Skip to main content
Log in

Optical and mechanical properties of NaCl: Ce3+ crystal grown by the Czochralski method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The pure and Ce3+-doped NaCl crystals were grown using the resistance heating Czochralski method. The structural, mechanical, and optical properties of the grown crystal were investigated by X-ray diffraction (XRD), micro-hardness, optical absorption, photoluminescence (PL), PL excitation (PLE) spectroscopy, and decay time measurement. The XRD data indicated that the NaCl host lattice was compressed when Ce atoms were incorporated and the peaks shifted to the large angle side. The ICP-AES and XPS analyses verified that Ce3+ is the dominant state of cerium in NaCl crystal. The hardness of the NaCl:Ce3+ crystal was larger than that of pure NaCl crystal and it was anisotropic. Optical absorption confirmed that the three states of 5d level splitting of Ce correspond to the absorption peaks of 202, 215, and 227 nm. The intense emissions located at 342 and 356 nm were attributed to the radiation transitions 5d → 2F5/2 and 5d → 2F7/2 in Ce3+, respectively. The energy-level scheme for the Ce3+ ion in the NaCl crystal was proposed from the PL and PLE analysis. The luminescence decay time of NaCl:Ce3+ crystal is 38.57 ± 0.16 ns. These observations indicate that the NaCl:Ce3+ crystal should be a promising material for use in radiation dosimetry and scintillation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Gu, W.Z. Jin, Z.K. Chen, J.H. Liu, P. Murugasen, F.M. Zeng, C.K. Mahadevan, J. Cryst. Growth 480, 154 (2017)

    Article  Google Scholar 

  2. T. Sakuma, L. Xiang, N. Shimizu, S.R. Mohapatra, N. Isozaki, H. Uehara, T. Haruyuki, B. Khairul, I. Naoki, K. Osamu, Solid State Ion. 192, 54 (2011)

    Article  CAS  Google Scholar 

  3. S. Takeuchi, H. Koizumi, T. Suzuki, Mater. Sci. Eng. A. 521, 90 (2009)

    Article  Google Scholar 

  4. A. Timar-Gabor, O. Trandafir, Radiat. Prot. Dosim. 155, 404 (2013)

    Article  CAS  Google Scholar 

  5. N.A. Spooner, B.W. Smith, D.F. Creighton, D. Questiaux, P.G. Hunter, Radiat. Meas. 47, 883 (2012)

    Article  CAS  Google Scholar 

  6. R.M. Bailey, G. Adamiec, E.J. Rhodes, Radiat. Meas. 32, 717 (2000)

    Article  CAS  Google Scholar 

  7. P.G. Fuochi, A. Alberti, E. Bortolin, U. Corda, S. La Civita, S. Onori, Radiat. Meas. 43, 483 (2008)

    Article  CAS  Google Scholar 

  8. R.B. Morgunov, S.Z. Shmurak, B.K. Ponomarev, A.A. Baskakov, V.I. Kulakov, JETP Lett. 76, 307 (2002)

    Article  CAS  Google Scholar 

  9. T. Kawai, A. Iguchi, J. Lumin. 207, 58 (2019)

    Article  CAS  Google Scholar 

  10. A. Iguchi, T. Kawai, K. Mizoguchi, Phys. Status Solidi C. 13, 85 (2016)

    Article  CAS  Google Scholar 

  11. M. Mehrab, M. Zahedifar, Z. Saeidi-Sogh, A. Ramazani-Moghaddam-Arani, E. Sadeghi, S. Harooni, Methods Phys. Res. Sect. A. 846, 87 (2017)

    Google Scholar 

  12. R.B. Morgunov, M.A. Bashirov, Y.V. Malyutin, V.L. Berdinskii, Y. Tanimoto, Phys. Solid State 49, 445 (2007)

    Article  CAS  Google Scholar 

  13. J. Zhao, C.F. Guo, T. Li, RSC Adv. 5, 1318 (2015)

    Google Scholar 

  14. H.P. Ji, L. Wang, M.S. Molokeev, N. Hirosaki, R.J. Xie, Z.H. Huang, Z.G. Xia, O.M. ten Kate, L.H. Liu, V.V. Atuchin, J. Mater. Chem. C. 4, 6855 (2016)

    Article  CAS  Google Scholar 

  15. J.L. Leaño, S.Y. Lin, A. Lazarowska, S. Mahlik, M. Grinberg, C. Liang, W.Z. Zhou, M.S. Molokeev, V.V. Atuchin, Y.T. Tsai, C.C. Lin, H.S. Sheu, R.S. Liu, Chem. Mater. 28, 6822 (2016)

    Article  Google Scholar 

  16. E.N. Galashov, V.V. Atuchin, T.A. Gavrilova, I.V. Korolkov, Y.M. Mandrik, A.P. Yelisseyev, Z.G. Xia, J. Mater. Sci. 52, 13033 (2017)

    Article  CAS  Google Scholar 

  17. M. Godlewski, M. Leskela, Crit. Rev. Solid State Mater. Sci. 19, 199 (1994)

    Article  CAS  Google Scholar 

  18. D.D. Jia, J. Zhu, B. Wu, J. Lumin. 93, 107 (2001)

    Article  CAS  Google Scholar 

  19. Z. Fu, P. Xu, Y. Yang, C. Li, F. Zeng, J. Lumin. 196, 368 (2018)

    Article  CAS  Google Scholar 

  20. E. Zych, C. Brecher, J. Glodo, J. Phys-Condens, J. Phys-Condens Mater. 12, 1947 (2000)

    Article  CAS  Google Scholar 

  21. T. Yanagida, Y. Fujimoto, K. Kamada, D. Totsuka, M. Nikl, IEEE Trans. Nucl. Sci. 59, 2146 (2012)

    Article  CAS  Google Scholar 

  22. A. Zych, C.M. Donegá, A. Meijerink, J. Lumin. 129, 1535 (2009)

    Article  CAS  Google Scholar 

  23. Y. Yokota, T. Yanagida, Y. Fujimoto, M. Nikl, A. Yoshikawa, Radiat. Meas. 45, 472 (2010)

    Article  CAS  Google Scholar 

  24. Y. Nagaoka, S. Adachi, J. Lumin. 145, 797 (2014)

    Article  CAS  Google Scholar 

  25. J.I. Nara, S. Adachi, J. Appl. Phys. 110, 113508 (2011)

    Article  Google Scholar 

  26. C. Zhang, Q. Jiang, X. Wang, J. Liu, Y. Xiao, C. Li, H. Lin, F. Zeng, Z. Su, Curr. Appl. Phys. 20, 82 (2020)

    Article  CAS  Google Scholar 

  27. M. Suzana, P. Francisco, V.R. Mastelaro, P.A.P. Nascente, A.O. Florentino, J. Phys. Chem. B. 105, 10515 (2001)

    Article  Google Scholar 

  28. J.F. Moxnes, O. Froyland, T. Olsen, T.L. Jensen, E. Unneberg, Comtemp. Eng. Sci. 9, 377 (2016)

    CAS  Google Scholar 

  29. J. Madhavan, S. Aruna, A. Anuradha, D. Premanand, I. Vetha Potheher, K. Thamizharasan, P. Sagayaraj, Opt. Mater. 29, 1211 (2007)

    Article  CAS  Google Scholar 

  30. S. Radhakrishna, B.V.R. Chowdari, Phys. Status Solidi A. 14, 11 (1972)

    Article  CAS  Google Scholar 

  31. H. Wilson, The Optical Properties of Solids (North Holland, Amsterdam, 1972), pp. 7–20

    Google Scholar 

  32. S. Bangaru, G. Muralidharan, Nucl. Instrum. Methods Phys. Res. B. 268, 1653 (2010)

    Article  CAS  Google Scholar 

  33. K. Ohno, M. Furuya, S. Ishii, Y. Noguchi, S. Iwata, Y. Kawazoe, S. Nagasaka, Y. Takahashi, Comput. Mater. Sci. 36, 125 (2006)

    Article  CAS  Google Scholar 

  34. Y. Tosaka, S. Adach, ECS J. Solid State Sci. Technol. 3, R14 (2014)

    Article  CAS  Google Scholar 

  35. S. Adachi, ECS J. Solid State Sci. Technol. 9, 016001 (2020)

    Article  CAS  Google Scholar 

  36. S. Adachi, ECS J. Solid State Sci. Technol. 9, 026003 (2020)

    Article  CAS  Google Scholar 

  37. K. Binnemans, Coord. Chem. Rev. 295, 1 (2015)

    Article  CAS  Google Scholar 

  38. S.H.M. Poort, A. Meyerink, G. Blasse, J. Phys. Chem. Solids. 58, 1451 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Government Funded Projects (61409220309, 6141B012822, 6141B012823) and the Jilin Provincial Department of Education (JJKH20200758KJ, JJKH20200761KJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fanming Zeng, Hai Lin or Zhongmin Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, Y., Li, C. et al. Optical and mechanical properties of NaCl: Ce3+ crystal grown by the Czochralski method. J Mater Sci: Mater Electron 31, 13070–13077 (2020). https://doi.org/10.1007/s10854-020-03857-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03857-y

Navigation