K. Tiwari, S.S. Venkatraman, Importance of viscosity parameters in electrospinning: of monolithic and core-shell fibers. Mater. Sci. Eng. C. 32, 1037–1042 (2012). https://doi.org/10.1016/j.msec.2012.02.019

    Article  CAS  Google Scholar 

  19. M. Saeidi, M. Abrari, M. Ahmadi, Fabrication of dye-sensitized solar cell based on mixed tin and zinc oxide nanoparticles. Appl. Phys. A Mater. Sci. Process. 125, 1–9 (2019). https://doi.org/10.1007/s00339-019-2697-3

    Article  CAS  Google Scholar 

  20. A. Ghaderi, S. Abbasi, F. Farahbod, Synthesis of SnO2 and ZnO nanoparticles and SnO2-ZnO hybrid for the photocatalytic oxidation of methyl orange. Iran. J. Chem. Eng. 12, 96–105 (2015)

    Google Scholar 

  21. A.O. Bokuniaeva, A.S. Vorokh, Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder. J. Phys. Conf. Ser. 1410, 6 (2019). https://doi.org/10.1088/1742-6596/1410/1/012057

    Article  CAS  Google Scholar 

  22. P. Bhattacharya, J.H. Lee, K.K. Kar, H.S. Park, Carambola-shaped SnO2 wrapped in carbon nanotube network for high volumetric capacity and improved rate and cycle stability of lithium ion battery. Chem. Eng. J. 369, 422–431 (2019)

    Article  CAS  Google Scholar 

  23. L. Zhang, C. Fu, S. Wang, M. Wang, R. Wang, S. Xiang, Z. Wang, J. Liu, H. Ma, Y. Wang, Y. Yan, Amorphous F-doped TiOx Caulked SnO2 electron transport layer for flexible perovskite solar cells with efficiency exceeding 225%. Adv. Funct. Mater. 33(11), 2213961 (2023)

    Article  CAS  Google Scholar 

  24. Y. Li, Q. Yang, S. Liu, X. Liu, Z. Wu, J. Wang, M. Zhou, M. Ren, C. Wan, W. Huo, Y. Gao, A self-purifying smart mask integrated with metal-organic framework membranes and flexible circuits. Adv. Mater. Interf. 10(4), 2201895 (2023)

    Article  CAS  Google Scholar 

  25. F. Mohammadian, A. Eatemadi, Drug loading and delivery using nanofibers scaffolds. Artif. Cells, Nanomed. Biotechnol. 45, 881–888 (2017). https://doi.org/10.1080/21691401.2016.1185726

    Article  CAS  Google Scholar 

  26. G.B. Medeiros, A. de Felipe, D.S. Lima, V.G. de Almeida, M.L. Guerra, Aguiar, Modification and functionalization of fibers formed by electrospinning: a review. Membranes (2022). https://doi.org/10.3390/membranes12090861

    Article  Google Scholar 

  27. M. Poloju, N. Jayababu, E. Manikandan, M.V. Ramana Reddy, Enhancement of the isopropanol gas sensing performance of SnO2/ZnO core/shell nanocomposites. J. Mater. Chem. C. 5, 2662–2668 (2017). https://doi.org/10.1039/c6tc05095f

    Article  CAS  Google Scholar 

  28. S.K. Lalwani, A. Debnath, Sunny, (2022) Room temperature operated composite SnS-ZnS heterojunction based sensor for sub-ppm ethanol detection. IOP Nanotechnol. 33(50), 505502 (2022)

    Article  Google Scholar 

  29. B. Sharma, A. Sharma, M. Joshi, J.H. Myung, Sputtered SnO2/ZnO heterostructures for improved NO2 gas sensing properties. Chemosensors 8(3), 67 (2020)

    Article  Google Scholar 

  30. T. Tharsika, M. Thanihaichelvan, A.S.M.A. Haseeb, S.A. Akbar, Highly sensitive and selective ethanol sensor based on ZnO nanorod on SnO2 thin film fabricated by spray pyrolysis. Front. Mater. 6, 122 (2019)

    Article  Google Scholar 

  31. J. Li, D. Gu, Y. Yang, H. Du, X. Li, UV light activated SnO2/ZnO nanofibers for gas sensing at room temperature. Front. Mater. 6, 158 (2019)

    Article  Google Scholar 

  32. H. Li, Z. Yang, W. Ling, D. Zhu, Y. Pu, UV excited gas sensing SnO2-ZnO aerogels to ppb-level ethanol detection. Sens. Actuators B Chem. 337, 129815 (2021)

    Article  CAS  Google Scholar 

  33. K.S. Pakhare, B.M. Sargar, S.S. Potdar, U.M. Patil, R.D. Mane, SILAR synthesis of SnO2–ZnO nanocomposite sensor for selective ethanol gas. Bull. Mater. Sci. 45(2), 68 (2022)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SK Lalwani; Methodology: SK Lalwani, A. Debnath and VK Gupta; Data curation and writing or original draft: SK Lalwani, Sunny, Validation and writing, reviewing and editing of manuscript: SK Lalwani, A. Debnath, VK Gupta and Sunny.

Corresponding author

Correspondence to Sunny.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalwani, S.K., Debnath, A., Gupta, V.k. et al. On optimization of electrospun SnO2-ZnO nanofibers for low concentration ethanol sensing. J Mater Sci: Mater Electron 34, 1693 (2023). https://doi.org/10.1007/s10854-023-11092-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11092-4

Navigation