Skip to main content
Log in

Polymeric ionic liquid-assembled graphene-immobilized silica composite for selective isolation of human serum albumin from human whole blood

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Polymeric ionic liquids (PILs) with 1-vinyl-3-ethylimidazolium cations and two different anions of Br and PF6 were assembled onto the surface of graphene (G) nanosheets. The derived two composites, i.e., PIL(Br)-G and PIL(PF6)-G, were further efficiently immobilized onto the surface of silica nanoparticles via self-assembly technique. The obtained two PIL-G/SiO2 nanocomposites exhibited diverse adsorption performances toward proteins through adjusting the anions of PILs. Electrostatic attractions between proteins and the nanocomposites dominated protein adsorption, while the presence of PF6 anions weakened electrostatic interactions and deteriorated the selective adsorption of target protein, i.e., bovine serum albumin (BSA) in this case. Specifically, PIL(Br)-G/SiO2 nanocomposite displayed high selectivity toward BSA and a high adsorption efficiency of ca. 98% was achieved for 100 mg L−1 BSA in a Britton-Robinson (B-R) buffer at pH 5. HPLC analysis demonstrated the selectivity of PIL(Br)-G/SiO2 nanocomposite toward BSA in the presence of abundant hemoglobin and cytochrome c. The practical applicability was verified by performing selective isolation of human serum albumin (HSA) from human whole blood.

Selective isolation of human serum albumin from blood by polymeric ionic liquid assembled graphene immobilized silica nanocomposite with tunable anions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen XW, Hu LL, Liu JW, Chen S, Wang JH. Nanoscale carbon-based materials in protein isolation and preconcentration. TRAC-Trend Anal Chem. 2013;48:30–9.

    Article  CAS  Google Scholar 

  2. Magdeldin S, Moresco JJ, Yamamoto T, Yates JR III. Off-line multidimensional liquid chromatography and auto sampling result in sample loss in LC/LC-MS/MS. J Proteome Res. 2014;13:3826–36.

    Article  CAS  Google Scholar 

  3. Li LP, Xu LN, Li Z, Bai Y, Liu HW. Novel nanomaterials used for sample preparation for protein analysis. Anal Bioanal Chem. 2014;406:35–47.

    Article  CAS  Google Scholar 

  4. Bladergroen MR, van der Burgt YEM. Solid-phase extraction strategies to surmount body fluid sample complexity in high-throughput mass spectrometry-based proteomics. J Anal Methods Chem. 2015;2015:250131.

    Article  Google Scholar 

  5. Chen LH, Zhu GS, Zhang DL, Zhao H, Guo MY, Shi W, et al. Novel mesoporous silica spheres with ultra-large pore sizes and their application in protein separation. J Mater Chem. 2009;19:2013–7.

    Article  CAS  Google Scholar 

  6. Kryscio DR, Peppas NA. Critical review and perspective of macromolecularly imprinted polymers. Acta Biomater. 2012;8:461–73.

    Article  CAS  Google Scholar 

  7. Li Y, Zhang XM, Deng CH. Functionalized magnetic nanoparticles for sample preparation in proteomics and peptidomics analysis. Chem Soc Rev. 2013;42:8517–39.

    Article  CAS  Google Scholar 

  8. Chen XW, Hai X, Wang JH. Graphene/graphene oxide and their derivatives in the separation/isolation and preconcentration of protein species: a review. Anal Chim Acta. 2016;922:1–10.

    Article  CAS  Google Scholar 

  9. Zhang YW, Li Z, Zhao Q, Zhou YL, Liu HW, Zhang XXA. Facilely synthesized amino-functionalized metal-organic framework for highly specific and efficient enrichment of glycopeptides. Chem Commun. 2014;50:11504–6.

    Article  CAS  Google Scholar 

  10. Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev. 2016;116:5464–519.

    Article  CAS  Google Scholar 

  11. Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, et al. Graphene and graphene oxide: synthesis, properties and applications. Adv Mater. 2010;22:3906–24.

    Article  CAS  Google Scholar 

  12. Yuan JY, Mecerreyes D, Antonietti M. Poly(ionic liquid)s: an update. Prog Polym Sci. 2013;38:1009–36.

    Article  CAS  Google Scholar 

  13. Tokuda M, Yamane M, Thickett SC, Minami H, Zetterlund PB. Synthesis of polymeric nanoparticles containing reduced graphene oxide nanosheets stabilized by poly(ionic liquid) using miniemulsion polymerization. Soft Matter. 2016;12:3955–62.

    Article  CAS  Google Scholar 

  14. Xu CX, Li Y, Liang GZ, Gu AJ. Building a poly(epoxy propylimidazolium ionic liquid)/graphene hybrid through πcation-π interaction for fabricating high-k polymer composites with low dielectric loss and percolation threshold. J Mater Chem C. 2016;4:3175–84.

    Article  CAS  Google Scholar 

  15. Wu SY, Wang YX, Mao H, Wang C, Xia LX, Zhang Y, et al. Direct electrochemistry of cholesterol oxidase and biosensing of cholesterol on PSS/polymeric ionic liquid-graphene nanocomposite. RSC Adv. 2016;6:59487–96.

    Article  CAS  Google Scholar 

  16. Sun M, Bu YN, Feng JJ, Luo CN. Graphene oxide reinforced polymeric ionic liquid monolith solid-phase microextraction sorbent for high-performance liquid chromatography analysis of phenolic compounds in aqueous environmental samples. J Sep Sci. 2016;39:375–82.

    Article  CAS  Google Scholar 

  17. Zhang BT, Zheng XX, Li HF, Lin JM. Application of carbon-based nanomaterials in sample preparation: a review. Anal Chim Acta. 2013;784:1–17.

    Article  CAS  Google Scholar 

  18. Liu CC, Deng QL, Fang GZ, Huang X, Wang S. Facile synthesis of graphene doped poly(ionic liquid) boronate affinity material for specific capture of glycoproteins. J Mater Chem B. 2014;2:5229–37.

    Article  CAS  Google Scholar 

  19. Liu JW, Wang MM, Zhang Y, Han L, Chen XW, Wang JH. Polymeric ionic liquid modified reduced graphene oxide as adsorbent for highly selective isolation of acidic protein. RSC Adv. 2014;4:61936–43.

    Article  CAS  Google Scholar 

  20. Merlot AM, Kalinowski DS, Richardson DR. Unraveling the mysteries of serum albumin—more than just a serum protein. Front Physiol. 2014;5:299.

    Article  Google Scholar 

  21. Arroyo V, Garcia-Martinez R, Salvatella X. Human serum albumin, systemic inflammation, and cirrhosis. J Hepatol. 2014;61:396–407.

    Article  CAS  Google Scholar 

  22. Pernemalm M, Lehtio J. Mass spectrometry-based plasma proteomics: state of the art and future outlook. Expert Rev Proteomic. 2014;11:431–48.

    Article  CAS  Google Scholar 

  23. Liu JW, Yang T, Ma LY, Chen XW, Wang JH. Nickel nanoparticle decorated graphene for highly selective isolation of polyhistidine-tagged proteins. Nanotechnology. 2013;24:505704.

    Article  Google Scholar 

  24. Marcilla R, Blazquez JA, Rodriguez J, Pomposo JA, Mecerreyes D. Tuning the solubility of polymerized ionic liquids by simple anion-exchange reactions. J Polym Sci Polym Chem. 2004;42:208–12.

    Article  CAS  Google Scholar 

  25. Lin ZA, Xia ZW, Zheng JN, Zheng D, Zhang L, Yang HH, et al. Synthesis of uniformly sized molecularly imprinted polymer-coated silica nanoparticles for selective recognition and enrichment of lysozyme. J Mater Chem. 2012;22:17914–22.

    Article  CAS  Google Scholar 

  26. Kruger NJ. The protein protocols handbook. New York: Springer Humana Press; 2009. p. 17–24.

    Book  Google Scholar 

  27. Kim TY, Lee HW, Stoller M, Dreyer DR, Bielawski CW, Ruoff RS, et al. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. ACS Nano. 2011;5:436–42.

    Article  CAS  Google Scholar 

  28. Liu JW, Yang T, Chen S, Chen XW, Wang JH. Nickel chelating functionalization of graphene composite for metal affinity membrane isolation of lysozyme. J Mater Chem B. 2013;1:810–8.

    Article  CAS  Google Scholar 

  29. Chen JL, Yan XP. A dehydration and stabilizer-free approach to production of stable water dispersions of graphene nanosheets. J Mater Chem. 2010;20:4328–32.

    Article  CAS  Google Scholar 

  30. Stankovich S, Dikin DA, Piner RD, Kohlhass KA, Kleinhammes A, Jia YY, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45:1558–65.

    Article  CAS  Google Scholar 

  31. Villar-Garcia IJ, Smith EF, Taylor AW, Qiu FL, Lovelock KRJ, Jones RG, et al. Charging of ionic liquid surface under X-ray irradiation: the measurement of absolute binding energies by XPS. Phys Chem Chem Phys. 2011;13:2797–808.

    Article  CAS  Google Scholar 

  32. Liu N, Luo F, Wu HX, Liu YH, Zhang C, Chen J. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater. 2008;18:1518–25.

    Article  CAS  Google Scholar 

  33. Jones KL, O’Melia CR. Protein and humic acid adsorption onto hydrophilic membrane surfaces: effect of pH and ionic strength. J Membrane Sci. 2000;165:31–46.

    Article  CAS  Google Scholar 

  34. Song H, Yang C, Yohannes A, Yao S. Acidic ionic liquid modified silica gel for adsorption and separation of bovine serum albumin (BSA). RSC Adv. 2016;6:107452–62.

    Article  CAS  Google Scholar 

  35. Liu CC, Deng QL, Fang GZ, Liu HL, Wu JH, Pan MF, et al. Ionic liquids monolithic columns for protein separation in capillary electrochromatography. Anal Chim Acta. 2013;804:313–20.

    Article  CAS  Google Scholar 

  36. Zhu LY, Li GQ, Zheng FY. Interaction of bovine serum albumin with two alkylimidazolium-based ionic liquids investigated by microcalorimetry and circular dichroism. J Biophys Chem. 2011;2:146–51.

    CAS  Google Scholar 

  37. Liu JW, Zhang Q, Chen XW, Wang JH. Surface assembly of graphene oxide nanosheets on SiO2 particles for the selective isolation of hemoglobin. Chem Eur J. 2011;17:4864–70.

    Article  CAS  Google Scholar 

  38. Vilar VJP, Botelho CMS, Boaventura RAR. Influence of pH, ionic strength and temperature on lead biosorption by Gelidium and agar extraction algal waste. Process Biochem. 2005;40:3267–75.

    Article  CAS  Google Scholar 

  39. Liu JW, Yu H, Liang QM, Liu YN, Shen JW, Bai Q. Preparation of polyhedral oligomeric silsesquioxane based cross-linked inorganic-organic nanohybrid as adsorbent for selective removal of acidic dyes from aqueous solution. J Colloid Interf Sci. 2017;497:402–12.

    Article  CAS  Google Scholar 

  40. Zhang CJ, Jia XP, Wang YZ, Zhang M, Yang S, Guo JX. Thermosensitive molecularly imprinted hydrogel cross-linked with N-malely chitosan for the recognition and separation of BSA. J Sep Sci. 2014;37:419–26.

    Article  CAS  Google Scholar 

  41. Zhang P, Fang XN, Yan GQ, Gao MX, Zhang XM. Highly efficient enrichment of low-abundance proteins by core-shell structured Fe3O4-chitosan@graphene composites. Talanta. 2017;174:845–52.

    Article  CAS  Google Scholar 

  42. Zhang T, Mei ZY, Zhou YM, Yu S, Chen ZJ, Bu XH. Novel paper-templated fabrication of hierarchically porous Ni-Al layered double hydroxides/Al2O3 for efficient BSA separation. J Chem Technol Biotechnol. 2014;89:1705–11.

    Article  CAS  Google Scholar 

  43. Mahdavinia GR, Mousanezhad S, Hosseinzadeh H, Darvishi F, Sabzi M. Magnetic hydrogel beads based on PVA/sodium alginate/laponite RD and studying their BSA adsorption. Carbohyd Polym. 2016;147:379–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 21605122, 21505104, 21545007, and 21575114) and the Foundation of Key Laboratory in Shaanxi Province (Nos. 16JS116 and 15JS115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawei Liu.

Ethics declarations

This study has been approved by the ethics committee of Northwest University and has been performed in accordance with the ethical standards. Written informed consent has been obtained from the participant who provided the blood sample.

Conflict of interest

There are no conflicts to declare.

Electronic supplementary material

ESM 1

(PDF 364 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Liang, Y., Shen, J. et al. Polymeric ionic liquid-assembled graphene-immobilized silica composite for selective isolation of human serum albumin from human whole blood. Anal Bioanal Chem 410, 573–584 (2018). https://doi.org/10.1007/s00216-017-0758-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0758-z

Keywords

Navigation