Skip to main content
Log in

Enhanced acetone sensing performance in black TiO2 by Ag modification

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The application of TiO2 acetone monitor is highly limited by the high operating temperature and poor sensitivity. In this work, black TiO2 (B-TiO2) is produced by Ti3+ self-doping and is followed by Ag modification to form B-TiO2@Ag. It is first demonstrated that the operating temperature and sensitivity of TiO2 to acetone can be promoted evidently. By introducing a Ti3+ self-doped layer on the surface of TiO2, as observed in TEM images, the band gap of TiO2 is reduced to 3.01 eV. Ag surface decoration is carried out for the enhancement of electron generation. Optical absorption and the Hall effect results prove that B-TiO2@Ag exhibits highest photoelectrical properties. As a result, the B-TiO2@Ag gas sensor with a low operating temperature at 250 °C and high response of 68.19 to 50 ppm acetone is realized. The low detection limit of B-TiO2@Ag sensor reaches 887 ppb, which provides an applicable way for non-invasive detection of blood glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Luo W, Zhao T, Li YH, Xu PC, Li XX, Wang YW, Zhang WQ, Elzatahry AA, Alghamdi A, Deng YH, Wang LJ, Jiang W, Liu Y, Kong B, Zhao DY (2016) A micelle fusion-aggregation assembly approach to mesoporous carbon materials with rich active sites for ultrasensitive ammonia sensing. J Am Chem Soc 138:12586–12595

    CAS  Google Scholar 

  2. Siddiqui SA, Zhang Y, Lloret J, Song H, Obradovic Z (2018) Pain-free blood glucose monitoring using wearable sensors: recent advancements and future prospects, IEEE Rev. Biomed Eng 11:21–35

    Google Scholar 

  3. International Diabetes Federation (2017) IDF Diabetes Atlas, eighth ed., for Brussels Belgium International Diabetes Federation. https://www.diabetesatlas.org. Accessed 24 Jan 2020.

  4. Righettoni M, Schmid A, Amann A, Pratsinis SE (2013) Correlations between blood glucose and breath components from portable gas sensors and PTR-TOF-MS. J Breath Res 7:037110

    CAS  Google Scholar 

  5. Zhao T, Ren Y, Jia GY, Zhao YY, Fan YC, Yang JP, Zhang X, Jiang W, Wang LJ, Luo W (2019) Facile synthesis of mesoporous WO3@graphene aerogel nanocomposites for low-temperature acetone sensing. Chin Chem Lett 30:2032–2038

    CAS  Google Scholar 

  6. Hao XD, Wu DJ, Wang YP, Quyang JH, Wang J, Liu T, Liang XS, Zhang C, Liu FM, Yan X, Gao Y, Lu GY (2019) Gas sniffer (YSZ-based electrochemical gas phase sensor) toward acetone detection. Sensor Actuators B-Chem 278:1–7

    CAS  Google Scholar 

  7. Gong J, Li YH, Hu ZS, Zhou ZZ, Deng YL (2010) Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 fibers. J Phys Chem C 114:9970–9974

    CAS  Google Scholar 

  8. Zhu BL, Xie CS, Wang WY, Huang KJ, Hu JH (2004) Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO2. Mater Lett 58:624–629

    CAS  Google Scholar 

  9. Liu HX, Shen WH, Chen XQ, Corriou JP (2018) A high-performance NH3 gas sensor based on TiO2 quantum dot clusters with ppb level detection limit at room temperature. J Mater Sci-Mater El 29:18380–18387

    CAS  Google Scholar 

  10. Viet PV, Hieu LV, Thi CM (2016) The directed preparation of TiO2 nanotubes film on FTO substrate via hydrothermal method for gas sensing application, AIMS Mater. Sci 3:460–469

    CAS  Google Scholar 

  11. Zhao T, Qiu PP, Fan YC, Yang JP, Jiang W, Wang LJ, Deng YH, Luo W (2019) Hierarchical branched mesoporous TiO2-SnO2 nanocomposites with well-defined n-n heterojunctions for highly efficient ethanol sensing. Adv Sci 6:1902008

    CAS  Google Scholar 

  12. Sabri YM, Kandjani AE, Rashid S, Harrison CJ, Ippolito SJ, Bhargava SK (2018) Soot template TiO2 fractals as a photoactive gas sensor for acetone detection. Sensor Actuators B-Chem 275:215–222

    CAS  Google Scholar 

  13. Wang GX, Fu ZY, Wang TS, Lei WW, Sun P, Sui YM, Zou B (2019) A rational design of hollow nanocages Ag@CuO-TiO2 for enhanced acetone sensing performance. Sensor Actuators B-Chem 295:70–78

    CAS  Google Scholar 

  14. Sun LC, Yao ZJ, Haidry AA, Li Z, Fatima Q, Xie LJ (2018) Facile one-step synthesis of TiO2 microrods surface modified with Cr2O3 nanoparticles for acetone sensor applications. J Mater Sci-Mater El 29:14546–14556

    CAS  Google Scholar 

  15. Bindra P, Hazra A (2019) Selective detection of organic vapors using TiO2 nanotubes based single sensor at room temperature. Sensor Actuators B-Chem 290:684–690

    CAS  Google Scholar 

  16. Crofford O, Mallard R, Winton R, Rogers N, Jackson J, Keller U (1977) Acetone in breath and blood. Trans Am Clin Climatol Assoc 88:128–139

    CAS  Google Scholar 

  17. Pham T, Li GH, Bekyarova E, Itkis ME, Mulchandani A (2019) MoS2-Based Optoelectronic Gas Sensor with Sub-parts-per-billion Limit of NO2 Gas Detection. ACS Nano 13:3196–3205

    CAS  Google Scholar 

  18. Yi C, Liao Q, Deng W, Huang YW, Mao J, Zhang BP, Wu GP (2019) The preparation of amorphous TiO2 doped with cationic S and its application to the degradation of DCFs under visible light irradiation. Sci Total Environ 684:527–536

    CAS  Google Scholar 

  19. Mazierski P, Caicedo PNA, Grzyb T, Mikolajczyk A, Roy JK, Wyrzykowska E, Wei ZS, Kowalska E, Puzyn T, Zaleska-Medynska A, Nadolna J (2019) Experimental and computational study of Tm-doped TiO2: The effect of Li+ on Vis-response photocatalysis and luminescence. Appl Catal B-Environ 252:138–151

    CAS  Google Scholar 

  20. Ullattil SG, Narendranath SB, Pillai SC, Periyat P (2018) Black TiO2 Nanomaterials: a review of recent advances. Chem Eng J 343:708–736

    CAS  Google Scholar 

  21. Chen XB, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750

    CAS  Google Scholar 

  22. Plodinec M, Grcic I, Willinger MG, Hammud A, Huang X, Panzic I, Gajovic A (2019) Black TiO2 nanotube arrays decorated with Ag nanoparticles for enhanced visible-light photocatalytic oxidation of salicylic acid. J Alloy Compd 776:883–896

    CAS  Google Scholar 

  23. Trawka MP, Smulko JM, Hasse LZ, Granqvist CG, Lonescu R, Llobet E, Annanouch FE, Kish LB (2016) UV-light-induced fluctuation enhanced sensing by WO3-based gas sensors. IEEE Sens J 16:5152–5159

    CAS  Google Scholar 

  24. Sivan AK, Di Mario L, Catone D, O’Keeffe P, Turchini S, Rubini S, Martelli F (2020) Plasmon-induced resonant effects on the optical properties of Ag-decorated ZnSe nanowires. Nanotechnology 31:174001

    Google Scholar 

  25. Zhang DB, Yang XF, Hong XK, Liu YS, Feng JF (2014) Aluminum nanoparticles enhanced light absorption in silicon solar cell by surface plasmon resonance. Opt Quant Electron 47:1421–1427

    Google Scholar 

  26. Wei AL, Shen LL, Chen S, Guo L, Chen WY (2019) Facile synthesis of novel cage like porous Ag decorated silica nanotubes with enhanced catalytic activity. J Phys Chem Solids 135:109106

    CAS  Google Scholar 

  27. Kamble C, Panse M, Nimbalkar A (2019) Ag decorated WO3 sensor for the detection of sub-ppm level NO2 concentration in air. Mat Sci Semicon Proc 103:104613

    CAS  Google Scholar 

  28. Ray SK, Dhankal D, Gyawali G, Joshi B, Koirala AR, Lee SW (2019) Transformation of tetracycline in water during degradation by visible light driven Ag nanoparticles decorated α-NiMoO4 nanorods: mechanism and pathways. Chem Eng J 373:259–274

    Google Scholar 

  29. Viet PV, Phan BT, Thi CM, Hieu LV (2017) Controlled formation of silver nanoparticles on TiO2 nanotubes by photoreduction method. J Nanosci Nanotechno 17:1497–1503

    Google Scholar 

  30. Liu HX, Shen WH, Chen XQ (2019) A room temperature operated ammonia gas sensor based on Ag-decorated TiO2 quantum dot clusters. RSC Adv 9:24519–24526

    CAS  Google Scholar 

  31. Wang Z, Yang CY, Lin TQ, Yin H, Chen P, Wan DY, Xu FF, Huang FQ, Lin JH, Xie XM, Jiang MH (2013) Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ Sci 6:3007–3014

    CAS  Google Scholar 

  32. Yang WY, Shen HL, Min HH, Ge JW (2020) Enhanced visible light-driven photodegradation of rhodamine B by Ti3+ self-doped TiO2@Ag nanoparticles prepared using Ti vapor annealing. J Mater Sci 55:701–712

    CAS  Google Scholar 

  33. Li GL, Li J, Li G, Jiang GB (2015) N and Ti3+ co-doped 3D anatase TiO2 superstructures composed of ultrathin nanosheets with enhanced visible light photocatalytic activity. J Mater Chem A 3:22073–22080

    CAS  Google Scholar 

  34. Liu XF, Xing ZP, Zhang Y, Li ZZ, Wu XY, Tan SY, Yu XJ, Zhu Q, Zhou W (2017) Fabrication of 3D flower-like black N-TiO2-x@MoS2 for unprecedented-light-driven photocatalytic performance. Appl Catal B-Environ 201:119–127

    CAS  Google Scholar 

  35. Xu MX, Wang YH, Geng JF, Jing DW (2017) Photodecomposition of NOx on Ag/TiO2 composite catalysts in a gas phase reactor. Chem Eng J 307:181–188

    CAS  Google Scholar 

  36. Kalidoss R, Umapathy S (2019) A comparison of online and offline measurement of exhaled breath for diabetes pre-screening by graphene-based sensor; from powder processing to clinical monitoring prototype. J Breath Res 13:036008

    CAS  Google Scholar 

  37. Kou XY, Xie N, Chen F, Wang TS, Guo LL, Wang C, Wang QJ, Ma J, Sun YF, Zhang H, Lu GY (2018) Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping. Sensor Actuators B-Chem 256:861–869

    CAS  Google Scholar 

  38. Zhang R, Wang Y, Zhang ZY, Cao JL (2018) Highly sensitive acetone gas sensor based on g-C3N4 decorated MgFe2O4 porous microspheres composites. Sensors-Basel 18:2211

    Google Scholar 

  39. Cheng YL, He Y, Li S, Wang YF, Zhao Y, Li Y, Li HY, Liu L (2018) Ultra-sensitive and selective acetone gas sensor with fast response at low temperature based on Cu-doped α-Fe2O3 porous nanotubes. J Mater Sci-Mater El 29:11178–11186

    CAS  Google Scholar 

  40. Deshwal M, Arora A (2018) Enhanced acetone detection using Au doped ZnO thin film sensor. J Mater Sci-Mater El 29:15315–15320

    CAS  Google Scholar 

  41. Xiong Y, Zhu ZY, Ding DG, Lu WB, Xue QZ (2018) Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor. Appl Surf Sci 443:114–121

    CAS  Google Scholar 

  42. Rella R, Spadavecchia J, Manera MG, Capone S, Taurino A, Martino M, Caricato AP, Tunno T (2007) Acetone and ethanol solid-state gas sensors based on TiO2 nanoparticles thin film deposited by matrix assisted pulsed laser evaporation. Sensor Actuators B-Chem 127:426–431

    CAS  Google Scholar 

  43. Bian HQ, Ma SY, Sun AM, Xu XL, Yang GJ, Gao JM, Zhang ZM, Zhu HB (2015) Characterization and acetone gas sensing properties of electrospun TiO2 nanorods. Superlattice Microst 81:107–113

    CAS  Google Scholar 

  44. Baharuddin AA, Ang BC, Haseeb ASMA, Wong YC, Wong YH (2019) Advances in chemiresistive sensors for acetone gas detection. Mat Sci Semicon Proc 103:104616

    CAS  Google Scholar 

  45. Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7:143–167

    CAS  Google Scholar 

  46. Comini E, Faglia G, Sberveglieri G, Pan ZW, Wang ZL (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81:1869–1871

    CAS  Google Scholar 

  47. Feng P, Wan Q, Wang TH (2005) Contact-controlled sensing properties of flowerlike ZnO nanostructures. Appl Phys Lett 87:213111

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (61774084), the Fundamental Research Funds for the Central Universities (NG2019003 and NP2017106), Joint Frontier Research Project of Jiangsu Province (BY2016003-09), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_0273), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

WY took the responsibility of the design of experiments and the written of manuscript. HS spent much efforts on the revision of manuscript and the construction of labs. HM helped to complete the measurements and gas sensitivity appraising. JG mainly carried out the experiment operation.

Corresponding author

Correspondence to Honglie Shen.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Shen, H., Min, H. et al. Enhanced acetone sensing performance in black TiO2 by Ag modification. J Mater Sci 55, 10399–10411 (2020). https://doi.org/10.1007/s10853-020-04703-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04703-6

Navigation