Skip to main content
Log in

Effect of cooling time on the structural, optical, mechanical, thermal and electrical properties of KCl1−xBrx crystals formed directly on cooling the melt

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to investigate the effect of cooling time on the properties of crystal formed directly on cooling the melt, we have prepared the KCl1−xBrx crystals [with x = 0.0 (pure KCl), 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0 (pure KBr)] by cooling their melts directly with different cooling times (0, 2, 4, 6, 8, 10, 12 and 14 h) in each case. The prepared crystals have been characterized structurally, optically, mechanically, thermally and electrically by carrying out X-ray diffraction (XRD), atomic force microscopic (AFM), optical absorption, micro-hardness, specific heat capacity and electrical conductivity measurements. XRD analysis indicates halite structure for all the crystals formed. AFM results show an increase of grain size with the cooling time. Optical absorption spectra obtained have illustrated the presence of peak at 229 nm for the KCl crystal and 342.2 nm for the mixed crystals, the peak gradually shifts to shorter wavelengths with the increase of cooling time. Hardness analysis shows nonlinear variation with the cooling time, KCl0.5Br0.5 crystal having the maximum value when the cooling time is 4 h. Temperature and composition have influences on the thermal conductivity, specific heat capacity and thermal diffusivity, while the cooling time has a little influence on the thermal performance. Electrical conductivity measurement indicates a little influence of cooling time and strong influences of temperature and composition on the electrical conductivity and activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.B. Sirdeshmukh, L. Sirdeshmukh, K.G. Subhadra, Alkali Halides: A Handbook of Physical Properties in Springer Series in Materials Science (Springer, Heidelberg, 2001). https://doi.org/10.1007/978-3-662-04341-7

    Book  Google Scholar 

  2. L. Guo, W. Jin, Z. Chen, J. Liu, P. Murugasen, C.K. Mahadevan, Large size crystal growth and structural, thermal, optical and electrical properties of KCl1-xBrx mixed crystals. J. Cryst. Growth 480, 154–163 (2017). https://doi.org/10.1016/j.jcrysgro.2017.10.005

    Article  CAS  Google Scholar 

  3. Y. Li, Y. Li, Z. Yang, X. Zhang, J. Liu, F. Zeng, J. Yao, C. Li, H. Lin, Z. Su, C.K. Mahadevan, Structural, optical and mechanical properties and cracking factors of large-sized KBr:Ce3+ single crystal. J. Electron. Mater. 49, 4785–4793 (2020). https://doi.org/10.1007/s11664-020-08173-z

    Article  CAS  Google Scholar 

  4. Y. Li, Y. Li, C. Li, X. Zhang, F. Zeng, H. Lin, Z. Su, C.K. Mahadevan, Structural, mechanical, thermal and optical properties of NaCl:Ce3+ single crystals grown in large size by the Czochralski method. J. Alloys Compd. 849, 156592 (2020). https://doi.org/10.1016/j.jallcom.2020.156592

    Article  CAS  Google Scholar 

  5. M. Priya, C.K. Mahadevan, Studies on multiphased mixed crystals of NaCl, KCl and KI. Cryst. Res. Technol. 44, 92–102 (2009). https://doi.org/10.1002/crat.200800220

    Article  CAS  Google Scholar 

  6. Y.C. Venudhar, L. Iyengar, K.V. Krishna Rao, Thermal expansion and Debye temperatures of KCl-KBr mixed crystals by an X-ray method. J. Mater. Sci. 21, 110–116 (1986). https://doi.org/10.1007/BF01144707

    Article  CAS  Google Scholar 

  7. X. Sahaya Shajan, K. Sivaraman, C. Mahadevan, D. Chandrasekharam, Lattice variation and stability of NaCl-KCl mixed crystals grown from aqueous solution. Cryst. Res. Technol. 27, K79–K82 (1992). https://doi.org/10.1002/crat.2170270433

    Article  Google Scholar 

  8. Y. Li, Y. Li, C. Li, X. Zhang, F. Zeng, H. Lin, Z. Su, C.K. Mahadevan, Luminescent and mechanical properties of cerium doped potassium chloride single crystal. Cryst. Res. Technol. (2020). https://doi.org/10.1002/crat.202000060

    Article  Google Scholar 

  9. A. Jankowska-Frydel, B. Kuklinski, T. Nowosielski, M. Grinberg, The influence of the heat treatment on luminescence and EPR spectra of mixed NaxK1-xCl single crystals. Radiat. Meas. 33, 773–777 (2001). https://doi.org/10.1016/S1350-4487(01)00105-6

    Article  CAS  Google Scholar 

  10. R.R. Mijangos, A. Cordero-Borboa, E. Alvarez, M. Cervantes, Optical study in a novel quaternary ionic crystal doped with europium. Phys. Lett. A 282, 195–200 (2001). https://doi.org/10.1016/S0375-9601(01)00184-0

    Article  CAS  Google Scholar 

  11. W.T. Barrett, W.E. Wallace, Studies of NaCl-KCl solid solutions. I. Heats of formation, lattice spacings, densities, Schottky defects and mutual solubilities. J. Am. Chem. Soc. 76, 366–369 (2002). https://doi.org/10.1021/ja01631a014

    Article  Google Scholar 

  12. Y. Li, Y. Li, C. Li, X. Zhang, F. Zeng, H. Lin, Z. Su, Optical and mechanical properties of NaCl:Ce3+ crystal grown by the Czochralski method. J. Mater. Sci. Mater. Electron. 31, 13070–13077 (2020). https://doi.org/10.1007/s10854-020-03857-y

    Article  CAS  Google Scholar 

  13. K. Jayakumari, C. Mahadevan, Growth and X-ray studies of (NaCl)x(KCl)yx(KBr)1y single crystals. J. Phys. Chem. Solids 66, 1705–1713 (2005). https://doi.org/10.1016/j.jpcs.2005.07.008

    Article  CAS  Google Scholar 

  14. S. Perumal, C.K. Mahadevan, Growth and characterization of multiphased mixed crystals of KCl, KBr and KI—Part 1: growth and X-ray diffraction studies. Phys. B 369, 89–99 (2005). https://doi.org/10.1016/j.physb.2005.07.034

    Article  CAS  Google Scholar 

  15. S. Perumal, C.K. Mahadevan, Growth and characterization of multiphased mixed crystals of KCl, KBr and KI—Part 2: electrical measurements. Phys. B 367, 172–181 (2005). https://doi.org/10.1016/j.physb.2005.06.013

    Article  CAS  Google Scholar 

  16. A.E. Cordero-Barboa, R.R. Mijangos, P.S. Schabes-Retchkiman, Structural characterization of a novel spatially coherent crystalline nanocomposite obtained from a melt of KBr, RbCl, RbBr, KI and RbI salts. J. Mater. Sci. 41, 7119–7129 (2006). https://doi.org/10.1007/s10853-006-0932-8

    Article  CAS  Google Scholar 

  17. G. Selvarajan, C.K. Mahadevan, Studies on (NaCl)x(KBr)y-x(KI)1-y solid solutions: 1. Lattice and thermal parameters. J. Mater. Sci. 41, 8211–8217 (2006). https://doi.org/10.1007/s10853-006-0999-2

    Article  CAS  Google Scholar 

  18. G. Selvarajan, C.K. Mahadevan, Studies on (NaCl)x(KBr)y-x(KI)1-y solid solutions. 2. Electrical measurements. J. Mater. Sci. 41, 8218–8225 (2006). https://doi.org/10.1007/978-3-540-31843-9_4

    Article  CAS  Google Scholar 

  19. C.M. Padma, C.K. Mahadevan, On the preparation of multiphased mixed crystals from NaBr and KCl. Mater. Manuf. Processes 22, 362–365 (2007). https://doi.org/10.1080/10426910701190808

    Article  CAS  Google Scholar 

  20. N. Neelakanda Pillai, C.K. Mahadevan, Preparation and electrical properties of (NaCl)x(NaBr)y-x(NaI)1-y crystals. Mater. Manuf. Processes. 22, 393–399 (2007). https://doi.org/10.1080/10426910701190972

    Article  Google Scholar 

  21. C.M. Padma, C.K. Mahadevan, Growth and characterization of multiphased mixed crystals of NaBr and KBr. Mater. Manuf. Processes. 23, 144–151 (2008). https://doi.org/10.1080/10426910701774585

    Article  CAS  Google Scholar 

  22. M. Priya, C.K. Mahadevan, Formation of multiphased mixed crystals from miscible NaBr, KBr and KCl. Cryst. Res. Technol. 43, 1069–1073 (2008). https://doi.org/10.1002/crat.200800189

    Article  CAS  Google Scholar 

  23. M. Priya, C.K. Mahadevan, Preparation and dielectric properties of oxide added NaCl-KCl polycrystals. Phys. B 403, 67–74 (2008). https://doi.org/10.1016/j.physb.2007.08.009

    Article  CAS  Google Scholar 

  24. C.M. Padma, C.K. Mahadevan, Studies on mutiphased mixed crystals grown from NaBr and KCl. Phys. B 403, 1708–1714 (2008). https://doi.org/10.1016/j.physb.2007.09.092

    Article  CAS  Google Scholar 

  25. N. Neelakanda Pillai, C.K. Mahadevan, X-ray diffraction studies on (NaCl)x(NaBr)y-x(NaI)1-y crystals. Phys. B 403, 2168–2172 (2008). https://doi.org/10.1016/j.physb.2007.10.009

    Article  CAS  Google Scholar 

  26. C.K. Mahadevan, K. Jayakumari, Electrical measurements on multiphased (NaCl)x(KCl)y-x(KBr)1-y single crystals. Phys. B 403, 3990–3996 (2008). https://doi.org/10.1016/j.physb.2008.07.041

    Article  CAS  Google Scholar 

  27. P. Easwaran, A. Anbagi, S. Nagarajan, Optical studies on KBr: Tl and KCl-Br: Tl mixed crystals. E-J. Chem. 7, 425–432 (2010). https://doi.org/10.1155/2010/971465

    Article  Google Scholar 

  28. F. Samavat, E. Haji-Ali, S. Shahmaleki, S. Solgi, Growth of KCl1-xBrx mixed crystals with different composition percent and study of KBr concentration effect on optical characteristics of mixed crystals. Adv. Mater. Chem. Phys. 2, 19978 (2012). https://doi.org/10.4236/ampc.2012.22015

    Article  CAS  Google Scholar 

  29. V.M. Nagaveena, C. Ningappa, S. Prashantha, R. Ananda Kumari, Thermolouminescence studies in ternary alkali halide mixed crystals (KCl)0.9-x(KBr)x (NaI)0.1 doped with lithium sulphate. Mater. Today Proc. 4, 11260–11264 (2017). https://doi.org/10.1016/j.matpr.2017.09.048

    Article  Google Scholar 

  30. C.K. Mahadevan, Mixed crystals of alkali halides—an overview. Adv. Mater. Appl. 5, 31–45 (2020)

    CAS  Google Scholar 

  31. E. Hannachi, Y. Slimani, F. Ben Azzouz, A. Ekicibil, Higher intra-granular and inter-granular performances of YBCO superconductor with TiO2 nano-sized particles addition. Ceram. Int. 44, 20075–20083 (2018). https://doi.org/10.1016/j.ceramint.2018.07.118

    Article  CAS  Google Scholar 

  32. Y. Slimani, M.A. Almessiere, S.E. Shirsath, E. Hannachi, G. Yasin, A. Baykal, B. Ozçelik, I. Ercan, Investigation of structural, morphological, optical, magnetic and dielectric properties of (1-x)BaTiO3/xSr0.92Ca0.04Mg0.04Fe12O19 composites. J. Magn. Magn. Mater. 510, 166933 (2020). https://doi.org/10.1016/j.jmmm.2020.166933

    Article  CAS  Google Scholar 

  33. K. Seevakan, A. Manikandan, P. Devendran, Y. Slimani, A. Baykal, T. Alagesan, Structural, morphological and magneto-optical properties of CuMoO4 electrochemical nanocatalyst as supercapacitor electrode. Ceram. Int. 46, 28877–28886 (2020). https://doi.org/10.1016/j.ceramint.2018.07.282

    Article  CAS  Google Scholar 

  34. Y. Slimani, M.A. Almessiere, E. Hannachi, M. Mumtaz, A. Manikandan, A. Baykal, F. Ben Azzouz, Improvement of flux pinning ability by tungsten oxide nanoparticles added in YBa2Cu3Oy superconductor. Ceram. Int. 45, 6828–6835 (2019). https://doi.org/10.1016/j.ceramint.2018.12.176

    Article  CAS  Google Scholar 

  35. M.H.A. Mhareb, Y. Slimani, Y.S. Alajerami, M.I. Sayyed, E. Lacomme, M.A. Almessiere, Structural and radiation shielding properties of BaTiO3 ceramic with different concentrations of bismuth and ytterbium. Ceram. Int. 44, 18836–18843 (2018). https://doi.org/10.1016/j.ceramint.2020.08.055

    Article  CAS  Google Scholar 

  36. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, M. Mumtaz, A. Baykal, I. Ercan, Study of tungsten oxide effect on the performance of BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 30, 13509–13518 (2019). https://doi.org/10.1007/s10854-019-01718-x

    Article  CAS  Google Scholar 

  37. H. Lipson, H. Steeple, Interpretation of X-Ray Powder Diffraction Patterns (Macmillan, New York, 1970).

    Google Scholar 

  38. H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1974).

    Google Scholar 

  39. X.H. Pan, W.J. Jin, Y. Liu, F. Ai, Y. Zhang, The interface morphology and surface step morphology of BaB2O4 single crystal during rapid growth. Chin. Sci. 7, 403–408 (2007). https://doi.org/10.3969/j.issn.1674-7275.2007.03.017

    Article  Google Scholar 

  40. K. Hisatsune, M. Ohta, M. Yamane, Effect of cooling rate on ordering behavior in a CuPt alloy. Dent. Mater. J. 1, 1–7 (1982). https://doi.org/10.4012/dmj.1.1

    Article  CAS  Google Scholar 

  41. Y. Slimani, B. Unal, M.A. Almessiere, E. Hannachi, G. Yasin, A. Baykal, I. Ercan, Role of WO3 nanoparticles in electrical and dielectric properties of BaTiO3-SrTiO3 ceramics. J. Mater. Sci. Mater. Electron. 31, 7786–7797 (2020). https://doi.org/10.1007/s10854-020-03317-7

    Article  CAS  Google Scholar 

  42. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, A. Baykal, I. Ercan, Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 30, 9520–9530 (2019). https://doi.org/10.1007/s10854-019-01284-2

    Article  CAS  Google Scholar 

  43. X. Li, L.G. Tabil, I.N. Oguocha, S. Panigrahi, Thermal diffusivity, thermal conductivity, and specific heat of flax fiber-hdpe biocomposites at processing temperatures. Compos. Sci. Technol. 68, 1753–1758 (2008). https://doi.org/10.1016/j.compscitech.2008.02.016

    Article  CAS  Google Scholar 

  44. M.W. Woo, P. Wong, Y. Tang, V. Triacca, P.E. Gloor, A.N. Hrymak, Melting behavior and thermal properties of high density polyethylene. Polym Eng Sci. 35, 151–156 (1995). https://doi.org/10.1002/pen.760350205

    Article  CAS  Google Scholar 

  45. V. Hari Babu, U.V. Subbarao, Dislocations and ionic conductivity in KCl-KBr mixed crystals. Phys. Status Solidi A 28, 269–277 (1975). https://doi.org/10.1002/pssa.2210280131

    Article  Google Scholar 

  46. I. Bunget, M. Popescu, Physics of Solid Dielectrics (Elsevier, New York, 1984).

    Google Scholar 

  47. G. Sathaiah, Ph.D. Thesis, Kakathia University, Warangal (1988)

Download references

Acknowledgements

This work was supported by Science and Technology Department of Jilin Province (20200801038GH, 20200403158SF), Education Department of Jilin Province (202010191150, JJKH20200271KJ, JJKH20200272KJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuejian Zhang, Fanming Zeng or C. K. Mahadevan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, Y., Meng, F. et al. Effect of cooling time on the structural, optical, mechanical, thermal and electrical properties of KCl1−xBrx crystals formed directly on cooling the melt. J Mater Sci: Mater Electron 32, 15425–15440 (2021). https://doi.org/10.1007/s10854-021-06091-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06091-2

Navigation