Skip to main content
Log in

Electrospun polyacrylonitrile (PAN) nanofiber: preparation, experimental characterization, organic vapor sensing ability and theoretical simulations of binding energies

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, polyacrilonitrile (PAN) nanofibers obtained by electrospinning were directly coated on the surface of a quartz crystal microbalance (QCM) and were investigated for their sensing characteristics against chloroform, dichloromethane and carbon tetrachloride as volatile organic compounds (VOCs). PAN nanofibers were characterized by SEM, DSC, Raman Spectroscopy, and FT-IR and the results indicated that beadless and regular nanofibers with the average diameter of 182.7 ± 32 nm were obtained. Kinetic measurements indicated that electrospun PAN nanofibers were sensitive to the VOCs and they were appropriate for sensing applications of chlorine compounds. The reproducibility of PAN nanofiber sensor was also shown in this study. The results revealed that the diffusion coefficients of VOCs increased with the order carbontetrachloride < dichloromethane < chloroform which was supported by the density functional theory (DFT) simulations that revealed the highest binding energy for chloroform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. Bhardwaj, S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28(3), 325–347 (2010)

    Article  Google Scholar 

  2. M. Gorji, R. Bagherzadeh, H. Fashandi, Electrospun nanofibers in protective clothing. Electrospun. Nanofibers 571–598 (2017)

  3. D. Bjorge, N. Daels, S. De Vrieze, P. Dejans, T. Van Camp, W. Audenaert, J. Hogie, P. Westbroek, K. De Clerck, S.W. Van Hulle, Performance assessment of electrospun nanofibers for filter applications. Desalination 249(3), 942–948 (2009)

    Article  Google Scholar 

  4. R.S. Bhattarai, R.D. Bachu, S.H. Boddu, S. Bhaduri, Biomedical applications of electrospun nanofibers: drug and nanoparticle delivery. Pharmaceutics 11(1), 5 (2019)

    Article  Google Scholar 

  5. A. Haider, S. Haider, I.K. Kang, A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 11(8), 1165–1188 (2018)

    Article  Google Scholar 

  6. A. Ince Yardimci, O. Baskan, S. Yilmaz, G. Mese, E. Ozcivici, Y. Selamet, Osteogenic differentiation of mesenchymal stem cells on random and aligned PAN/PPy nanofibrous scaffolds. J. Biomater. Appl. 34(5), 640–650 (2019)

    Article  Google Scholar 

  7. A. Ince Yardimci, H. Aypek, O. Ozturk, S. Yilmaz, E. Ozcivici, G. Mese, Y. Selamet, CNT incorporated polyacrilonitrile/polypyrrole nanofibers as keratinocytes scaffold. J. Biomim. Biomater. Biomed. Eng. 41, 69–81 (2019)

    Google Scholar 

  8. E. Kivrak, A. Ince Yardimci, R. Ilhan, P.B. Kirmizibayrak, S. Yilmaz, P. Kara, Aptamer-based electrochemical biosensing strategy toward human non-small cell lung cancer using polyacrylonitrile/polypyrrole nanofibers. Anal. Bioanal. Chem. 412(28), 7851–7860 (2020)

    Article  Google Scholar 

  9. Y. Luu, K. Kim, B. Hsiao, B. Chu, M. Hadjiargyrou, Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers. J. Control. Release 89(2), 341–353 (2003)

    Article  Google Scholar 

  10. J. Doshi, D.H. Reneker, Electrospinning process and applications of electrospun fibers. J. Electrostat. 35(2–3), 151–160 (1995)

    Article  Google Scholar 

  11. K. Sada, K. Kokado, Y. Furukawa, Polyacrylonitrile (PAN). Encycl. Polym. Nanomater. 1745–1750 (2015)

  12. R. Awad, A.H. Mamaghani, Y. Boluk, Z. Hashisho, Synthesis and characterization of electrospun PAN-based activated carbon nanofibers reinforced with cellulose nanocrystals for adsorption of VOCs. Chem. Eng. J. 410, 128412 (2021)

    Article  Google Scholar 

  13. M. Rahaman, T.K. Chaki, D. Khastgir, High-performance EMI shielding materials based on short carbon fiber-filled ethylene vinyl acetate copolymer, acrylonitrile butadiene copolymer, and their blends. Polym. Compos. 32(11), 1790–1805 (2011)

    Article  Google Scholar 

  14. S. Nataraj, K. Yang, T. Aminabhavi, Polyacrylonitrile-based nanofibers—a state-of-the-art review. Prog. Polym. Sci. 37(3), 487–513 (2012)

    Article  Google Scholar 

  15. A.C.C. Bortolassi, S. Nagarajan, B. de Araújo Lima, V.G. Guerra, M.L. Aguiar, V. Huon, L. Soussan, D. Cornu, P. Miele, M. Bechelany, Efficient nanoparticles removal and bactericidal action of electrospun nanofibers membranes for air filtration. Mater. Sci. Eng. C. 102, 718–729 (2019)

    Article  Google Scholar 

  16. S. Gu, J. Ren, Q. Wu, Preparation and structures of electrospun PAN nanofibers as a precursor of carbon nanofibers. Synth. Met. 155(1), 157–161 (2005)

    Article  Google Scholar 

  17. A. Mahapatra, N. Garg, B. Nayak, B. Mishra, G. Hota, Studies on the synthesis of electrospun PAN-Ag composite nanofibers for antibacterial application. J. Appl. Polym. Sci. 124(2), 1178–1185 (2012)

    Article  Google Scholar 

  18. L. Zhang, A. Aboagye, A. Kelkar, C. Lai, H. Fong, A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J. Mater. Sci. 49(2), 463–480 (2014)

    Article  ADS  Google Scholar 

  19. A. Rianjanu, T. Julian, S. Hidayat, E. Suyono, A. Kusumaatmaja, K. Triyana, Polyacrylonitrile nanofiber as polar solvent N, N-dimethyl formamide sensor based on quartz crystal microbalance technique. J. Phys. Conf. Ser. 1011 (2018)

  20. A. Rianjanu, S. Hidayat, T. Julian, E. Suyono, A. Kusumaatmaja, K. Triyana, Swelling behavior in solvent vapor sensing based on Quartz Crystal Microbalance (QCM) Coated Polyacrylonitrile (PAN) nanofiber. IOP Conf. Ser. Mater. Sci. Eng. 367 (2018)

  21. A. Rianjanu, R. Roto, T. Julian, S.N. Hidayat, A. Kusumaatmaja, E.A. Suyono, K. Triyana, Polyacrylonitrile nanofiber-based quartz crystal microbalance for sensitive detection of safrole. Sensors 18(4), 1150 (2018)

    Article  ADS  Google Scholar 

  22. A. Rianjanu, K. Triyana, N. Nurbaiti, S.A. Hasanah, A. Kusumaatmaja, R. Roto, An enhanced safrole sensing performance of a polyacrylonitrile nanofiber-based-QCM sensor by overlaying with chitosan. Sains Malays. 48(9), 2041–2049 (2019)

    Article  Google Scholar 

  23. B. Szulczyński, J. Gębicki, Currently commercially available chemical sensors employed for detection of volatile organic compounds in outdoor and indoor air. Environments 4(1), 21 (2017)

    Article  Google Scholar 

  24. J. Wang, E. He, X. Liu, L. Yu, H. Wang, R. Zhang, H. Zhang, High performance hydrazine vapor sensor based on redox mechanism of twisted perylene diimide derivative with lower reduction potential. Sens. Actuators B Chem. 239, 898–905 (2017)

    Article  Google Scholar 

  25. Y. Acikbas, G.D. Tetik, L. Noory, S. Bozkurt, R. Çapan, M. Erdogan, C. Ozkaya, Improvement of sensing properties for polymer based gas sensors via host–guest principles. J. Incl. Phenom. Macrocycl. Chem. 96(3), 315–323 (2020)

    Article  Google Scholar 

  26. S.N. Hidayat, K. Triyana, Optimized back-propagation combined with radial basic neural network for improving performance of the electronic nose: case study on the fermentation process of tempeh. AIP Conf. Proc. 1755, 20001 (2016)

    Article  Google Scholar 

  27. K. He, X. Wang, X. Meng, H. Zheng, S. Suye, Amperometric determination of hydroquinone and catechol on gold electrode modified by direct electrodeposition of poly (3, 4-ethylenedioxythiophene). Sens. Actuators B Chem. 193, 212–219 (2014)

    Article  Google Scholar 

  28. N. Wang, X. Wang, Y. Jia, X. Li, J. Yu, B. Ding, Electrospun nanofibrous chitosan membranes modified with polyethyleneimine for formaldehyde detection. Carbohydr. Polym. 108, 192–199 (2014)

    Article  Google Scholar 

  29. N. Horzum, D. Tascioglu, C. Özbek, S. Okur, M.M. Demir, VOC sensors based on a metal oxide nanofibrous membrane/QCM system prepared by electrospinning. New J. Chem. 38(12), 5761–5768 (2014)

    Article  Google Scholar 

  30. H. Karimi-Maleh, O.A. Arotiba, Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J. Coll. Interf. Sci. 560, 208–212 (2020)

    Article  ADS  Google Scholar 

  31. A. Erol, S. Okur, N. Yağmurcukardeş, M.Ç. Arıkan, Humidity-sensing properties of a ZnO nanowire film as measured with a QCM. Sens. Actuators B Chem. 152(1), 115–120 (2011)

    Article  Google Scholar 

  32. Y.F. Sun, S.B. Liu, F.L. Meng, J.Y. Liu, Z. Jin, L.T. Kong, J.H. Liu, Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12(3), 2610–2631 (2012)

    Article  ADS  Google Scholar 

  33. K. Triyana, M.S. Mu’min, K. Faizah, Y. Yusuf, A. Kusumaatmaja, Electrospun nanofibers based on polyvinyl alcohol/chitosan and its stability in KOH solution. Mater. Sci. Forum 827, 321–325 (2015)

    Article  Google Scholar 

  34. S. Okur, N. Üzar, N. Tekgüzel, A. Erol, M.Ç. Arıkan, Synthesis and humidity sensing analysis of ZnS nanowires. Phys. E Low Dimens. Syst. Nanostruct. 44(6), 1103–1107 (2012)

    Article  ADS  Google Scholar 

  35. J. Perdew, K. Burke, M. Ernzerhof, Perdew, burke, and ernzerhof reply. Phys. Rev. Lett. 80(4), 89 (1998)

    Article  ADS  Google Scholar 

  36. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47(1), 558 (1993)

    Article  ADS  Google Scholar 

  37. N. Kaur, V. Kumar, S.R. Dhakate, Synthesis and characterization of multiwalled CNT–PAN based composite carbon nanofibers via electrospinning. Springerplus 5 (483) (2016)

  38. H. Hou, J.J. Ge, J. Zeng, Q. Li, D.H. Reneker, A. Greiner, S.Z. Cheng, Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem. Mater. 17(5), 967–973 (2005)

    Article  Google Scholar 

  39. W.X. Zhang, Y.Z. Wang, C.F. Sun, Characterization on oxidative stabilization of polyacrylonitrile nanofibers prepared by electrospinning. J. Polym. Res. 14, 467–474 (2007)

    Article  Google Scholar 

  40. H.S. Kim, Thermal behavior of polyacrylonitrile and Poly(vinylpyrro1idone-graft-acrylonitrile)Blend. J. Polym. Sci. Part B Polym. Phys. 34(7), 1181–1187 (1996)

    Article  ADS  Google Scholar 

  41. C. Kim, Y.I. Jeong, B.T.N. Ngoc, K.S. Yang, M. Kojima, Y.A. Kim, M. Endo, J.W. Lee, Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs. Small 3(1), 91–95 (2007)

    Article  Google Scholar 

  42. J. Li, S. Su, L. Zhou, V. Kundrat, A.M. Abbot, F. Mushtaq, D. Ouyang, D. James, D. Roberts, H. Ye, Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition during the carbonization of polyacrylonitrile fibers. J. Appl. Phys. 113 (2013)

  43. J. Sutasinpromprae, S. Jitjaicham, M. Nithitanakul, C. Meechaisue, P. Supaphol, Preparation and characterization of ultrafine electrospun polyacrylonitrile fibers and their subsequent pyrolysis to carbon fibers. Polym. Int. 55(8), 825–833 (2006)

    Article  Google Scholar 

  44. F. Pashalou, S. Bazigar, M. Tamizifar, S.M.A. Faghihi, S. Zakerifar, Preparation and characterization of carbon nanofibers via electrospun PAN nanofibers. Technol. Text. J. 3(4), 1–10 (2008)

    Google Scholar 

  45. G. Ma, D. Yang, J. Nie, Preparation of porous ultrafine polyacrylonitrile(PAN) fibers by electrospinning. Polym. Adv. Technol. 20(2), 147–150 (2009)

    Article  Google Scholar 

  46. H. Zhang, H. Nie, S. Li, C.J.B. White, L. Zhu, Crosslinking of electrospun polyacrylonitrile/hydroxyethyl cellulose composite nanofibers. Mater. Lett. 63(13–14), 1199–1202 (2009)

    Article  Google Scholar 

  47. Y. Wang, J. Liu, J.Y. Liang, Thermo-chemical reactions of modified PAN fibers during heat-treatment process. Adv. Mater. Res. 11–12, 73–76 (2006)

    Article  ADS  Google Scholar 

  48. J. Crank, The mathematics of diffusion (Oxford Univ. Press, New York, 1975)

    MATH  Google Scholar 

  49. M. Durmaz, Y. Acikbas, S. Bozkurt, R. Capan, M. Erdogan, C. Ozkaya, A novel Calix[4]arene thiourea decorated with 2-(2- Aminophenyl)benzothiazole moiety as highly selective chemical gas sensor for dichloromethane vapor. Chem. Select. 6, 4670–4676 (2021)

    Google Scholar 

  50. K. Büyükkabasakal, S. Celik Acikbas, A. Deniz, Y. Acikbas, R. Capan, M. Erdogan, Chemical sensor properties and mathematical modeling of graphene oxide langmuir-blodgett thin films. IEEE Sens. J. 19(20), 9097–9104 (2019)

    Article  ADS  Google Scholar 

  51. Y. Yua, Q. Maa, J.-b Zhangb, G.-b Liu, Electrospun SiO2 aerogel/polyacrylonitrile composited nanofibers with enhanced adsorption performance of volatile organic compounds. Appl. Surf. Sci. 512, 145697 (2020)

    Article  Google Scholar 

  52. J.C. Ge, J.Y. Kim, S.K. Yoon, N.J. Choi, Fabrication of low-cost and high-performance coal fly ash nanofibrous membranes via electrospinning for the control of harmful substances. Fuel 237, 236–244 (2019)

    Article  Google Scholar 

  53. M. Sajjad, E. Montes, N. Singh, U. Schwingenschlögl, Superior gas sensing properties of monolayer PtSe2. Adv. Mater. Interfaces 4, 1600911 (2017)

    Article  Google Scholar 

  54. D.J. Late, Y.-K. Huang, B. Liu, J. Acharya, S.N. Shirodkar, J. Luo, A. Yan, D. Charles, U.V. Waghmare, V.P. Dravid, C.N.R. Rao, Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7, 4879 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

We are very thankful to İzmir Institute of Technology Material Research Center for SEM pictures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaser Acikbas.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ince Yardimci, A., Yagmurcukardes, N., Yagmurcukardes, M. et al. Electrospun polyacrylonitrile (PAN) nanofiber: preparation, experimental characterization, organic vapor sensing ability and theoretical simulations of binding energies. Appl. Phys. A 128, 173 (2022). https://doi.org/10.1007/s00339-022-05314-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05314-5

Keywords

Navigation