Skip to main content
Log in

Enhanced acetone sensing performance of Ti3C2 MXene/α-Fe2O3 nanorod composite

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An optimized acetone gas sensor based on Ti3C2/α-Fe2O3 (TF) composite materials was synthesized using microwave and etching methods. The structures, morphology and composition of the TF composites were characterized via XRD, XPS, SEM and TEM. The crystal of α-Fe2O3 porous nanorods is hexagonal, and the α-Fe2O3 nanoclusters formed from α-Fe2O3 nanorods were adhered adequately on the lamellar Ti3C2 MXene in the TF composite. The specific surface area and surface defects of the TF composites increased compared with pure α-Fe2O3 nanocluster material, thus exposing a large number of gas adsorption sites. Furthermore, the excellent electrical conductivity and high free charges transfer ability of Ti3C2 MXene provided more electrons for the gas-sensitive reaction and enhanced the transmission capacity of gas-sensitive reaction electrical signal, respectively. The Schottky barriers were formed at the interface of α-Fe2O3 and Ti3C2 MXene increasing the resistance of TF gas sensor in air, which is beneficial to the response of TF gas sensor. So, the gas-sensitive performance of TF gas sensor to acetone was greatly improved. The response of TF gas sensor to 100 ppm acetone was up to 23.38, which was nearly 2.3 times higher than pure α-Fe2O3 gas sensor. The lower detection limit of TF gas sensor could be as low as 1 ppm. In addition, the TF gas sensor had excellent selectivity, long-term repeatability and stability for acetone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

All data used in this study are available upon request from the corresponding author.

References

  1. Zhang L, Li X, Chen H, Wu Z, Hu M, Yao M (2022) Haze air pollution health impacts of breath-borne VOCs. Environ Sci Technol 56:8541–8551. https://doi.org/10.1021/acs.est.2c01778

    Article  CAS  Google Scholar 

  2. Jiang L, Chen Z, Cui Q, Xu S, Tang F (2022) Experimental and DFT-D3 study of sensitivity and sensing mechanism of ZnSnO3 nanosheets to C3H6O gas. J Mater Sci 57:1–21. https://doi.org/10.1007/s10853-021-06855-5

    Article  CAS  Google Scholar 

  3. Dong C, Tian R, Zhang Y, Liu K, Chen G, Guan H, Yin Z (2022) MOF-on-MOF nanoarchitecturing of Fe2O3@ZnFe2O4 radial-heterospindles towards multifaceted superiorities for acetone detection. Chem Eng J 442:136094. https://doi.org/10.1016/j.cej.2022.136094

    Article  CAS  Google Scholar 

  4. Priya S, Halder J, Mandal D, Chowdhury A, Singh T, Chandra A (2021) Hierarchical SnO2 nanostructures for potential VOC sensor. J Mater Sci 56:9883–9893. https://doi.org/10.1007/s10853-021-05942-x

    Article  CAS  Google Scholar 

  5. Aasi A, Aghaei SM, Bajgani SE, Panchapakesan B (2021) Computational study on sensing properties of Pd-decorated phosphorene for detecting acetone, ethanol, methanol, and toluene—a density functional theory investigation. Adv Theory Simul 4:2100256. https://doi.org/10.1002/adts.202100256

    Article  CAS  Google Scholar 

  6. Aasi A, Aasi E, Mehdi Aghaei S, Panchapakesan B (2022) Green phosphorene as a promising biosensor for detection of furan and p-Xylene as biomarkers of disease: a DFT study. Sensors (Basel) 22:3178. https://doi.org/10.3390/s22093178

    Article  CAS  Google Scholar 

  7. Zhang C, Zheng Y, Ding Y, Zheng X, Xiang Y, Tong A (2022) A ratiometric solid AIE sensor for detection of acetone vapor. Talanta 236:122845. https://doi.org/10.1016/j.talanta.2021.122845

    Article  CAS  Google Scholar 

  8. Joshi S, Tonde S, Wakhure U, Bornare D, Chatterjee A, Syed K, Sunkara MV (2022) Hierarchical CaTiO3 microspheres for acetone sensing. Sens Actuators B Chem 359:131621. https://doi.org/10.1016/j.snb.2022.131621

    Article  CAS  Google Scholar 

  9. Guo L, Shen Z, Ma C, Ma C, Wang J, Yuan T (2022) Gas sensor based on MOFs-derived Au-loaded SnO2 nanosheets for enhanced acetone detection. J Alloys Compd 906:164375. https://doi.org/10.1016/j.jallcom.2022.164375

    Article  CAS  Google Scholar 

  10. Wang Z, Zhang K, Fei T, Gu F, Han D (2020) α-Fe2O3/NiO heterojunction nanorods with enhanced gas sensing performance for acetone. Sens Actuators B Chem 318:128191. https://doi.org/10.1016/j.snb.2020.128191

    Article  CAS  Google Scholar 

  11. Afreen S, Zhu J (2019) Rethinking EBAD: evolution of smart noninvasive detection of diabetes. TrAC. Trends Anal Chem 118:477–487. https://doi.org/10.1016/j.trac.2019.06.011

    Article  CAS  Google Scholar 

  12. Yang W, Shen H, Min H, Ge J (2020) Enhanced acetone sensing performance in black TiO2 by Ag modification. J Mater Sci 55:10399–10411. https://doi.org/10.1007/s10853-020-04703-6

    Article  CAS  Google Scholar 

  13. Zhao G, Xuan J, Gong Q, Wang L, Ren J, Sun M, Jia F, Yin G, Liu B (2020) In Situ Growing Double-Layer TiO2 Nanorod arrays on new-type FTO electrodes for low-concentration NH3 detection at room temperature. ACS Appl Mater Interfac 12:8573–8582. https://doi.org/10.1021/acsami.9b20337

    Article  CAS  Google Scholar 

  14. Fan C, Sun F, Wang X, Huang Z, Keshvardoostchokami M, Kumar P, Liu B (2019) Synthesis of ZnO hierarchical structures and their gas sensing properties. Nanomaterials (Basel) 9:1277. https://doi.org/10.3390/nano9091277

    Article  CAS  Google Scholar 

  15. Huang Z, Wang X, Sun F, Fan C, Sun Y, Jia F, Yin G, Zhou T, Liu B (2021) Super response and selectivity to H2S at room temperature based on CuO nanomaterials prepared by seed-induced hydrothermal growth. Mater Des 201:109507. https://doi.org/10.1016/j.matdes.2021.109507

    Article  CAS  Google Scholar 

  16. Shihabudeen PK, Roy Chaudhuri A (2022) Nitrogen doped In2O3-ZnO nanocomposite mesoporous thin film based highly sensitive and selective ethanol sensors. Nanoscale 14:5185–5193. https://doi.org/10.1039/d2nr00455k

    Article  CAS  Google Scholar 

  17. Wang P, Sui L, Yu H, Zhang X, Cheng X, Gao S, Zhao H, Huo L, Xu Y, Wu H (2021) Monodispersed hollow α-Fe2O3 ellipsoids via [C12mim][PF6]-assistant synthesis and their excellent n-butanol gas-sensing properties. Sens Actuator B Chem 326:128796. https://doi.org/10.1016/j.snb.2020.128796

    Article  CAS  Google Scholar 

  18. Thu NTA, Cuong ND, Nguyen LC, Khieu DQ, Nam PC, Toan NV, Hung CM, Hieu NV (2018) Fe2O3 nanoporous network fabricated from Fe3O4/reduced graphene oxide for high-performance ethanol gas sensor. Sens Actuators B Chem 255:3275–3283. https://doi.org/10.1016/j.snb.2017.09.154

    Article  CAS  Google Scholar 

  19. Cummings CY, Marken F, Peter LM, Wijayantha KG, Tahir AA (2012) New insights into water splitting at mesoporous alpha-Fe2O3 films: a study by modulated transmittance and impedance spectroscopies. J Am Chem Soc 134:1228–1234. https://doi.org/10.1021/ja209530s

    Article  CAS  Google Scholar 

  20. Yang HM, Ma SY, Yang GJ, Jin WX, Wang TT, Jiang XH, Li WQ (2016) High sensitive and low concentration detection of methanol by a gas sensor based on one-step synthesis α-Fe2O3 hollow spheres. Mater Lett 169:73–76. https://doi.org/10.1016/j.matlet.2016.01.098

    Article  CAS  Google Scholar 

  21. Ma X, Sun H, He H, Zheng M (2007) Competitive reaction during decomposition of hexachlorobenzene over ultrafine Ca–Fe composite oxide catalyst. Catal Lett 119:142–147. https://doi.org/10.1007/s10562-007-9211-9

    Article  CAS  Google Scholar 

  22. Shen J, Xu S, Zhao C, Qiao X, Liu H, Zhao Y, Wei J, Zhu Y (2021) Bimetallic Au@Pt nanocrystal sensitization mesoporous alpha-Fe2O3 hollow nanocubes for highly sensitive and rapid detection of fish freshness at low temperature. ACS Appl Mater Interfac 13:57597–57608. https://doi.org/10.1021/acsami.1c17695

    Article  CAS  Google Scholar 

  23. Pan W, Zhang Y, Yu S, Liu X, Zhang D (2021) Hydrogen sulfide gas sensing properties of metal organic framework-derived α-Fe2O3 hollow nanospheres decorated with MoSe2 nanoflowers. Sens Actuators B Chem 344:130221. https://doi.org/10.1016/j.snb.2021.130221

    Article  CAS  Google Scholar 

  24. Mao JN, Hong B, Chen HD, Gao MH, Xu JC, Han YB, Yang YT, Jin HX, Jin DF, Peng XL, Li J, Ge HL, Wang XQ (2020) Highly improved ethanol gas response of n-type α-Fe2O3 bunched nanowires sensor with high-valence donor-doping. J Alloys Compd 827:154248. https://doi.org/10.1016/j.jallcom.2020.154248

    Article  CAS  Google Scholar 

  25. Liang S, Li J, Wang F, Qin J, Lai X, Jiang X (2017) Highly sensitive acetone gas sensor based on ultrafine α-Fe2O3 nanoparticles. Sens Actuators B Chem 238:923–927. https://doi.org/10.1016/j.snb.2016.06.144

    Article  CAS  Google Scholar 

  26. Ye Q, Liu C, Li J, Wang H, Yan S, Meng M, Xu H (2022) Synthesis of core-shell ZIF-8@α-Fe2O3 nanorods and improvement of selectivity for ammonia gas. Sens Actuators B Chem 367:132134. https://doi.org/10.1016/j.snb.2022.132134

    Article  CAS  Google Scholar 

  27. Wang X, Wang T, Si G, Li Y, Zhang S, Deng X, Xu X (2020) Oxygen vacancy defects engineering on Ce-doped α-Fe2O3 gas sensor for reducing gases. Sens Actuators B Chem 302:127165. https://doi.org/10.1016/j.snb.2019.127165

    Article  CAS  Google Scholar 

  28. Sun P, Wang W, Liu Y, Sun Y, Ma J, Lu G (2012) Hydrothermal synthesis of 3D urchin-like α-Fe2O3 nanostructure for gas sensor. Sens Actuators B Chem 173:52–57. https://doi.org/10.1016/j.snb.2012.05.057

    Article  CAS  Google Scholar 

  29. Mirzaei A, Janghorban K, Hashemi B, Bonyani M, Leonardi SG, Neri G (2016) Highly stable and selective ethanol sensor based on α-Fe2O3 nanoparticles prepared by pechini sol–gel method. Ceram Int 42:6136–6144. https://doi.org/10.1016/j.ceramint.2015.12.176

    Article  CAS  Google Scholar 

  30. Guo W, Sun W, Lv LP, Kong S, Wang Y (2017) Microwave-assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for Li-ion storage. ACS Nano 11:4198–4205. https://doi.org/10.1021/acsnano.7b01152

    Article  CAS  Google Scholar 

  31. Wojnarowicz J, Chudoba T, Lojkowski W (2020) A review of microwave synthesis of zinc oxide nanomaterials: reactants process parameters and morphoslogies. Nanomaterials (Basel) 10:1086. https://doi.org/10.3390/nano10061086

    Article  CAS  Google Scholar 

  32. Dąbrowska S, Chudoba T, Wojnarowicz J, Łojkowski W (2018) Current trends in the development of microwave reactors for the synthesis of nanomaterials in laboratories and industries: a review. Curr Comput-Aided Drug Des 8:379. https://doi.org/10.3390/cryst8100379

    Article  CAS  Google Scholar 

  33. Sisman O, Zappa D, Bolli E, Kaciulis S, Erich M, Petrovic S, Comini E (2020) Influence of iron and nitrogen ion beam exposure on the gas sensing properties of CuO nanowires. Sens Actuators B Chem 321:128579. https://doi.org/10.1016/j.snb.2020.128579

    Article  CAS  Google Scholar 

  34. Ding W, Liu D, Liu J, Zhang J (2020) Oxygen defects in nanostructured metal-oxide gas sensors: recent advances and challenges. Chin J Chem 38:1832–1846. https://doi.org/10.1002/cjoc.202000341

    Article  CAS  Google Scholar 

  35. Ding Q, Li J, Zou Z, Sun K, Wang Y, He D (2022) Fluoride-assisted highly-active tungsten oxide with modulating exposed facets and defect sites for efficient ppb-level acetone detection. Appl Surf Sci 584:152554. https://doi.org/10.1016/j.apsusc.2022.152554

    Article  CAS  Google Scholar 

  36. Wang C, Wang Y, Cheng P, Xu L, Dang F, Wang T, Lei Z (2021) In-situ generated TiO2/α-Fe2O3 heterojunction arrays for batch manufacturing of conductometric acetone gas sensors. Sens Actuators B Chem 340:129926. https://doi.org/10.1016/j.snb.2021.129926

    Article  CAS  Google Scholar 

  37. Park S, Cai Z, Lee J, Joon Y, i; Chang S, (2016) Fabrication of a low-concentration H2S gas sensor using CuO nanorods decorated with Fe2O3 nanoparticles. Mater Lett 181:231–235. https://doi.org/10.1016/j.matlet.2016.06.043

    Article  CAS  Google Scholar 

  38. Zhu LY, Yuan K, Li ZC, Miao XY, Wang JC, Sun S, Devi A, Lu HL (2022) Highly sensitive and stable MEMS acetone sensors based on well-designed alpha-Fe2O3/C mesoporous nanorods. J Colloid Interfac Sci 622:156–168. https://doi.org/10.1016/j.jcis.2022.04.081

    Article  CAS  Google Scholar 

  39. Zhang Y, Zhang D, Guo W, Chen S (2016) The α-Fe2O3/g-C3N4 heterostructural nanocomposites with enhanced ethanol gas sensing performance. J Alloys Compd 685:84–90. https://doi.org/10.1016/j.jallcom.2016.05.220

    Article  CAS  Google Scholar 

  40. Zhang B, Liu J, Cui X, Wang Y, Gao Y, Sun P, Liu F, Shimanoe K, Yamazoe N, Lu G (2017) Enhanced gas sensing properties to acetone vapor achieved by α-Fe2O3 particles ameliorated with reduced graphene oxide sheets. Sens Actuators B Chem 241:904–914. https://doi.org/10.1016/j.snb.2016.11.023

    Article  CAS  Google Scholar 

  41. Li J, Wang L, Liu Z, Wang Y, Wang S (2017) Au-modified α-Fe2O3 columnar superstructures assembled with nanoplates and their highly improved acetone sensing properties. J Alloys Compd 728:944–951. https://doi.org/10.1016/j.jallcom.2017.09.039

    Article  CAS  Google Scholar 

  42. Mirzaei A, Janghorban K, Hashemi B, Bonyani M, Leonardi SG, Neri G (2016) A novel gas sensor based on Ag/Fe2O3 core-shell nanocomposites. Ceram Int 42:18974–18982. https://doi.org/10.1016/j.ceramint.2016.09.052

    Article  CAS  Google Scholar 

  43. Zhang S, Yang M, Liang K, Turak A, Zhang B, Meng D, Wang C, Qu F, Cheng W, Yang M (2019) An acetone gas sensor based on nanosized Pt-loaded Fe2O3 nanocubes. Sens Actuators B Chem 290:59–67. https://doi.org/10.1016/j.snb.2019.03.082

    Article  CAS  Google Scholar 

  44. Aasi A, Javahersaz R, Aghaei SM, Panchapakesan B (2022) First-principles insight into two-dimensional palladium phosphide tellurium (PdPTe) monolayer as a promising scavenger for detecting SF6 decompositions. J Mater Sci 57:5497–5506. https://doi.org/10.1007/s10853-022-07033-x

    Article  CAS  Google Scholar 

  45. Lee E, Vahidmohammadi A, Yoon YS, Beidaghi M, Kim DJ (2019) Two-dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases. ACS Sens 4:1603–1611. https://doi.org/10.1021/acssensors.9b00303

    Article  CAS  Google Scholar 

  46. Liu Z, Lv H, Xie Y, Wang J, Fan J, Sun B, Jiang L, Zhang Y, Wang R, Shi K (2022) A 2D/2D/2D Ti3C2Tx@TiO2@MoS2 heterostructure as an ultrafast and high-sensitivity NO2 gas sensor at room-temperature. J Mater Chem A 10:11980–11989. https://doi.org/10.1039/d1ta09369j

    Article  CAS  Google Scholar 

  47. Liu M, Wang Z, Song P, Yang Z, Wang Q (2021) Flexible MXene/rGO/CuO hybrid aerogels for high performance acetone sensing at room temperature. Sens Actuators B Chem 340:129946. https://doi.org/10.1016/j.snb.2021.129946

    Article  CAS  Google Scholar 

  48. Lee E, Vahidmohammadi A, Prorok BC, Yoon YS, Beidaghi M, Kim DJ (2017) Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl Mater Interfac 9:37184–37190. https://doi.org/10.1021/acsami.7b11055

    Article  CAS  Google Scholar 

  49. Feng C, Fu H, Jia H, Jin H, Cheng X, Wang W, Liu M, Zhou Q (2021) Ultrathin Ti3C2 nanosheets served as a highly efficient hole transport layer on a Fe2O3 photoanode for photoelectrochemical water oxidation. New J Chem 45:20537–20541. https://doi.org/10.1039/d1nj04297a

    Article  CAS  Google Scholar 

  50. Zhang H, Xuan J, Zhang Q, Sun M, Jia F, Wang X, Yin G, Lu SY (2022) Strategies and challenges for enhancing performance of MXene-based gas sensors: a review. Rare Met 41:3976–3999. https://doi.org/10.1007/s12598-022-02087-x

    Article  CAS  Google Scholar 

  51. Yuan W, Cheng L, Zhang Y, Wu H, Lv S, Chai L, Guo X, Zheng L (2017) 2D-layered carbon/TiO2 hybrids derived from Ti3C2 MXenes for photocatalytic hydrogen evolution under visible light irradiation. Adv Mater Interfac 4:1700577. https://doi.org/10.1002/admi.201700577

    Article  CAS  Google Scholar 

  52. Wu M, He M, Hu Q, Wu Q, Sun G, Xie L, Zhang Z, Zhu Z, Zhou A (2019) Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature. ACS Sens 4:2763–2770. https://doi.org/10.1021/acssensors.9b01308

    Article  CAS  Google Scholar 

  53. Liu M, Ji J, Song P, Liu M, Wang Q (2021) α-Fe2O3 nanocubes/Ti3C2Tx MXene composites for improvement of acetone sensing performance at room temperature. Sens Actuators B Chem 349:130782. https://doi.org/10.1016/j.snb.2021.130782

    Article  CAS  Google Scholar 

  54. Liu M, Ji J, Song P, Wang J, Wang Q (2022) Sensing performance of α-Fe2O3/Ti3C2Tx MXene nanocomposites to NH3 at room temperature. J Alloys Compd 898:162812. https://doi.org/10.1016/j.jallcom.2021.162812

    Article  CAS  Google Scholar 

  55. Tai H, Duan Z, He Z, Li X, Xu J, Liu B, Jiang Y (2019) Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature. Sens Actuators B Chem 298:126874. https://doi.org/10.1016/j.snb.2019.126874

    Article  CAS  Google Scholar 

  56. Uhlig I, Szargan R, Nesbitt HW, Laajalehto K (2001) Surface states and reactivity of pyrite and marcasite. Appl Surf Sci 179:222–229. https://doi.org/10.1016/S0169-4332(01)00283-5

    Article  CAS  Google Scholar 

  57. Li Y, Ding L, Guo Y, Liang Z, Cui H, Tian J (2019) Boosting the photocatalytic ability of g-C3N4 for hydrogen production by Ti3C2 MXene quantum dots. ACS Appl Mater Interfac 11:41440–41447. https://doi.org/10.1021/acsami.9b14985

    Article  CAS  Google Scholar 

  58. Huang D, Li H, Wang Y, Wang X, Cai L, Fan W, Chen Y, Wang W, Song Y, Han G, Zheng B, Liu G (2022) Assembling a high-performance acetone sensor based on MOFs-derived porous bi-phase α-/γ-Fe2O3 nanoparticles combined with Ti3C2Tx nanosheets. Chem Eng J 428:131377. https://doi.org/10.1016/j.cej.2021.131377

    Article  CAS  Google Scholar 

  59. Long R, Yu Z, Tan Q, Feng X, Zhu X, Li X, Wang P (2021) Ti3C2 MXene/NH2-MIL-88B(Fe): research on the adsorption kinetics and photocatalytic performance of an efficient integrated photocatalytic adsorbent. Appl Surf Sci 570:151244. https://doi.org/10.1016/j.apsusc.2021.151244

    Article  CAS  Google Scholar 

  60. Zhao X, Liu M, Chen Y, Hou B, Zhang N, Chen B, Yang N, Chen K, Li J, An L (2015) Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium–sulfur batteries. J Mater Chem A 3:7870–7876. https://doi.org/10.1039/c4ta07101h

    Article  CAS  Google Scholar 

  61. Xuan J, Zhao G, Gong Q, Wang L, Ren J, Sun M, Zhou T, Xing F, Yin G, Liu B (2021) Fabrication of in-situ grown and Pt-decorated ZnO nanoclusters on new-type FTO electrode for room-temperature detection of low-concentration H2S. J Alloys Compd 860:158499. https://doi.org/10.1016/j.jallcom.2020.158499

    Article  CAS  Google Scholar 

  62. Wang Y, Zhang B, Liu J, Yang Q, Cui X, Gao Y, Chuai X, Liu F, Sun P, Liang X, Sun Y, Lu G (2016) Au-loaded mesoporous WO3: preparation and n-butanol sensing performances. Sens Actuators B Chem 236:67–76. https://doi.org/10.1016/j.snb.2016.05.097

    Article  CAS  Google Scholar 

  63. Sun P, Zhou X, Wang C, Wang B, Xu X, Lu G (2014) One-step synthesis and gas sensing properties of hierarchical Cd-doped SnO2 nanostructures. Sens Actuators B Chem 190:32–39. https://doi.org/10.1016/j.snb.2013.08.045

    Article  CAS  Google Scholar 

  64. Cheng L, Ma SY, Li XB, Luo J, Li WQ, Li FM, Mao YZ, Wang TT, Li YF (2014) Highly sensitive acetone sensors based on Y-doped SnO2 prismatic hollow nanofibers synthesized by electrospinning. Sens Actuators B Chem 200:181–190. https://doi.org/10.1016/j.snb.2014.04.063

    Article  CAS  Google Scholar 

  65. Shinde VR, Gujar TP, Lokhande CD (2007) Enhanced response of porous ZnO nanobeads towards LPG: effect of Pd sensitization. Sens Actuators B Chem 123:701–706. https://doi.org/10.1016/j.snb.2006.10.003

    Article  CAS  Google Scholar 

  66. Wei Q, Sun J, Song P, Li J, Yang Z, Wang Q (2020) MOF-derived α-Fe2O3 porous spindle combined with reduced graphene oxide for improvement of TEA sensing performance. Sens Actuators B Chem 304:127306. https://doi.org/10.1016/j.snb.2019.127306

    Article  CAS  Google Scholar 

  67. Umar A, Ibrahim AA, Kumar R, Albargi H, Alsaiari MA, Ahmed F (2021) Cubic shaped hematite (α-Fe2O3) micro-structures composed of stacked nanosheets for rapid ethanol sensor application. Sens Actuators B Chem 326:128851. https://doi.org/10.1016/j.snb.2020.128851

    Article  CAS  Google Scholar 

  68. Liu S, Wang M, Liu G, Wan N, Ge C, Hussain S, Meng H, Wang M, Qiao G (2021) Enhanced NO2 gas-sensing performance of 2D Ti3C2/TiO2 nanocomposites by in-situ formation of Schottky barrier. Appl Surf Sci 567:150747. https://doi.org/10.1016/j.apsusc.2021.150747

    Article  CAS  Google Scholar 

  69. Hermawan A, Zhang B, Taufik A, Asakura Y, Hasegawa T, Zhu J, Shi P, Yin S (2020) CuO nanoparticles/Ti3C2Tx MXene hybrid nanocomposites for detection of toluene gas. ACS Appl Nano Mater 3:4755–4766. https://doi.org/10.1021/acsanm.0c00749

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Natural Science Foundation of Shandong Province (Grant No. ZR2022MF241), the Collaborative Education Project of Industry-University Cooperation of the Ministry of Education (Grant No.202101256024), the National Natural Science Foundation of China (Grant No.22002074), the National Natural Science Foundation of China (Grant No. 61704098) and the Natural Science Foundation of Shandong Province (Grant No. ZR2017BF025).

Author information

Authors and Affiliations

Authors

Contributions

YW contributed to investigation, data curation and writing the original draft. HJT, LXS and YYX contributed to investigation. XMW and FZS contributed to conceptualization, methodology, writing—review and editing, and funding acquisition. FCJ, TZ and GCY contributed to formal analysis.

Corresponding authors

Correspondence to Fazhe Sun or Xiaomei Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Mohammad Naraghi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 947 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Tan, H., Sang, L. et al. Enhanced acetone sensing performance of Ti3C2 MXene/α-Fe2O3 nanorod composite. J Mater Sci 58, 5319–5333 (2023). https://doi.org/10.1007/s10853-023-08328-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08328-3

Navigation