Skip to main content
Log in

Identification of SNP for rice blast resistance gene Pike and development of the gene-specific markers

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Rice blast disease caused by Magnaporthe oryzae is an important limiting factor to rice production in the world. Introgression of blast resistance genes into improved germplasm by marker-assisted selection has been considered as an effective and environmentally beneficial means to control this disease. Pike, a broad-spectrum blast resistance gene, was cloned by map-based strategy recently in our laboratory. Two adjacent CC-NBS-LRR genes (designated as Pike-1 and Pike-2) were required for Pike-mediated resistance. In the current study, sequence alignment of the SNP G1328C and the SNP-surrounding region let us find that the Pik DNA variants of the studied rice lines appear to be divided into G-, C-, T- and G’-types. Based on the four genotypes, a Pike-specific marker system consisting of three PCR-based markers CP-G1328C, CP-G1328T and CP-G1328G’ was developed and used to effectively differentiate G-type allele from each of the others. Using this marker system, we investigated distribution of the Pik DNA variants in a set of 326 rice varieties or breeding lines and found that there were 2, 130, 135 and 59 rice lines identified to carry G-, C-, T- and G’-type alleles, respectively. In addition, with sequence data of the SNP G1328C-containing genomic region derived from 56 rice lines, we constructed a phylogenetic tree with three major clades which just corresponded to the types of the Pik DNA variants described above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8(11):554–560

    Article  CAS  PubMed  Google Scholar 

  • Ashikawa I (2012) Regions outside the leucine-rich repeat domain determine the distinct resistance specificities of the rice blast resistance genes Pik and Pik-m. Mol Breed 30(3):1531–1535

    Article  CAS  Google Scholar 

  • Ashikawa I, Wu J, Matsumoto T, Ishikawa R (2010) Haplotype diversity and molecular evolution of the rice Pikm locus for blast resistance. J Gen Plant Pathol 76(1):37–42

    Article  Google Scholar 

  • Ashkani S, Rafii MY, Shabanimofrad M, Miah G, Sahebi M, Azizi P, Tanweer FA, Akhtar MS, Nasehi A (2015) Molecular breeding strategy and challenges towards improvement of blast disease resistance in rice crop. Front Plant Sci 6:886

    Article  PubMed  PubMed Central  Google Scholar 

  • Bourras S, McNally KE, Müller MC, Wicker T, Keller B (2016) Avirulence genes in cereal powdery Mildews: the gene-for-gene hypothesis 2.0. Front Plant Sci 7:241

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Ding X, Cai M, Zhao J, Lin Y, Li X, Xu C, Wang S (2007) The expression pattern of a rice disease resistance gene xa3/xa26 is differentially regulated by the genetic backgrounds and developmental stages that influence its function. Genetics 177(1):523–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L (2006) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46(5):794–804

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Peng P, Tian J, He Y, Zhang L, Liu Z, Yin D, Zhang Z (2015) Pike, a rice blast resistance allele consisting of two adjacent NBS–LRR genes, was identified as a novel allele at the Pik locus. Mol Breed 35(5):1–15

    Google Scholar 

  • Costanzo S, Jia Y (2010) Sequence variation at the rice blast resistance gene Pi-km locus: implications for the development of allele specific markers. Plant Sci 178(6):523–530

    Article  CAS  Google Scholar 

  • Dangl JL, McDowell JM (2006) Two modes of pathogen recognition by plants. Proc Natl Acad Sci USA 103(23):8575–8576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dellaporta S, Wood J, Hicks J (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1(4):19–21

    Article  CAS  Google Scholar 

  • Deng Y, Zhu X, Shen Y, He Z (2006) Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety. Theor Appl Genet 113(4):705–713

    Article  CAS  PubMed  Google Scholar 

  • Fjellstrom R, Conaway-Bormans CA, McClung AM, Marchetti MA, Shank AR, Park WD (2004) Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea pathotypes. Crop Sci 44(5):1790–1798

    Article  CAS  Google Scholar 

  • Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325(5943):998–1001

    Article  CAS  PubMed  Google Scholar 

  • Hörger AC, Ilyas M, Stephan W, Tellier A, van der Hoorn RAL, Rose LE (2012) Balancing selection at the tomato RCR3 guardee gene family maintains variation in strength of pathogen defense. PLoS Genet 8(7):e1002813

    Article  PubMed  PubMed Central  Google Scholar 

  • IRRI (2002) Standard evaluation system for rice (SES). International Rice Research Institute Manila, Los Baños

    Google Scholar 

  • Iyer-Pascuzzi A, McCouch S (2007) Functional markers for xa5-mediated resistance in rice (Oryza sativa, L.). Mol Breed 19(4):291–296

    Article  CAS  Google Scholar 

  • Jiang J, Yang D, Ali J, Mou T (2015) Molecular marker-assisted pyramiding of broad-spectrum disease resistance genes, Pi2 and Xa23, into GZ63-4S, an elite thermo-sensitive genic male-sterile line in rice. Mol Breed 35(3):1–12

    Article  Google Scholar 

  • Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R (2012) Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J 72(6):894–907

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Pathania S, Katoch P, Sharma TR, Plaha P, Rathour R (2010) Genetic and physical mapping of blast resistance gene Pi-42(t) on the short arm of rice chromosome 12. Mol Breed 25(2):217–228

    Article  CAS  Google Scholar 

  • Kumari A, Das A, Devanna BN, Thakur S, Singh PK, Singh NK, Sharma TR (2013) Mining of rice blast resistance gene Pi54 shows effect of single nucleotide polymorphisms on phenotypic expression of the alleles. Eur J Plant Pathol 137(1):1–11

    Article  Google Scholar 

  • Lalitha S (2000) Primer Premier 5. Biotech Softw Int Rep 1(6):270–272

    Article  Google Scholar 

  • Liu X, Lin F, Wang L, Pan Q (2007) The in silico map-based cloning of Pi36, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics 176(4):2541–2549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Liu J, Ning Y, Ding B, Wang X, Wang Z, Wang GL (2013) Recent progress in understanding PAMP- and effector-triggered immunity against the rice blast fungus Magnaporthe oryzae. Mol Plant 6(3):605–620

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Lei C, Xu X, Hao K, Wang J, Cheng Z, Ma X, Ma J, Zhou K, Zhang X, Guo X, Wu F, Lin Q, Wang C, Zhai H, Wang H, Wan J (2015) Pi64, encoding a novel CC-NBS-LRR protein, confers resistance to leaf and neck blast in rice. Mol Plant Microb Interact 28(5):558–568

    Article  CAS  Google Scholar 

  • Maqbool A, Saitoh H, Franceschetti M, Stevenson CE, Uemura A, Kanzaki H, Kamoun S, Terauchi R, Banfield MJ (2015) Structural basis of pathogen recognition by an integrated HMA domain in a plant NLR immune receptor. eLife 4:e08709

    Article  PubMed Central  Google Scholar 

  • Ni D, Song F, Ni J, Zhang A, Wang C, Zhao K, Yang Y, Wei P, Yang J, Li L (2015) Marker-assisted selection of two-line hybrid rice for disease resistance to rice blast and bacterial blight. Field Crops Res 184:1–8

    Article  Google Scholar 

  • Puri KD, Shrestha SM, Khhatri Chhetri GB, Joshi KD (2008) Leaf and neck blast resistance reaction in tropical rice lines under green house condition. Euphytica 165(3):523–532

    Article  Google Scholar 

  • Ramkumar G, Prahalada GD, Hechanova S, Vinarao R, Jena K (2015) Development and validation of SNP-based functional codominant markers for two major disease resistance genes in rice (O. sativa L.). Mol Breed 35(6):1–11

    Article  CAS  Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40(8):1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Singh VK, Singh A, Singh SP, Ellur RK, Choudhary V, Sarkel S, Singh D, Krishnan SG, Nagarajan M, Vinod KK, Singh UD, Rathore R, Prashanthi SK, Agrawal PK, Bhatt JC, Mohapatra T, Prabhu KV, Singh AK (2012) Incorporation of blast resistance into “PRR78”, an elite Basmati rice restorer line, through marker assisted backcross breeding. Field Crops Res 128:8–16

    Article  Google Scholar 

  • Skamnioti P, Gurr SJ (2009) Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol 27(3):141–150

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanweer FA, Rafii MY, Sijam K, Rahim HA, Ahmed F, Latif MA (2015) Current advance methods for the identification of blast resistance genes in rice. CR Biol 338(5):321–334

    Article  Google Scholar 

  • Tsunematsu H, Yanoria MJT, Ebron LA, Hayashi N, Ando I, Kato H, Imbe T, Khush GS (2000) Development of monogenic lines of rice for blast resistance. Breed Sci 50(3):229–234

    Article  Google Scholar 

  • Wang L, Yu Y, Wu Y, Wang J, Xiao F, Gong H, Zhang Q (2006) Breeding and application of an quality early indica resistant cultivar Xiangzao143. China Rice 5:24–25 (in Chinese)

    Google Scholar 

  • Zhai C, Lin F, Dong Z, He X, Yuan B, Zeng X, Wang L, Pan Q (2011) The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol 189(1):321–334

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang GL (2006) The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microb Interact 19(11):1216–1228

    Article  CAS  Google Scholar 

  • Zhou L, Chen Z, Lang X, Du B, Liu K, Yang G, Hu G, Li S, He G, You A (2013) Development and validation of a PCR-based functional marker system for the brown planthopper resistance gene Bph14 in rice. Breed Sci 63(3):347–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Chen S, Yang J, Zhou S, Zeng L, Han J, Su J, Wang L, Pan Q (2012) The identification of Pi50(t), a new member of the rice blast resistance Pi2/Pi9 multigene family. Theor Appl Genet 124(7):1295–1304

    Article  CAS  PubMed  Google Scholar 

  • Zhuang J-Y, Ma W-B, Wu J-L, Chai R-Y, Lu J, Fan Y-Y, Jin M-Z, Leung H, Zheng K-L (2002) Mapping of leaf and neck blast resistance genes with resistance gene analog. RAPD and RFLP in rice. Euphytica 128(3):363–370

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Cailin Lei of the Chinese Academy of Agricultural Sciences for providing rice blast R gene monogenic lines. This work was financed by The Special Transgenic Program of the Ministry of Agriculture, China (Nos. 2014ZX0800902B-002 and 2016ZX08001004-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihong Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 30 kb)

Supplementary material 2 (DOC 51 kb)

Fig. S1

Design strategy of PCR primers for the Pike-specific markers developed in the current study. Locations and orientations of the primers were indicated by black arrows. The SNP G1328C was indicated by boldface letter (TIFF 14358 kb)

Fig. S2

Unrooted Neighbor-Joining phylogenetic tree based on DNA sequence data of the SNP G1328C-containing genomic region of 56 rice cultivars and breeding lines. The numbers at the branch nodes represent the percentage of 1000 bootstrap replications. The weighted sequence divergence was represented by the scale bar. The allele type of each cultivar was indicated in the figure, and the G, C, T and G’ in the brackets were corresponding to G-, C-, T- and G’-type, respectively (TIFF 20615 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Meng, F., Quan, S. et al. Identification of SNP for rice blast resistance gene Pike and development of the gene-specific markers. Euphytica 213, 61 (2017). https://doi.org/10.1007/s10681-017-1841-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-1841-4

Keywords

Navigation