Skip to main content

Advertisement

Log in

On the production of novel zirconia-reinforced bioactive glass porous structures for bone repair

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The objective of this study was to develop a replica method for producing zirconia-reinforced bioactive glass (ZRBG) porous structures for bone repair. Four different types of porous structures were produced: zirconia (G1), 58S BG-coated zirconia (G2), zirconia-reinforced BG (G3) and 58S BG-coated zirconia-reinforced BG (G4). A complete characterization of the specimens was performed via SEM-EDS, Archimedes method, 3D X-ray micro-tomography, micro-indentation, compressive strength tests and SBF immersion tests. G3 and G4 specimens presented a BG matrix (~ 33% glassy phase) with dispersed zirconia particles. The porosity of the specimens ranged from 86% up to 93%. BG58S-zirconia groups G3 and G4) exhibited lower YM (38.76 ± 11.20 GPa and 43.49 ± 2.16 GPa) than that of G1 monolithic zirconia specimens (94.39 ± 12.62 GPa), which were more compatible to that of the bone. No significant difference in compressive strength between BG58S-zirconia (G3: 0.41 ± 0.20 MPa; G4: 0.45 ± 0.11 MPa) and zirconia (G1: 0.32 ± 0.11 MPa) was detected observed (p > 0.05). In vitro SBF tests showed a potential bioactivity for ZRBG porous structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Perez RA, Mestres G (2016) Role of pore size and morphology in musculo-skeletal tissue regeneration. Mater Sci Eng C 61:922–939

    Article  CAS  Google Scholar 

  2. Shadjou NHM (2015) Bone tissue engineering using silica-based mesoporous nanobiomaterials: recent progress. Mater Sci Eng C 55:401–409

    Article  CAS  Google Scholar 

  3. do Vale Pereira R (2011) Arcabouço compósito biodegradável produzido via sinterização seletiva a laser com matriz de Policaprolactona e partículas dispersas de Biovidro 58S. Universidade Federal de Santa Catarina

  4. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431

    Article  CAS  Google Scholar 

  5. Hing K (2005) Bioceramic bone graft substitutes: influence of porosity and chemistry. Int J Appl Ceram Technol 2(3):184–199

    Article  CAS  Google Scholar 

  6. Loh Q, Choong C (2013) Three-dimensional scaffolds for tissue engi-neering applications: role of porosity and pore size. Tissue Eng B Rev 19(6):485–502

    Article  CAS  Google Scholar 

  7. Tiainen H, Lyngstadaas S, Ellingsen J, Haugen H (2010) Ultra-porous titanium oxide scaffold with high compressive strength. J Mater Sci Mater Med 21(10):2783–2792

    Article  CAS  Google Scholar 

  8. Hutmacher D (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543

    Article  CAS  Google Scholar 

  9. Mohamad YD, Bretcanu O, Boccaccini A (2008) Polymer-bioceramic composites for tissue engineering scaffolds. J Mater Sci 43:4433–4442. https://doi.org/10.1007/s10853-008-2552-y

    Article  Google Scholar 

  10. Saiz E, Zimmermann EA, Lee JS et al (2013) Perspectives on the role of nanotechnology in bone tissue engineering. Dent Mater 29:103–115

    Article  CAS  Google Scholar 

  11. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491

    Article  CAS  Google Scholar 

  12. Jones JR, Hench LL (2003) Regeneration of trabecular bone using porous ceramics. Curr Opin Solid State Mater Sci 7:301–307

    Article  CAS  Google Scholar 

  13. Sebdani MM, Fathi MH (2011) Fabrication and characterization of hydroxyapatite-forsterite-bioactive glass composite nanopowder for biomedical applications. Int J Appl Ceram Technol 8:553–559

    Article  CAS  Google Scholar 

  14. Bellucci D, Cannillo V, Sola A (2012) A new highly bioactive composite for bone tissue repair. Int J Appl Ceram Technol 9:455–467

    Article  CAS  Google Scholar 

  15. Oréfice RL, Pereira MDM, Mansur HS (2006) Biomateriais: fundamentos e aplicações. Cultura Médica, Rio de Janeiro

    Google Scholar 

  16. Hench LL (2015) Opening paper 2015-some comments on bioglass: four eras of discovery and development. Biomed Glas 1:1–11

    Google Scholar 

  17. Jones JR (2015) Review of bioactive glass: from hench to hybrids. Acta Biomater 23:S53–S82

    Article  Google Scholar 

  18. Ma J, Chen CZ, Wang DG et al (2010) Influence of the sintering temperature on the structural feature and bioactivity of sol-gel derived SiO2-CaO-P2O5 bioglass. Ceram Int 36:1911–1916

    Article  CAS  Google Scholar 

  19. Hench LL, Splinter RJ, Allen WC, Greenlee TK (1972) Bonding mechanism at interface of ceramic prosthetic materials. Biomed Mater 5(6):117–141

    Article  Google Scholar 

  20. Rahaman MN, Liu X, Bal BS et al (2012) Bioactive glass in bone tissue engineering. Ceram Trans 237:73–82

    Article  CAS  Google Scholar 

  21. Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774

    Article  CAS  Google Scholar 

  22. Sepulveda P, Jones JR, Hench LL (2001) Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses. J Biomed Mater Res 58:734–740

    Article  CAS  Google Scholar 

  23. Zhong J, Greenspan DC (2000) Processing and properties of sol–gel bioactive glasses. J Biomed Mater Res 53(6):696–701

    Article  Google Scholar 

  24. Sepulveda P, Jones JR, Hench LL (2002) In vitro dissolution of melt-derived 45S5 and sol–gel derived 58S bioactive glasses. J Biomed Mater Res 61:301–311

    Article  CAS  Google Scholar 

  25. Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C 31(7):1245–1256

    Article  CAS  Google Scholar 

  26. Boccardi E, Philippart A, Melli V et al (2016) Bioactivity and mechanical stability of 45S5 bioactive glass scaffolds based on natural marine sponges. Ann Biomed Eng 44:1881–1893

    Article  CAS  Google Scholar 

  27. Hum J, Boccaccini AR (2018) Collagen as coating material for 45S5 bioactive glass-based scaffolds for bone tissue engineering. Int J Mol Sci 19(6):1807

    Article  Google Scholar 

  28. Lacefield WR, Hench LL (1985) The bonding of bioglass® to a cobalt-chromium surgical implant alloy. Biomaterials 7(2):104–108

    Article  Google Scholar 

  29. Gomez-Vega JM, Saiz E, Tomsia AP et al (2000) Novel bioactive functionally graded coatings on Ti6Al4V. Adv Mater 12:894–898

    Article  CAS  Google Scholar 

  30. Schubert H (1986) Anisotropic thermal expansion coefficients of Y2O3-stabilized tetragonal zirconia. J Am Ceram Soc 69:270–271

    Article  CAS  Google Scholar 

  31. Zhang Y, Legeros R, Kim J (2014). B2-Bioactive graded zirconia-based structures. US 8, 703,294

  32. Chevalier J (2006) What future for zirconia as a biomaterial? Biomaterials 27:535–543

    Article  CAS  Google Scholar 

  33. Denry I, Kelly JR (2008) State of the art of zirconia for dental applications. Dent Mater 24:299–307

    Article  CAS  Google Scholar 

  34. Özkurt Z, Kazazoğlu E (2011) Zirconia dental implants: a literature review. J Oral Implantol 37:367–376

    Article  Google Scholar 

  35. Gouveia PF, Schabbach LM, Souza JCM et al (2017) New perspectives for recycling dental zirconia waste resulting from CAD/CAM manufacturing process. J Clean Prod 152:454–463

    Article  CAS  Google Scholar 

  36. Kelly JR, Denry I (2008) Stabilized zirconia as a structural ceramic: an overview. Dent Mater 24:289–298

    Article  CAS  Google Scholar 

  37. Mesquita-Guimarães J, Leite MA, Souza JCM et al (2017) Processing and strengthening of 58S bioactive glass-infiltrated titania scaffolds. J Biomed Mater Res-Part A 105:590–600

    Article  Google Scholar 

  38. Galarraga-Vinueza ME, Passoni B, Benfatti CAM et al (2017) Inhibition of multi-species oral biofilm by bromide doped bioactive glass. J Biomed Mater Res-Part A 105:1994–2003

    Article  CAS  Google Scholar 

  39. Pereira RDV, Salmoria GV, de Moura MOC et al (2014) Scaffolds of PDLLA/bioglass 58S produced via selective laser sintering. Mater Res 17:33–38

    Article  Google Scholar 

  40. Bettelheim F, Brown W, Campbell M et al (2009) Introduction to general organic and biochemistry, 10th edn. Cengage Learning, Boston

    Google Scholar 

  41. Yin Y, Ma B, Hu C et al (2019) Preparation and properties of porous SiC–Al2O3 ceramics using coal ash. Int J Appl Ceram Technol 16:23–31

    Article  CAS  Google Scholar 

  42. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  43. Serra J (1986) Introduction to mathematical morphology. Comput Vision, Graph Image Process 35(3):283–305

    Article  Google Scholar 

  44. Gonzalez R, Woods R (2002) Digital image processing. Prentice Hall, Upper Saddle River

    Google Scholar 

  45. Chassery JM, Montanvert A (1991) Géométrie discrete en analyse d’images, Editions H

  46. Diógenes AN, Dos Santos LOE, Fernandes CP et al (2009) Porous media microstrucutre reconstruction using pixel-based and object-based simulated annealing–comparison with other reconstruction methods. Rev Eng Térmica 8:35

    Google Scholar 

  47. Stochero NP, de Moraes EG, Moreira AC et al (2020) Ceramic shell foams produced by direct foaming and gelcasting of proteins: permeability and microstructural characterization by X-ray microtomography. J Eur Ceram Soc 40(12):4224–4231

    Article  CAS  Google Scholar 

  48. Jain V, Johnson R, Ganesh I et al (2003) Effect of rubber encapsulation on the comparative mechanical behaviour of ceramic honeycomb and foam. Mater Sci Eng A 347:109–122

    Article  Google Scholar 

  49. Mesquita-Guimarães J, Leite MA, Souza JCM et al (2017) Processing and strengthening of 58S bioactive glass-infiltrated titania scaffolds. J Biomed Mater Res Part A 105:590–600

    Article  Google Scholar 

  50. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915

    Article  CAS  Google Scholar 

  51. Chatzistavrou X, Kantiranis N, Kontonasaki E et al (2011) Thermal analysis and in vitro bioactivity of bioactive glass-alumina composites. Mater Charact 62:118–129

    Article  CAS  Google Scholar 

  52. Boccaccini AR, Chen Q, Lefebvre L et al (2007) Sintering, crystallisation and biodegradation behaviour of bioglass s-derived glass–ceramics. Faraday Discuss 136:27–44

    Article  CAS  Google Scholar 

  53. Cannillo V, Pierli F, Sampath S, Siligardi C (2009) Thermal and physical characterisation of apatite/wollastonite bioactive glass-ceramics. J Eur Ceram Soc 29:611–619

    Article  CAS  Google Scholar 

  54. Blaeß C, Müller R, Poologasundarampillai G, Brauer DS (2019) Sintering and concomitant crystallization of bioactive glasses. Int J Appl Glas Sci 10:449–462

    Article  Google Scholar 

  55. Habibe AF, Maeda LD, Souza RC et al (2009) Effect of bioglass additions on the sintering of Y-TZP bioceramics. Mater Sci Eng C 29(6):1959–1964

    Article  CAS  Google Scholar 

  56. Zhu Y, Zhu R, Ma J et al (2015) In vitro cell proliferation evaluation of porous nano-zirconia scaffolds with different porosity for bone tissue engineering. Biomed Mater 10:055009

    Article  Google Scholar 

  57. Chen QZ, Thompson ID, Boccaccini AR (2006) 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials 27:2414–2425

    Article  CAS  Google Scholar 

  58. Chen QZ, Efthymiou A, Salih V, Boccaccini AR (2008) Bioglass®-derived glass-ceramic scaffolds: study of cell proliferation and scaffold degradation in vitro. J Biomed Mater Res-Part A 84(4):1049–1060

    Article  CAS  Google Scholar 

  59. Xia W, Chang J (2010) Bioactive glass scaffold with similar structure and mechanical properties of cancellous bone. J Biomed Mater Res-Part B Appl Biomater 95(2):449–455

    Article  Google Scholar 

  60. Srivastava AK, Pyare R, Sing SP (2012) Elastic properties of substituted 45S5 bioactive glasses and glass-ceramic. Int J Sci Eng Res 3(2):1–13

    Google Scholar 

  61. Chen QZ, Xu JL, Yu LG et al (2012) Spark plasma sintering of sol-gel derived 45S5 Bioglass®-ceramics: mechanical properties and biocompatibility evaluation. Mater Sci Eng C 32(3):494–502

    Article  CAS  Google Scholar 

  62. Thompson ID, Hcnch LL (1998) Mechanical properties of bioactive glasses, glass-ceramics and composites. Proc Inst Mech Eng Part H J Eng Med 212(2):127–136

    Article  CAS  Google Scholar 

  63. Bohner M, Lemaitre J (2009) Can bioactivity be tested in vitro with SBF solution? Biomaterials 30:2175–2179

    Article  CAS  Google Scholar 

  64. Maçon ALB, Kim TB, Valliant EM et al (2015) A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. J Mater Sci Mater Med 26:1–10

    Article  Google Scholar 

Download references

Funding

This study was supported by FCT-Portugal (UID/EEA/04436/2013, NORTE-01-0145-FEDER-000018–HAMaBICo, POCI-01-0145-FEDER-031035_LaserMULTICER) and CNPq-Brazil (CNPq/UNIVERSAL/421229/2018-7; CNPq/INOVSAUDE2018/441457/2018-5). The authors acknowledge the collaboration of Laboratory of Porous Media and Thermophysical Properties (LMPT/UFSC-http://emc.ufsc.br/portal/laboratorios/lmpt/) for the collaboration in performing the X-Ray tomographic analyses.

figure a

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Henriques.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouveia, P.F., Mesquita-Guimarães, J., Galarraga-Vinueza, M.E. et al. On the production of novel zirconia-reinforced bioactive glass porous structures for bone repair. J Mater Sci 56, 11682–11697 (2021). https://doi.org/10.1007/s10853-021-06005-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06005-x

Navigation