Skip to main content
Log in

Encapsulation of silica nano-spheres with polymerized ionic liquid for selective isolation of acidic proteins

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A nanocomposite is prepared by encapsulating silica nano-spheres with polymerized ionic liquid in aqueous medium without use of any organic solvents. Vinyl groups are covalently introduced on to the surface of silica nano-spheres, which are then encapsulated by copolymerization of 1-vinyl-3-ethylimidazolium bromide (monomer) and 1,4-butanediyl-3,3′-bis-l-vinylimidazolium dibromide (cross-linker) at room temperature. The derived nanocomposite, PIL@SiO2, provides a green adsorbent for protein sorption. PIL@SiO2 is selective toward acidic proteins, and its selectivity can be controlled via varying the amount of monomer used in the copolymerization process. At pH 6.0, use of 5 mg PIL@SiO2 nanocomposite results in a sorption efficiency of up to 95 % for 200 mg L−1 ovalbumin in 1 mL sample solution. Electrostatic and hydrophobic interactions between PIL@SiO2 and protein species dominate the adsorption process. The ovalbumin adsorption behavior is consistent with the Langmuir model, giving a sorption capacity of 333.3 mg g−1. The retained ovalbumin is recovered by elution with 0.2 % SDS solution. Circular dichroism spectra reveal virtually no change to the α-helix content of ovalbumin after elimination of SDS by use of dialysis. In summary, high-purity ovalbumin is isolated from chicken egg-white by use of the PIL@SiO2 nanocomposite as adsorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dupont J, de Souza RF, Suarez PAZ (2002) Chem Rev 102:3667–3691

    Article  CAS  Google Scholar 

  2. Davis JH (2004) Chem Lett 33:1072–1077

    Article  CAS  Google Scholar 

  3. Burguete MI, Galindo F, Garcia–Verdugo E, Karbass N, Luis SV (2007) Chem Commun 3086–3088

  4. Sans V, Karbass N, Burguete MI, Compan V, García–Verdugo E, Luis SV, Pawlak M (2011) Chem–Eur J 17:1894–1906

    CAS  Google Scholar 

  5. Anderson EB, Long TE (2010) Polymer 51:2447–2454

    Article  CAS  Google Scholar 

  6. Washiro S, Yoshizawa M, Nakajima H, Ohno H (2004) Polymer 45:1577–1582

    Article  CAS  Google Scholar 

  7. Green O, Grubjesic S, Lee S, Firestone MA (2009) Polym Rev 49:339–360

    Article  CAS  Google Scholar 

  8. Marcilla R, Alcaide F, Sardon H, Pomposo JA, Pozo–Gonzalo C, Mecerreyes D (2006) Electrochem Commun 8:482–488

    Article  CAS  Google Scholar 

  9. Anderson JL, Armstrong DW (2005) Anal Chem 77:6453–6462

    Article  CAS  Google Scholar 

  10. Hsieh YN, Horng RS, Ho WY, Huang PC, Hsu CY, Whang TJ, Kuei CH (2008) Chromatographia 67:413–420

    Article  CAS  Google Scholar 

  11. Pourjavadi A, Doulabi M, Hosseini SH (2012) Polymer 53:5737–5742

    Article  CAS  Google Scholar 

  12. Yang JH, Qiu LH, Liu BQ, Peng YJ, Yan F, Shang SM (2011) J Polym Sci Pol Chem 49:4531–4538

    Article  CAS  Google Scholar 

  13. Wanigasekara E, Perera S, Crank JA, Sidisky L, Shirey R, Berthod A, Armstrong DW (2009) Anal Bioanal Chem 396:511–524

    Article  Google Scholar 

  14. Feng JJ, Sun M, Xu LL, Wang S, Liu X, Jiang SX (2012) J Chromatogr A 1268:16–21

    Article  CAS  Google Scholar 

  15. Ho HA, Boissinot M, Bergeron MG, Corbeil G, Dore K, Boudreau D, Leclerc M (2002) Angew Chem Int Edit 41:1548–1551

    Article  CAS  Google Scholar 

  16. Liu XF, Fan QL, Huang W (2011) Biosens Bioelectron 26:2154–2164

    Article  CAS  Google Scholar 

  17. Wu BH, Hu D, Kuang YJ, Liu B, Zhang XH, Chen JH (2009) Angew Chem Int Edit 48:4751–4754

    Article  CAS  Google Scholar 

  18. Yuan JY, Giordano C, Antonietti M (2010) Chem Mater 22:5003–5012

    Article  CAS  Google Scholar 

  19. De M, Ghosh PS, Rotello VM (2008) Adv Mater 20:4225–4241

    Article  CAS  Google Scholar 

  20. Fukushima T (2003) Science 300:2072–2074

    Article  CAS  Google Scholar 

  21. Chen H, Zhao G (2012) J Solid State Electr 16:3289–3297

    Article  CAS  Google Scholar 

  22. Ho TD, Yu HL, Cole WTS, Anderson JL (2012) Anal Chem 84:9520–9528

    CAS  Google Scholar 

  23. Hu BJ, Wu TB, Ding KL, Zhou XS, Jiang T, Han BX (2010) J Phys Chem C 114:3396–3400

    Article  CAS  Google Scholar 

  24. Marcilla R, Curri ML, Cozzoli PD, Martínez MT, Loinaz I, Grande H, Pomposo JA, Mecerreyes D (2006) Small 2:507–512

    Article  CAS  Google Scholar 

  25. Carrasco PM, Tzounis L, Mompean FJ, Strati K, Georgopanos P, Garcia–Hernandez M, Stamm M, Cabanero G, Odriozola I, Avgeropoulos A, Garcia I (2013) Macromolecules 46:1860–1867

    Article  CAS  Google Scholar 

  26. Yan H, Liu S, Gao M, Sun N (2013) J Chromatogr A 1294:10–16

    Article  CAS  Google Scholar 

  27. Vijayakrishna K, Jewrajka SK, Ruiz A, Marcilla R, Pomposo JA, Mecerreyes D, Taton D, Gnanou Y (2008) Macromolecules 41:6299–6308

    Article  CAS  Google Scholar 

  28. Stober W, Fink A, Bohn E (1968) J Colloid Interf Sci 26:62–68

    Article  Google Scholar 

  29. Wu ZJ, Xiang H, Kim T, Chun MS, Lee K (2006) J Colloid Interf Sci 304:119–124

    Article  CAS  Google Scholar 

  30. Palmai M, Nagy LN, Mihaly J, Varga Z, Tarkanyi G, Mizsei R, Szigyarto IC, Kiss T, Kremmer T, Bota A (2013) J Colloid Interf Sci 390:34–40

    Article  CAS  Google Scholar 

  31. Markiewicz M, Mrozik W, Rezwan K, Thoming J, Hupka J, Jungnickel C (2013) Chemosphere 90:706–712

    Article  CAS  Google Scholar 

  32. Shiomori K, Ebuchi N, Kawano Y, Kuboi R, Komasawa I (1998) J Ferment Bioeng 86:581–587

    Article  CAS  Google Scholar 

  33. Shu Y, Chen XW, Wang JH (2010) Talanta 81:637–642

    Article  CAS  Google Scholar 

  34. Michaux C, Pomroy NC, Prive GG (2008) J Mol Biol 375:1477–1488

    Article  CAS  Google Scholar 

  35. Sahoo BK, Ghosh KS, Dasgupta S (2009) Biopolymers 91:108–119

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate financial support from the Natural Science Foundation of China (no. 21105008, 21275027, 21235001), the Program of New Century Excellent Talents in University (NCET-11-0071) and the Fundamental Research Funds for the Central Universities (N110305005, N110705002, and N110805001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Shu or Jianhua Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 239 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, L., Shu, Y., Wang, X. et al. Encapsulation of silica nano-spheres with polymerized ionic liquid for selective isolation of acidic proteins. Anal Bioanal Chem 405, 8799–8806 (2013). https://doi.org/10.1007/s00216-013-7295-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7295-1

Keywords

Navigation