Skip to main content
Log in

Electrospun Polyvinyl Alcohol Nanofibers Containing Titanium Dioxide for Gas Sensor Applications

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Electrospun nanofibers for gas sensor application were effectively prepared from polyvinyl alcohol and pluronic solution with different percentages of titanium dioxide (\(\hbox {TiO}_{2}\)) nanoparticles. Nanofibers membrane was subject to detailed analysis by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA). Adding \(\hbox {TiO}_{2}\) nanoparticles to the blended solution increased nanofibers diameters from \(280 \pm 20\) to \(310 \pm 30\ \hbox {nm}\). The gas sensor response of \(\hbox {TiO}_{2}\) nanofibers (as a function of temperature) was estimated toward liquid petroleum gas (LPG), \(\hbox {CO}_{2}\), and \(\hbox {O}_{2}\) and compared with pure nanofibers. The maximum response value (100%) was obtained for LPG at \(160\,{^{\circ }}\hbox {C}\) with \(\hbox {TiO}_{2}\) nanofibers (0.01%). These results show promising gas sensing characteristics (such as lower operating temperatures and sufficient gas responses) for those nanofibers materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharma, S.; Madou, M.: A new approach to gas sensing with nanotechnology. Philos. Trans. R. Soc. A. 370, 2448–2473 (2018)

    Article  Google Scholar 

  2. Deng, X.; Zhang, L.; Guo, J.; Chen, Q.; Ma, J.: ZnO enhanced NiO-based gas sensors towards ethanol. Mater. Res. Bull. 90, 170–174 (2017)

    Article  Google Scholar 

  3. Zhou, Z.; Yan, R.; Zhao, J.; Yang, L.; Chen, J.; Hu, Y.; Jiang, F.; Liu, Y.: Highly selective and sensitive detection of \(\text{ Hg }^{2+}\) based on fluorescence enhancement of Mn-doped ZnSe QDs by \(\text{ Hg }^{2+}\)-\(\text{ Mn }^{2+}\) replacement. Sens. Actuator B Chem. 254, 8–15 (2018)

    Article  Google Scholar 

  4. Shokry, H.; Kashyout, A.B.; Morsi, I.; Nasser, A.; Raafat, A.: Development of polypyrrole coated copper nanowires for gas sensor application. Sens. Bio Sens. Res. 5, 50–54 (2015)

    Article  Google Scholar 

  5. Shokry, H.; Kashyout, A.B.; Morsi, I.; Nasser, A.; Abuklill, H.: Fabrication and characterization of gas sensor micro-arrays. Sens. Bio Sens. Res. 1, 34–40 (2014)

    Article  Google Scholar 

  6. Ilaria, F.; Iole, V.; Cesare, C.; Maria, V.: Chemiresistive polyaniline-based gas sensors: a mini review. Sens. Actuator B Chem. 220, 534–548 (2015)

    Article  Google Scholar 

  7. Mironenko, A.; Sergeev, A.; Nazirov, A.; Modin, E.B.; Voznesenskiy, S.; Bratskay, S.: \(\text{ H }_{2}\text{ S }\) optical waveguide gas sensors based on chitosan/Au and chitosan/Ag nanocomposites. Sens. Actuator B Chem. 225, 348–353 (2016)

    Article  Google Scholar 

  8. El Aassar, M.R.; Fouda, M.M.; Kenawy, E.R.: Electrospinning of functionalized copolymer nanofibers from poly (acrylonitrile-co-methyl methacrylate). Adv. Polym. Tech. 32, 1–11 (2013)

    Article  Google Scholar 

  9. Hassan, H.S.; El-Kady, M.F.; Farghali, A.A.; Salem, A.M.; Abd El-Hamid, A.I.: Fabrication of novel magnetic zinc oxide cellulose acetate hybrid nano-fiber to be utilized for phenol decontamination. J. Taiwan. Inst. Chem. Eng. 78, 307–316 (2017)

    Article  Google Scholar 

  10. Huang, Z.M.; Zhang, Y.Z.; Kotaki, M.; Ramakrishna, S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223–2253 (2003)

    Article  Google Scholar 

  11. Ding, B.; Kim, J.; Miyazaki, Y.; Shiratori, S.: Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for \(\text{ NH }_{3}\) detection. Sens. Actuat. B Chem. 101, 373–380 (2004)

    Article  Google Scholar 

  12. Ding, B.; Kikuchi, M.; Shiratori, S.: Electrospun nanofibrous polyelectrolytes membranes as high sensitive coatings for QCM-based gas sensors. In: Dirote, E.V. (ed.) Nanotechnology at the Leading Edge, pp. 1–28. Nova Science Publishers, New York (2006)

    Google Scholar 

  13. Yang, A.; Tao, X.; Wang, R.: Room temperature gas sensing properties of \(\text{ SnO }_{2}\)/multiwall-carbon-nanotube composite nanofibers. Appl. Phys. Lett. 91, 133110 (2007)

    Article  Google Scholar 

  14. Wang, G.; Ji, Y.; Huang, X.; Yang, X.; Gouma, P.; Dudley, M.: Fabrication and characterization of polycrystalline \(\text{ WO }_{3}\) nanofibers and their application for ammonia sensing. J. Phys. Chem. B 110, 23777–23782 (2006)

    Article  Google Scholar 

  15. Sheha, E.; Mansy, M.K.: A high voltage magnesium battery based on \(\text{ H }_{2}\text{ SO }_{4}\)-doped (PVA) 0.7 (NaBr) 0.3 solid polymer electrolyte. J. Power. Sour. 185, 1509–1513 (2008)

    Article  Google Scholar 

  16. El Fawal, G.; Yassin, A.; El-Deeb, N.: The novelty in fabrication of polyvinyl alcohol/\(\kappa \)-carrageenan hydrogel with lactobacillus Bulgaricus extract as anti-inflammatory wound dressing agent. AAPS PharmSciTech 18, 1–12 (2017)

    Article  Google Scholar 

  17. El-Aassar, M.; El Fawal, G.; El-Deeb, N.; Hassan, S.; Mo, X.: Electrospun polyvinyl alcohol/pluronic F127 blended nanofibers containing titanium dioxide for antibacterial wound dressing. Appl. Biochem. Biotechnol. 178, 1488–1502 (2017)

    Article  Google Scholar 

  18. Winterton, L.C.; Lally, J.M.; Sentell, K.B.; Chapoy, L.L.: The elution of poly (vinyl alcohol) from a contact lens: the realization of a time release moisturizing agent/artificial tear. J. Biomed. Mater. Res. B. 80, 424–32 (2007)

    Article  Google Scholar 

  19. Yang, X.; Liu, Q.; Chen, X.; Yu, F.; Zhu, Z.: Investigation of PVA/ws-chitosan hydrogels prepared by combined gama-irradiation and freeze-thawing. Carbohydr. Polym. 73, 401–408 (2008)

    Article  Google Scholar 

  20. Bhajantri, R.F.; Ravindrachary, V.; Harisha, A.; Crasta, V.; Suresh, P.N.; Boja, P.: Microstructural studies on \(\text{ BaCl }_{2}\) doped poly(vinyl alcohol). Polymer 47, 3591–3598 (2006)

    Article  Google Scholar 

  21. Chiappetta, D.A.; Sosnik, A.: Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs. Eur. J. Pharm. Biopharm. 66, 303–317 (2007)

    Article  Google Scholar 

  22. Yong-Yong, L.; Lan, L.; Hai-Qing, D.; Xiao-Jun, C.; Tian-Bin, R.: Pluronic F127 nanomicelles engineered with nuclear localized functionality for targeted drug delivery. Mater. Sci. Eng. C. 33, 2698–2707 (2013)

    Article  Google Scholar 

  23. Gombotz, W.R.; Pettit, D.K.: Biodegradable polymers for protein and peptide drug delivery. Bioconjug. Chem. 6, 332–351 (1995)

    Article  Google Scholar 

  24. Roberts, J.C.: Paper Chemistry, 2nd edn. Blackie Academic & Professional, London (1996)

    Google Scholar 

  25. Signori, A.M.; Santos, K.O.; Eising, R.; Albuquerque, B.L.; Giacomelli, F.C.; Domingos, J.B.: Formation of catalytic silver nanoparticles supported on branched polyethyleneimine derivatives. Langmuir 26, 17772–17779 (2010)

    Article  Google Scholar 

  26. Deng, R.; Yue, Y.; Jin, F.; Chen, Y.; Kung, Hf; Lin, M.C.; Wu, C.: Revisit the complexation of PEI and DNA—how to make low cytotoxic and highly efficient PEI gene transfection non-viral vectors with a controllable chain length and structure. J. Control. Release 140, 40–46 (2009)

    Article  Google Scholar 

  27. Ismael, B.; Leandro, N.; Renato, E.; Josiel, D.; Vanderlei, M.; Edson, M.: Properties of aqueous solutions of hydrophobically modified polyethylene imines in the absence and presence of sodium dodecylsulfate. J. Colloid Interface Sci. 370, 94–101 (2012)

    Article  Google Scholar 

  28. Tian, W.C.; Ho, Y.H.; Chen, C.H.; Kuo, C.Y.: Sensing performance of precisely ordered \(\text{ TiO }_{2}\) nanowire gas sensors fabricated by electron-beam lithography. Sensors (Basel) 13, 865–874 (2013)

    Article  Google Scholar 

  29. Cristina, D.; Andrei, B.S.; Irina, T.; Vasile, P.; Victor, J.; Rose-Marie, L.; Johan, B.; Ioana, D.: Electrospun \(\text{ TiO }_{2}\) nanofibers decorated Ti substrate for biomedical application. Mater. Sci. Eng. C 45, 56–63 (2014)

    Article  Google Scholar 

  30. Duong, N.N.; Hyeonseok, Y.: Recent advances in nanostructured conducting polymers: from synthesis to practical applications. Polymers 8, 118–156 (2016)

    Article  Google Scholar 

  31. Rupali, J.; Bharat, M.: Thermal gravimetric analysis study of silicoaluminophosphate synthesized from non-aqueous media for solar energy storage material. Mater. Today 4, 774–778 (2017)

    Article  Google Scholar 

  32. Kashyout, A.B.; Soliman, H.; Shokry, H.; Abousehly, M.: Fabrication of ZnO and ZnO:Sb nanoparticles for gas sensor applications. J. Nanomater. Article ID 341841 (2010)

  33. Sunil, M.; Biraja, D.; Stephen, C.; Abhay, P.: Mannosylated polyethyleneimine—hyaluronan nanohybrids for targeted gene delivery to macrophage-like cell lines. Bioconjug. Chem. 23, 1138–1148 (2012)

    Article  Google Scholar 

  34. Bożena, K.; Maciej, G.; Artur, O.; Janusz, P.; Agata, G.: Physicochemical characterization and dissolution studies of solid dispersions of clotrimazole with pluronic F127. Trop. J. Pharm. Res. 13, 1225–1232 (2014)

    Article  Google Scholar 

  35. Pawar, R.P.: Study of thermal decomposition and instrumental analysis of synthesised polyvinyl alcohol polymer. Ultra. Chem. 11, 1–6 (2015)

    Google Scholar 

  36. Osiris, W.G.; Manal, T.M.: Thermal and structural studies of poly(vinyl alcohol) and hydroxypropyl cellulose blends. Nat. Sci. 4, 57–67 (2012)

    Google Scholar 

  37. Japić, D.; Marinšek, M.; Crnjak, O.Z.: Effect of ZnO on the thermal degradation behavior of poly(Methyl Methacrylate) nanocomposites. Acta. Chim. Slov. 63, 535–543 (2016)

    Google Scholar 

  38. Minoru, M.; Trevor, J.S.; Jianjun, M.; Jennifer, E.G.; Zachary, H.S.; Udayanath, A.; Jonathan, S.D.; Robert, J.L.: Electrospun polyvinylpyrrolidone fibers with high concentrations of ferromagnetic and superparamagnetic nanoparticles. ACS Appl. Mater. Interfaces 3, 1958–1964 (2011)

    Article  Google Scholar 

  39. Yuasa, M.; Masaki, T.; Kida, T.; Shimanoe, K.; Yamazoe, N.: Nano-sized PdO loaded \(\text{ SnO }_{2}\) nanoparticles by reverse micelle method for highly sensitive CO gas sensor. Sens. Actuator B Chem. 136, 99–104 (2009)

    Article  Google Scholar 

  40. Jaehyun, M.; Jin-Ah, P.; Su-Jae, L.; Taehyoung, Z.; Il-Doo, K.: Pd-doped \(\text{ TiO }_{2}\) nanofiber networks for gas sensor applications. Sens. Actuator B Chem. 149, 301–305 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gomaa F. El Fawal or H. Shokry Hassan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Fawal, G.F., Hassan, H.S., El-Aassar, M.R. et al. Electrospun Polyvinyl Alcohol Nanofibers Containing Titanium Dioxide for Gas Sensor Applications. Arab J Sci Eng 44, 251–257 (2019). https://doi.org/10.1007/s13369-018-3529-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3529-z

Keywords

Navigation