Skip to main content
Log in

Biocompatible mesoporous polymeric ionic liquid with high adsorption capacity for selective isolation of ovalbumin

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ionic liquids are becoming widely applied in the extraction/separation of biological molecules. In this study, the solidification of ionic liquid 1-hydroxyethyl-3-vinylimidazole chloride ([HVIM]Cl) was achieved via one-pot free radical copolymerisation with divinylbenzene (DVB) as a cross-linking reagent, giving a mesoporous hydrophilic polymeric ionic liquid (PIL). Mesoporous PIL possesses a large surface area of 328.32 m2·g−1 and a high pore volume of 0.45 cm3·g−1. Owing to hydrophilic interactions and π–π stacking interactions, the PIL adsorbs ovalbumin (Ova) selectively with a theoretical maximum adsorption capacity of 2468.0 mg·g−1, and this Ova adsorption fit the Langmuir model well. The captured Ova was efficiently recovered using sodium dodecyl sulphate (0.4%, m·v−1) with an elution efficiency of 94.7%. Circular dichroism spectra indicated that the adsorption-elution process caused no conformational changes in Ova, indicating that the prepared PIL is highly biocompatible. The practicability of this mesoporous PIL was well demonstrated by the selective adsorption of Ova from protein mixtures and the efficient isolation of Ova from chicken egg white.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

AIBN:

2,2′-Azobis(2-methylpropionitrile)

BR:

Britton-Robinson

CD:

Circular dichroism

DI:

Deionised

DVB:

Divinylbenzene

FT-IR:

Fourier transform infrared

[HVIM]Cl:

1-Hydroxyethyl-3-vinylimidazole chloride

IL:

Ionic liquid

PIL:

Polymeric ionic liquid

Lys:

Lysozyme

Ova:

Ovalbumin

SDS:

Sodium dodecyl sulphate

SDS-PAGE:

Sodium dodecyl sulphate polyacrylamide gel electrophoresis

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Dang M, Deng Q, Fang G, Zhang D, Liu J, Wang S (2017) Preparation of novel anionic polymeric ionic liquid materials and their potential application to protein adsorption. J Mater Chem B 5:6339–6347. https://doi.org/10.1039/C7TB01234A

    Article  CAS  Google Scholar 

  2. Han L, Shu Y, Wang X, Chen X, Wang J (2013) Encapsulation of silica nano-spheres with polymerized ionic liquid for selective isolation of acidic proteins. Anal Bioanal Chem 405:8799–8806. https://doi.org/10.1007/s00216-013-7295-1

    Article  CAS  Google Scholar 

  3. Fan J, Tian Z, Tong S, Zhang X, Xie Y, Xu R, Qin Y, Li L, Zhu J, Ouyang X (2013) A novel molecularly imprinted polymer of the specific ionic liquid monomer for selective separation of synephrine from methanol–water media. Food Chem 141:3578–3585. https://doi.org/10.1016/j.foodchem.2013.06.040

    Article  CAS  Google Scholar 

  4. Fan J, Yu J, Yang X, Zhang X, Yuan T, Peng H (2018) Preparation, characterization, and application of multiple stimuli-responsive rattle-type magnetic hollow molecular imprinted poly (ionic liquids) nanospheres (Fe3O4@void@PILMIP) for specific recognition of protein. Chem Eng J 337:722–732. https://doi.org/10.1016/j.cej.2017.12.159

    Article  CAS  Google Scholar 

  5. Fan J, Zhang F, Yang X, Zhang X, Cao Y, Peng H (2018) Preparation of a novel supermacroporous molecularly imprinted cryogel membrane with a specific ionic liquid for protein recognition and permselectivity. J Appl Polym Sci 135:46740. https://doi.org/10.1002/app.46740

    Article  CAS  Google Scholar 

  6. Zhan T, Song Y, Li X, Hou W (2016) Electrochemical sensor for bisphenol a based on ionic liquid functionalized Zn-Al layered double hydroxide modified electrode. Mater Sci Eng C 64:354–361. https://doi.org/10.1016/j.msec.2016.03.093

    Article  CAS  Google Scholar 

  7. Mao H, Liang J, Ji C, Zhang H, Pei Q, Zhang Y, Zhang Y, Hisaeda Y, Song X (2016) Poly(zwitterionic liquids) functionalized polypyrrole/graphene oxide nanosheets for electrochemically detecting dopamine at low concentration. Mater Sci Eng C 65:143–150. https://doi.org/10.1016/j.msec.2016.04.023

    Article  CAS  Google Scholar 

  8. Jin L, Shi Z, Zhang X, Liu X, Li H, Wang J, Liang F, Zhao W, Zhao C (2019) Intelligent antibacterial surface based on ionic liquid molecular brushes for bacterial killing and release. J Mater Chem B 7:5520–5527. https://doi.org/10.1039/C9TB01199D

    Article  CAS  Google Scholar 

  9. Florio W, Becherini S, D’Andrea F, Lupetti A, Chiappe C, Guazzelli L (2019) Comparative evaluation of antimicrobial activity of different types of ionic liquids. Mater Sci Eng C 104:109907. https://doi.org/10.1016/j.msec.2019.109907

    Article  CAS  Google Scholar 

  10. Guo Z, Jiang Q, Shi Y, Li J, Yang X, Hou W, Zhou Y, Wang J (2017) Tethering dual hydroxyls into mesoporous poly(ionic liquid)s for chemical fixation of CO2 at ambient conditions: a combined experimental and theoretical study. ACS Catal 7:6770–6780. https://doi.org/10.1021/acscatal.7b02399

    Article  CAS  Google Scholar 

  11. Guo Z, Cai X, Xie J, Wang X, Zhou Y, Wang J (2016) Hydroxyl-exchanged nanoporous ionic copolymer toward low temperature cycloaddition of atmospheric carbon dioxide into carbonates. ACS Appl Mater Interfaces 8:12812–12821. https://doi.org/10.1021/acsami.6b02461

    Article  CAS  Google Scholar 

  12. Kim BK, Lee E, Kang Y, Lee JJ (2018) Application of ionic liquids for metal dissolution and extraction. J Ind Eng Chem 61:388–397. https://doi.org/10.1016/j.jiec.2017.12.038

    Article  CAS  Google Scholar 

  13. Belchior DCV, Quental MV, Pereira MM, Mendonça CMN, Duarte IF, Freire MG (2020) Performance of tetraalkylammonium-based ionic liquids as constituents of aqueous biphasic systems in the extraction of ovalbumin and lysozyme. Sep Purif Technol 233:116019. https://doi.org/10.1016/j.seppur.2019.116019

    Article  CAS  Google Scholar 

  14. Bowers AN, Rodríguez MJT, Farooq MQ, Anderson JL (2019) Extraction of DNA with magnetic ionic liquids using in situ dispersive liquid–liquid microextraction. Anal Bioanal Chem 411:7375–7385. https://doi.org/10.1007/s00216-019-02163-9

    Article  CAS  Google Scholar 

  15. Deng N, Li M, Zhao L, Lu C, de Rooy SL, Warner IM (2011) Highly efficient extraction of phenolic compounds by use of magnetic room temperature ionic liquids for environmental remediation. J Hazard Mater 192:1350–1357. https://doi.org/10.1016/j.jhazmat.2011.06.053

    Article  CAS  Google Scholar 

  16. Skoronskia E, Fernandes M, Malaret FJ, Hallett JP (2020) Use of phosphonium ionic liquids for highly efficient extraction of phenolic compounds from water. Sep Purif Technol 248:117069. https://doi.org/10.1016/j.seppur.2020.117069

    Article  CAS  Google Scholar 

  17. Gomez-Herrero E, Tobajas M, Polo A, Rodriguez JJ, Mohedano AF (2019) Removal of imidazolium-based ionic liquid by coupling Fenton and biological oxidation. J Hazard Mater 365:289–296. https://doi.org/10.1016/j.jhazmat.2018.10.097

    Article  CAS  Google Scholar 

  18. Neves CMSS, Lemus J, Freire MG, Palomar J, Coutinho JAP (2014) Enhancing the adsorption of ionic liquids onto activated carbon by the addition of inorganic salts. Chem Eng J 252:305–310. https://doi.org/10.1016/j.cej.2014.05.009

    Article  CAS  Google Scholar 

  19. Cheng M, Jiang J, Wang J, Fan J (2019) Highly salt resistant polymer supported ionic liquid adsorbent for ultrahigh capacity removal of p-nitrophenol from water. ACS Sustain Chem Eng 7:8195–8205. https://doi.org/10.1021/acssuschemeng.8b06198

    Article  CAS  Google Scholar 

  20. Zhu G, Cheng G, Lu T, Cao Z, Wang L, Li Q, Fan J (2019) An ionic liquid functionalized polymer for simultaneous removal of four phenolic pollutants in real environmental samples. J Hazard Mater 373:347–358. https://doi.org/10.1016/j.jhazmat.2019.03.101

    Article  CAS  Google Scholar 

  21. Ni R, Wang Y, Wei X, Chen J, Xu P, Xu W, Meng J, Zhou Y (2019) Ionic liquid modified molybdenum disulfide and reduced graphene oxide magnetic nanocomposite for the magnetic separation of dye from aqueous solution. Anal Chim Acta 1054:47–58. https://doi.org/10.1016/j.aca.2018.12.037

    Article  CAS  Google Scholar 

  22. Herrmann S, Kostrzewa M, Wierschem A, Streb C (2014) Polyoxometalate ionic liquids as self-repairing acid-resistant corrosion protection. Angew Chem Int Ed 53:13596–13599. https://doi.org/10.1002/anie.201408171

    Article  CAS  Google Scholar 

  23. Zhao B, Wu D, Chu H, Wang C, Wei Y (2019) Magnetic mesoporous nanoparticles modified with poly(ionic liquids) with multi-functional groups for enrichment and determination of pyrethroid residues in apples. J Sep Sci 42:1896–1904. https://doi.org/10.1002/jssc.201900038

    Article  CAS  Google Scholar 

  24. Wei Y, Li Y, Tian A, Fan Y, Wang X (2013) Ionic liquid modified magnetic microspheres for isolation of heme protein with high binding capacity. J Mater Chem B 1:2066–2071. https://doi.org/10.1039/C3TB00576C

    Article  CAS  Google Scholar 

  25. Li S, Guo Z, Zeng G, Zhang Y, Xue W, Liu Z (2018) Polyethylenimine-modified fluorescent carbon dots as vaccine delivery system for intranasal immunization. ACS Biomater Sci Eng 4:142–150. https://doi.org/10.1021/acsbiomaterials.7b00370

    Article  CAS  Google Scholar 

  26. Lv M, Li S, Zhao H, Wang K, Chen Q, Guo Z, Liu Z, Xue W (2017) Redox-responsive hyperbranched poly(amido amine) and polymer dots as a vaccine delivery system for cancer immunotherapy. J Mater Chem B 5:9532–9545. https://doi.org/10.1039/C7TB02334K

    Article  CAS  Google Scholar 

  27. Mahony D, Cavallaro AS, Stahr F, Mahony TJ, Qiao S, Mitter N (2013) Mesoporous silica nanoparticles act as a self-adjuvant for ovalbumin model antigen in mice. Small 9:3138–3146. https://doi.org/10.1002/smll.201300012

    Article  CAS  Google Scholar 

  28. Zhou Y, Zhang W, Ma L, Zhou Y, Wang J (2019) Amino acid anion paired mesoporous poly(ionic liquids) as metal-/halogen-free heterogeneous catalysts for carbon dioxide fixation. ACS Sustain Chem Eng 7:9387–9398. https://doi.org/10.1021/acssuschemeng.9b00591

    Article  CAS  Google Scholar 

  29. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  30. Cychosz K, Guillet-Nicolas R, Garcıa-Martınez J, Thommes M (2017) Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chem Soc Rev 46:389–414. https://doi.org/10.1039/C6CS00391E

    Article  CAS  Google Scholar 

  31. Hosseini-Eshbala F, Sedrpoushan A, Breit B, Mohanazadeh F, Veisi H (2020) Ionic-liquid-modified CMK-3 as a support for the immobilization of molybdate ions (MoO42-): heterogeneous nanocatalyst for selective oxidation of sulfides and benzylic alcohols. Mater Sci Eng C 110:110577. https://doi.org/10.1016/j.msec.2019.110577

    Article  CAS  Google Scholar 

  32. Wang N, Xu Z, Xu W, Xu J, Chen Y, Zhang M (2018) Comparison of coagulation and magnetic chitosan nanoparticle adsorption on the removals of organic compound and coexisting humic acid: a case study with salicylic acid. Chem Eng J 347:514–524. https://doi.org/10.1016/j.cej.2018.04.131

    Article  CAS  Google Scholar 

  33. Hu Z, Meng J, Wang X, Li W, Chen X (2020) Tailoring the surface properties of co-based metal-organic frameworks for highly efficient and selective enrichment of immunoglobulin G. ACS Appl Mater Interfaces 12:55453–55459. https://doi.org/10.1021/acsami.0c16821

    Article  CAS  Google Scholar 

  34. Wang X, Wan H, Han M, Gao L, Guan G (2012) Removal of thiophene and its derivatives from model gasoline using polymer-supported metal chlorides ionic liquid moieties. Ind Eng Chem Res 51:3418–3424. https://doi.org/10.1021/ie201931a

    Article  CAS  Google Scholar 

  35. Gao H, Kan T, Zhao S, Qian Y, Cheng X, Wu W, Wang X, Zheng L (2013) Removal of anionic azo dyes from aqueous solution by functional ionic liquid cross-linked polymer. J Hazard Mater 261:83–90. https://doi.org/10.1016/j.jhazmat.2013.07.001

    Article  CAS  Google Scholar 

  36. Sha X, Sheng X, Zhou Y, Wang B, Zhu Z, Liao Q, Liu Y (2020) Synthesis of P123-templated and DVB-cross-linked mesomacroporous poly (ionic liquids) with high-performance alkylation. Appl Organometal Chem 34:e5460. https://doi.org/10.1002/aoc.5460

    Article  CAS  Google Scholar 

  37. Lin Y, Wang F, Zhang Z, Yang J, Wei Y (2014) Polymer-supported ionic liquids: synthesis, characterization and application in fuel desulfurization. Fuel 116:273–280. https://doi.org/10.1016/j.fuel.2013.08.014

    Article  CAS  Google Scholar 

  38. Cheng M, Zhang X, Shi Y, Shi D, Zhu G, Fan J (2019) Highly efficient removal of ceftiofur sodium using a superior hydroxyl group functionalized ionic liquid-modified polymer. Sci Total Environ 662:324–331. https://doi.org/10.1016/j.scitotenv.2019.01.223

    Article  CAS  Google Scholar 

  39. Sun L, Luo J, Gao M, Tang S (2020) Bi-functionalized ionic liquid porous copolymers for CO2 adsorption and conversion under ambient pressure. React Funct Polym 154:104636. https://doi.org/10.1016/j.reactfunctpolym.2020.104636

    Article  CAS  Google Scholar 

  40. Xu W, Cao J, Zhang Y, Shu Y, Wang J (2020) Boronic acid modified polyoxometalate-alginate hybrid for the isolation of glycoproteins at neutral environment. Talanta 210:120620. https://doi.org/10.1016/j.talanta.2019.120620

    Article  CAS  Google Scholar 

  41. Wan X, Xiang X, Tang S, Yu D, Huang H, Hu Y (2017) Immobilization of candida antarctic lipase B on MWNTs modified by ionic liquids with different functional groups. Colloids Surf B 160:416–422. https://doi.org/10.1016/j.colsurfb.2017.09.037

    Article  CAS  Google Scholar 

  42. Suo H, Gao Z, Xu L, Xu C, Yu D, Xiang X, Huang H, Hu Y (2019) Synthesis of functional ionic liquid modified magnetic chitosan nanoparticles for porcine pancreatic lipase immobilization. Mater Sci Eng C 96:356–364. https://doi.org/10.1016/j.msec.2018.11.041

    Article  CAS  Google Scholar 

  43. Zhang Y, Zhuang Y, Shen H, Chen X, Wang J (2017) A super hydrophilic silsesquioxane-based composite for highly selective adsorption of glycoproteins. Microchim Acta 184:1037–1044. https://doi.org/10.1007/s00604-017-2100-z

    Article  CAS  Google Scholar 

  44. Qiao M, Liu X, Song J, Yang T, Chen M, Wang J (2018) Improving the adsorption capacity for ovalbumin by functional modification of aminated mesoporous silica nanoparticles with tryptophan. J Mater Chem B 6:7703–7709. https://doi.org/10.1039/C8TB02221F

    Article  CAS  Google Scholar 

  45. Zhu H, Yao H, Xia K, Liu J, Yin X, Zhang W, Pan J (2018) Magnetic nanoparticles combining teamed boronate affinity and surface imprinting for efficient selective recognition of glycoproteins under physiological pH. Chem Eng J 346:317–328. https://doi.org/10.1016/j.cej.2018.03.170

    Article  CAS  Google Scholar 

  46. Li S, Qin Y, Zhong G, Cai C, Chen X, Chen C (2018) Highly efficient separation of glycoprotein by dual-functional magnetic metal-organic framework with hydrophilicity and boronic acid affinity. ACS Appl Mater Interfaces 10:27612–27620. https://doi.org/10.1021/acsami.8b07671

    Article  CAS  Google Scholar 

  47. Wang X, Zhang Y, Shu Y, Chen X, Wang J (2015) Ionic liquid poly(3-n-dodecyl-1-vinylimidazolium) bromide as an adsorbent for the sorption of hemoglobin. RSC Adv 5:31496–31501. https://doi.org/10.1039/c5ra00036j

    Article  CAS  Google Scholar 

  48. Guo Z, Hai X, Wang Y, Shu Y, Chen X, Wang J (2018) Core−corona magnetic nanospheres functionalized with zwitterionic polymer ionic liquid for highly selective isolation of glycoprotein. Biomacromol 19:53–61. https://doi.org/10.1021/acs.biomac.7b01231

    Article  CAS  Google Scholar 

  49. Liu J, Liang Y, Shen J, Bai Q (2018) Polymeric ionic liquid-assembled graphene-immobilized silica composite for selective isolation of human serum albumin from human whole blood. Anal Bioanal Chem 410:573–584. https://doi.org/10.1007/s00216-017-0758-z

    Article  CAS  Google Scholar 

  50. Guo P, Wang X, Wang M, Yang T, Chen M, Wang J (2019) Boron-titanate monolayer nanosheets for highly selective adsorption of immunoglobulin G. Nanoscale 11:9362–9368. https://doi.org/10.1039/C9NR01111K

    Article  CAS  Google Scholar 

  51. Michaux C, Pomroy N, Privé G (2008) Refolding SDS-denatured proteins by the addition of amphipathic cosolvents. J Mol Biol 375:1477–1488. https://doi.org/10.1016/j.jmb.2007.11.026

    Article  CAS  Google Scholar 

  52. Shu Y, Chen X, Wang J (2010) Ionic liquid–polyvinyl chloride ionomer for highly selective isolation of basic proteins. Talanta 81:637–642. https://doi.org/10.1016/j.talanta.2009.12.059

    Article  CAS  Google Scholar 

  53. Zhang D, Hu L, Chen Q, Chen X, Wang J (2016) Selective adsorption of hemoglobin with polyoxometalate-derived hybrid by solidification of super-lacunary phosphotungstate polyoxoanions. Talanta 159:23–28. https://doi.org/10.1016/j.talanta.2016.06.005

    Article  CAS  Google Scholar 

  54. Wang X, Hu Z, Guo P, Chen M, Wang J (2020) Purification of hemoglobin by adsorption on nitrogen-doped flower-like carbon superstructures. Microchim Acta 187:162. https://doi.org/10.1007/s00604-020-4151-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from the National Natural Science Foundation of China (21727811) and Fundamental Research Funds for the Central Universities (N2005027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuwei Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Lisa White.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, S., Zhang, C., Hu, Z. et al. Biocompatible mesoporous polymeric ionic liquid with high adsorption capacity for selective isolation of ovalbumin. J Mater Sci 56, 19283–19295 (2021). https://doi.org/10.1007/s10853-021-06529-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06529-2

Navigation