Skip to main content
Log in

A super hydrophilic silsesquioxane-based composite for highly selective adsorption of glycoproteins

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors have prepared a super-hydrophilic polymer consisting of a poly-polyhedral oligomeric silsesquioxane (POSS)-formaldehyde (PPF) composite. The polymerization process does not require a catalyst and results in a material with excellent hydrophilic properties and abundant functional groups. The PFF composite, even if not chemically modified, can selectively bind glycoproteins due to strong hydrophilic interactions. It is shown that glycoproteins can be selectively captured by the composite that has a binding capacity as large as 542 mg g−1 for the model protein ovalbumin. The PPF was applied to the selective capture and isolation of ovalbumin from complex biological samples.

Super-hydrophilic poly-polyhedral oligomeric silsesquioxane formaldehyde (PPF) is prepared via a catalyst-free polymerization route. PPF exhibits high capturing and adsorption selectivity towards glycoproteins due to its strong hydrophilic interaction with glycan groups. Favorable capturing capacity is also achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Service RF (2012) CELL BIOLOGY looking for a sugar rush. Science 338:321–323

    Article  Google Scholar 

  2. Hakomori S (1996) Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res 56:5309–5128

    CAS  Google Scholar 

  3. Kufe DW (2009) Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer 9:874–885

    Article  CAS  Google Scholar 

  4. Couldrey C, Green JE (2000) Metastases: the glycan connection. Breast Cancer Res 2:321–323

    Article  CAS  Google Scholar 

  5. Drake PM, Cho W, Li BS, Prakobphol A, Johansen E, Anderson NL, Regnier FE, Gibson BW, Fisher SJ (2010) Sweetening the pot: adding glycosylation to the biomarker discovery equation. Clin Chem 56:223–236

    Article  CAS  Google Scholar 

  6. Durand G, Seta N (2000) Protein glycosylation and diseases: blood and urinary oligosaccharides as markers for diagnosis and therapeutic monitoring. Clin Chem 46:795–805

    CAS  Google Scholar 

  7. Chen R, Jiang XN, Sun DG, Han GH, Wang FJ, Ye ML, Wang LM, Zou HF (2009) Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J Proteome Res 8:651–661

    Article  CAS  Google Scholar 

  8. Zhang H, Li XJ, Martin DB, Aebersold R (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21:660–666

    Article  CAS  Google Scholar 

  9. Tang J, Liu YC, Qi DW, Yao GP, Deng CH, Zhang XM (2009) On-plate-selective enrichment of glycopeptides using boronic acid-modified gold nanoparticles for direct MALDI-QIT-TOF MS analysis. Proteomics 9:5046–5055

    Article  CAS  Google Scholar 

  10. Zhang LJ, Xu YW, Yao HL, Xie LQ, Yao J, Lu HJ, Yang PY (2009) Boronic acid functionalized Core-satellite composite nanoparticles for advanced enrichment of glycopeptides and glycoproteins. Chem-Eur J 15:10158–10166

    Article  CAS  Google Scholar 

  11. Dong LP, Feng S, Li SS, Song PP, Wang JD (2015) Preparation of Concanavalin A-chelating magnetic nanoparticles for selective enrichment of glycoproteins. Anal Chem 87:6849–6853

    Article  CAS  Google Scholar 

  12. McDonald CA, Yang JY, Marathe V, Yen TY, Macher BA (2009) Combining results from lectin affinity chromatography and Glycocapture approaches substantially improves the coverage of the glycoproteome. Mol Cell Proteomics 8:287–301

    Article  CAS  Google Scholar 

  13. Tian YA, Zhou Y, Elliott S, Aebersold R, Zhang H (2007) Solid-phase extraction of N-linked glycopeptides. Nat Protoc 2:334–339

    Article  CAS  Google Scholar 

  14. Tan L, Chen KC, Huang C, Peng RF, Luo XY, Yang R, Cheng YF, Tang YW (2015) A fluorescent turn-on detection scheme for α-fetoprotein using quantum dots placed in a boronate-modified molecularly imprinted polymer with high affinity for glycoproteins. Microchim Acta 182:2615–2622

    Article  CAS  Google Scholar 

  15. Li Y, Shah P, De Marzo AM, Van Eyk JE, Lo QQ, Chan DW, Zhang H (2015) Identification of glycoproteins containing specific glycans using a lectin-chemical method. Anal Chem 87:4683–4687

    Article  CAS  Google Scholar 

  16. Hagglund P, Matthiesen R, Elortza F, Hojrup P, Roepstorff P, Jensen ON, Bunkenborg J (2007) An enzymatic deglycosylation scheme enabling identification of core fucosylated N-glycans and O-glycosylation site mapping of human plasma proteins. J Proteome Res 6:3021–3031

    Article  Google Scholar 

  17. Bi CF, Zhao YR, Shen LJ, Zhang K, He XW, Chen LX, Zhang YK (2015) Click synthesis of hydrophilic maltose-functionalized iron oxide magnetic nanoparticles based on dopamine anchors for highly selective enrichment of glycopeptides. ACS Appl Mater Interfaces 7:24670–24678

    Article  CAS  Google Scholar 

  18. Ma WF, Li LL, Zhang Y, An Q, You LJ, Li JM, Zhang YT, Xu S, Yu M, Guo J, Lu HJ, Wang CC (2012) Ligand-free strategy for ultrafast and highly selective enrichment of glycopeptides using Ag-coated magnetic nanoarchitectures. J Mater Chem 22:23981–23988

    Article  CAS  Google Scholar 

  19. Zou X, Jie J, Yang B (2016) A facile and cheap synthesis of zwitterion coatings of the CS@PGMA@IDA nanomaterial for highly specific enrichment of glycopeptides. Chem Commun 52:3251–3253

    Article  CAS  Google Scholar 

  20. Ma W, Xu L, Li Z, Sun Y, Bai Y, Liu H (2016) Post-synthetic modification of an amino-functionalized metal-organic framework for highly efficient enrichment of N-linked glycopeptides. Nanoscale 8:10908–10912

    Article  CAS  Google Scholar 

  21. Roll MF, Kampf JW, Laine RM (2011) Crystalline hybrid Polyphenylene macromolecules from Octaalkynylsilsesquioxanes, crystal structures, and a potential route to 3-D Graphenes. Macromolecules 44:3425–3435

    Article  CAS  Google Scholar 

  22. Lo MY, Zhen CG, Lauters M, Jabbour GE, Sellinger A (2007) Organic-inorganic hybrids based on pyrene functionalized octavinylsilsesquioxane cores for application in OLEDs. J Am Chem Soc 129:5808–5809

    Article  CAS  Google Scholar 

  23. Liu H, Kondo SI, Takeda N, Unno M (2008) Synthesis of octacarboxy spherosilicate. J Am Chem Soc 130:10074–10075

    Article  CAS  Google Scholar 

  24. Cai L, Chen J, Rondinone AJ, Wang S (2012) Injectable and biodegradable nanohybrid polymers with simultaneously enhanced stiffness and toughness for bone repair. Adv Funct Mater 22:3181–3190

    Article  CAS  Google Scholar 

  25. Tanaka K, Inafuku K, Nakab K, Chujo Y (2008) Enhancement of entrapping ability of dendrimers by a cubic silsesquioxane core. Org Biomol Chem 6:3899–3901

    Article  CAS  Google Scholar 

  26. Pawlak T, Kowalewska A, Zgardzinska B, Potrzebowski MJ (2015) Structure, dynamics, and host-guest interactions in POSS functionalized cross-linked Nanoporous hybrid organic-inorganic polymers. J Phys Chem C 119:26575–26587

    Article  CAS  Google Scholar 

  27. Tanaka K, Inafuku K, Adachi S, Chujo Y (2009) Tuning of properties of POSS-condensed water-soluble network polymers by modulating the cross-linking ratio between POSS. Macromolecules 42:3489–3492

    Article  CAS  Google Scholar 

  28. Sanil ES, Cho KH, Hong DY, Lee JS, Lee SK, Ryu SG, Lee HW, Chang JS, Hwang YK (2015) A polyhedral oligomeric silsesquioxane functionalized copper trimesate. Chem Commun 51:8418–8420

    Article  CAS  Google Scholar 

  29. Feher FJ, Wyndham KD (1998) Amine and ester-substituted silsesquioxanes: synthesis, characterization and use as a core for starburst dendrimers. Chem Commun 3:323–324

    Article  Google Scholar 

  30. Schwab MG, Fassbender B, Spiess HW, Thomas A, Feng XL, Mullen K (2009) Catalyst-free preparation of melamine-based microporous polymer networks through Schiff Base chemistry. J Am Chem Soc 131:7216–7217

    Article  CAS  Google Scholar 

  31. Wang WJ, Hai X, Mao QX, Chen ML, Wang JH (2015) Polyhedral oligomeric silsesquioxane functionalized carbon dots for cell imaging. ACS Appl Mater Interfaces 7:16609–16616

    Article  CAS  Google Scholar 

  32. de Groot J, Kosters HA, de Jongh HH (2007) Deglycosylation of ovalbumin prohibits formation of a heat-stable conformer. Biotechnol Bioeng 97:735–741

    Article  Google Scholar 

  33. Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, Stanworth D, Rademacher TW, Mizuochi T, Taniguchi T, Matsuta K, Takeuchi F, Nagano Y, Miyamoto T, Kobata A (1985) Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316:452–457

    Article  CAS  Google Scholar 

  34. Quast I, Lunemann JD (2014) Fc glycan-modulated immunoglobulin G effector functions. J Clin Immunol 34:S51–S55

    Article  Google Scholar 

  35. Moore SA, Anderson BF, Groom CR, Haridas M, Baker EN (1997) Three-dimensional structure of diferric bovine lactoferrin at 2.8 angstrom resolution. J Mol Biol 274:222–236

    Article  CAS  Google Scholar 

  36. Dorland L, Haverkamp J, Vliegenthart JFG, Spik G, Fournet B, Montreuil J (1979) Investigation by 360-MHz 'H-nuclear-magnetic-resonance spectroscopy and methylation analysis of the single glycan chain of chicken Ovotransferrin. J Biochem 100:569–574

    CAS  Google Scholar 

  37. Wang CQ, Eufemi M, Turano C, Giartosio A (1996) Influence of the carbohydrate moiety on the stability of glycoproteins. Biochemistry 35:7299–7307

    Article  CAS  Google Scholar 

  38. Ding X, Cai J, Guo X (2015) Effect of surfactant structure on reverse micellar extraction of ovalbumin. Process Biochem 50:272–278

    Article  CAS  Google Scholar 

  39. Zhang DD, Chen Q, Hu LL, Chen XW, Wang JH (2015) Preparation of a cobalt mono-substituted silicotungstic acid doped with aniline for the selective adsorption of ovalbumin. J Mater Chem B 3:4363–4369

    Article  CAS  Google Scholar 

  40. Han L, Shu Y, Wang XF, Chen XW, Wang JH (2013) Encapsulation of silica nano-spheres with polymerized ionic liquid for selective isolation of acidic proteins. Anal Bioanal Chem 405:8799–8806

    Article  CAS  Google Scholar 

  41. Zhang YT, Ma WF, Li D, Yu M, Guo J, Wang CC (2014) Benzoboroxole-functionalized magnetic Core/Shell microspheres for highly Specifi c enrichment of glycoproteins under physiological conditions. Small 7:1379–1386

    Article  Google Scholar 

  42. Peng YH, Fu DM, Zhang FF, Yang BC, Yu L, Liang XM (2016) A highly selective hydrophilic sorbent for enrichment of N-linked glycopeptides. J Chromatogr A 1460:197–201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate financial support from the Natural Science Foundation of China (21275027, 21235001 and 21475017), Fundamental Research Funds for the Central Universities (N150502001, N140505003, N141008001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuwei Chen or Jianhua Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 1.23 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhuang, Y., Shen, H. et al. A super hydrophilic silsesquioxane-based composite for highly selective adsorption of glycoproteins. Microchim Acta 184, 1037–1044 (2017). https://doi.org/10.1007/s00604-017-2100-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2100-z

Keywords

Navigation