Skip to main content
Log in

A multifunctional fluorescent sensor for Ag+ and Hg2+ detection in seawater

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In order to detect Ag+ and Hg2+ in seawater, we explored a multifunctional fluorescence sensor. A multifunctional Ag+ and Hg2+ sensor was designed by using gold nanoparticles (AuNPs) as quenching agent, PicoGreen dye as fluorescent probe of base pairing double-stranded deoxyribonucleic acid (DNA), and combining the characteristics of Ag+ making C base mismatch and Hg2+ making T base mismatch. Meanwhile, the DNA logic gate was constructed by establishing logic circuit, truth table, and logic formula. The relevant performances of the sensor were investigated. The results revealed that the sensor can detect Ag+ in the range of 100 to 700 nM with R2 = 0.98129, and its detection limit is 16.88 nM (3σ/slope). The detection range of Hg2+is 100–900 nM with R2 = 0.99725, and the detection limit is 5.59 nM (3σ/slope). An AND-AND-NOR-AND molecular logic gate has been successfully designed. With the characteristics of high sensitivity, multifunction, and low cost, the recommended detection method has the potential to be applied to the detection of Ag+ and Hg2+ in seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data used to support the finding of the study are included within the article.

References

  • Chen, H. G., Ren, W., Jia, J., Feng, J., Gao, Z. F., Li, N. B., & Luo, H. Q. (2016). Fluorometric detection of mutant DNA oligonucleotide based on toehold strand displacement-driving target recycling strategy and exonuclease III-assisted suppression. Biosensors & Bioelectronics, 77, 40–45. https://doi.org/10.1016/j.bios.2015.09.027

    Article  CAS  Google Scholar 

  • Ghalebi, S. M., Zare-Shahabadi, V., & Parham, H. (2019). A carbon paste electrode modified with poly(methylene disulfide) nanoparticles for anodic stripping voltammetric determination of silver(I). Microchimica Acta, 186(2). https://doi.org/10.1007/s00604-018-3156-0

  • Hai, X. M., Li, N., Wang, K., Zhang, Z. Q., Zhang, J., & Dang, F. Q. (2018). A fluorescence aptasensor based on two-dimensional sheet metal-organic frameworks for monitoring adenosine triphosphate. Analytica Chimica Acta, 998, 60–66. https://doi.org/10.1016/j.aca.2017.10.028

    Article  CAS  Google Scholar 

  • He, S. N., Qu, L., Tan, Y., Liu, F., Wang, Y., Zhang, W., … Jiang, Y. Y. (2017). A fluorescent aptasensor with product-triggered amplification by exonuclease III digestion for highly sensitive ATP detection. Analytical Methods, 9(33), 4837–4842. https://doi.org/10.1039/c7ay01473b

  • Jiang, Q., Wang, Z., Li, M., Song, J., Yang, Y., Xu, X., … Wang, S. (2020). A nopinone based multi-functional probe for colorimetric detection of Cu(2+) and ratiometric detection of Ag(). Photochem Photobiol Sci, 19(1), 49–55. https://doi.org/10.1039/c9pp00297a

  • Jin, J. C., Wang, B. B., Xu, Z. Q., He, X. H., Zou, H. F., Yang, Q. Q., … Liu, Y. (2018). A novel method for the detection of silver ions with carbon dots: Excellent selectivity, fast response, low detection limit and good applicability. Sensors And Actuators B-Chemical, 267, 627–635. https://doi.org/10.1016/j.snb.2018.04.036

  • Kang, B. H., Gao, Z. F., Li, N., Shi, Y., Li, N. B., & Luo, H. Q. (2016). Thiazole orange as a fluorescent probe: Label-free and selective detection of silver ions based on the structural change of i-motif DNA at neutral pH. Talanta, 156, 141–146. https://doi.org/10.1016/j.talanta.2016.05.006

    Article  CAS  Google Scholar 

  • Kong, L. L., Wang, C. C., Yang, W. J., Zhou, L., & Wei, S. H. (2022). The ultrathin palladium nanosheets for sensitive and visual Hg2+ detection in the food chain. Journal Of Hazardous Materials, 427. https://doi.org/10.1016/j.jhazmat.2021.128135

  • Li, J., Huang, Y.-Q., Qin, W.-S., Liu, X.-F., & Huang, W. (2011). An optical-logic system based on cationic conjugated polymer/DNA/intercalating dyes assembly for label-free detection of conformational conversion of DNA i-motif structure. Polymer Chemistry, 2(6), 1341. https://doi.org/10.1039/c0py00375a

    Article  CAS  Google Scholar 

  • Li, Q., Li, S., Chen, X., & Bian, L. (2017). A G-quadruplex based fluorescent oligonucleotide turn-on probe towards iodides detection in real samples. Food Chemistry, 230, 432–440. https://doi.org/10.1016/j.foodchem.2017.03.062

    Article  CAS  Google Scholar 

  • Li, H., Chen, M., Luo, R., Peng, W., Gong, X., & Chang, J. (2021). An amplified fluorescent biosensor for Ag(+) detection through the hybridization chain reactions. Colloids and Surfaces. B, Biointerfaces, 202, 111686. https://doi.org/10.1016/j.colsurfb.2021.111686

    Article  CAS  Google Scholar 

  • Lu, C.-H., Li, J., Lin, M.-H., Wang, Y.-W., Yang, H.-H., Chen, X., & Chen, G.-N. (2010). Amplified aptamer-based assay through catalytic recycling of the analyte. Angewandte Chemie-International Edition, 49(45), 8454–8457. https://doi.org/10.1002/anie.201002822

    Article  CAS  Google Scholar 

  • Luo, J., Shen, X., Li, B., Li, X., & Zhou, X. (2018). Signal amplification by strand displacement in a carbon dot based fluorometric assay for ATP. Mikrochimica Acta, 185(8), 392. https://doi.org/10.1007/s00604-018-2931-2

    Article  CAS  Google Scholar 

  • Lv, Z. Z., Liu, J. C., Zhou, Y., Guan, Z., Yang, S. M., Li, C., & Chen, A. L. (2013). Highly sensitive fluorescent detection of small molecules, ions, and proteins using a universal label-free aptasensor. Chemical Communications, 49(48), 5465–5467. https://doi.org/10.1039/c3cc42801j

    Article  CAS  Google Scholar 

  • Lv, H., Li, S., Liu, Y., Wang, G., Li, X., Lu, Y., & Wang, J. (2015). A reversible fluorescent INHIBIT logic gate for determination of silver and iodide based on the use of graphene oxide and a silver–selective probe DNA. Microchimica Acta, 182(15–16), 2513–2520. https://doi.org/10.1007/s00604-015-1620-7

    Article  CAS  Google Scholar 

  • Ma, C. M., Ma, Y., Sun, Y. F., Lu, Y., Tian, E. L., Lan, J. F., … Zhang, H. X. (2019). Colorimetric determination of Hg2+ in environmental water based on the Hg2+-stimulated peroxidase mimetic activity of MOS2-Au composites. Journal Of Colloid And Interface Science, 537, 554–561. https://doi.org/10.1016/j.jcis.2018.11.069

  • Ning, Y., Wei, K., Cheng, L., Hu, J., & Xiang, Q. (2017). Fluorometric aptamer based determination of adenosine triphosphate based on deoxyribonuclease I-aided target recycling and signal amplification using graphene oxide as a quencher. Microchimica Acta, 184(6), 1847–1854. https://doi.org/10.1007/s00604-017-2194-3

    Article  CAS  Google Scholar 

  • Pang, X. L., Bai, H. Y., Zhao, H. Q., Liu, Y. C., Qin, F. Y., Han, X., … Shi, W. D. (2021). Biothiol-functionalized cuprous oxide sensor for dual-mode sensitive Hg2+ detection. Acs Applied Materials & Interfaces, 13(39), 46980–46989. https://doi.org/10.1021/acsami.1c10260

  • Pu, W., Zhao, H., Huang, C., Wu, L., & Xua, D. (2012). Fluorescent detection of silver(I) and cysteine using SYBR Green I and a silver(I)-specific oligonucleotide. Microchimica Acta, 177(1–2), 137–144. https://doi.org/10.1007/s00604-012-0763-z

    Article  CAS  Google Scholar 

  • Qin, J., Zhang, L. M., & Yang, R. (2019). Powder carbonization to synthesize novel carbon dots derived from uric acid for the detection of Ag(I) and glutathione. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 207, 54–60. https://doi.org/10.1016/j.saa.2018.08.066

    Article  CAS  Google Scholar 

  • Qiu, B., Zhang, Y. S., Lin, Y. B., Lu, Y. J., Lin, Z. Y., Wong, K. Y., & Chen, G. N. (2013). A novel fluorescent biosensor for detection of target DNA fragment from the transgene cauliflower mosaic virus 35S promoter. Biosensors & Bioelectronics, 41, 168–171. https://doi.org/10.1016/j.bios.2012.08.017

    Article  CAS  Google Scholar 

  • Saberi, Z., Rezaei, B., & Khayamian, T. (2018). A fluorescent aptasensor for analysis of adenosine triphosphate based on aptamer-magnetic nanoparticles and its single-stranded complementary DNA labeled carbon dots. Luminescence, 33(4), 640–646. https://doi.org/10.1002/bio.3457

    Article  CAS  Google Scholar 

  • Shen, F., Mao, S., Mathivanan, J., Wu, Y., Chandrasekaran, A. R., Liu, H., … Sheng, J. (2020). Short DNA oligonucleotide as a Ag(+) binding detector. ACS Omega, 5(44), 28565–28570. https://doi.org/10.1021/acsomega.0c03372

  • Song, Q. W., Wang, R. H., Sun, F. F., Chen, H. K., Wang, Z. M. K., Na, N., & Ouyang, J. (2017). A nuclease-assisted label-free aptasensor for fluorescence turn-on detection of ATP based on the in situ formation of copper nanoparticles. Biosensors & Bioelectronics, 87, 760–763. https://doi.org/10.1016/j.bios.2016.09.029

    Article  CAS  Google Scholar 

  • Subedi, S., Neupane, L. N., Yu, H., & Lee, K.-H. (2021). A new ratiometric fluorescent chemodosimeter for sensing of Hg2+ in water using irreversible reaction of arylboronic acid with Hg2+. Sensors and Actuators b: Chemical, 338, 129814. https://doi.org/10.1016/j.snb.2021.129814

    Article  CAS  Google Scholar 

  • Wang, X. P., Yin, B. C., Wang, P., & Ye, B. C. (2013). Highly sensitive detection of microRNAs based on isothermal exponential amplification-assisted generation of catalytic G-quadruplex DNAzyme. Biosensors & Bioelectronics, 42, 131–135. https://doi.org/10.1016/j.bios.2012.10.097

    Article  CAS  Google Scholar 

  • Wang, Y.-M., Liu, J.-W., Duan, L.-Y., Liu, S.-J., & Jiang, J.-H. (2017). Aptamer-based fluorometric determination of ATP by using target-cycling strand displacement amplification and copper nanoclusters. Microchimica Acta, 184(10), 4183–4188. https://doi.org/10.1007/s00604-017-2337-6

    Article  CAS  Google Scholar 

  • Wang, F. Y., Lu, Y. X., Chen, Y., Sun, J. W., & Liu, Y. Y. (2018). Colorimetric nanosensor based on the aggregation of AuNP triggered by carbon quantum dots for detection of Ag+ ions. Acs Sustainable Chemistry & Engineering, 6(3), 3706–3713. https://doi.org/10.1021/acssuschemeng.7b04067

    Article  CAS  Google Scholar 

  • Wang, K., Liao, J., Yang, X., Zhao, M., Chen, M., Yao, W., … Lan, X. (2015). A label-free aptasensor for highly sensitive detection of ATP and thrombin based on metal-enhanced PicoGreen fluorescence. Biosens Bioelectron, 63, 172–177. https://doi.org/10.1016/j.bios.2014.07.022

  • Wei, Y., Zhou, W., Li, X., Chai, Y., Yuan, R., & Xiang, Y. (2016). Coupling hybridization chain reaction with catalytic hairpin assembly enables non-enzymatic and sensitive fluorescent detection of microRNA cancer biomarkers. Biosensors & Bioelectronics, 77, 416–420. https://doi.org/10.1016/j.bios.2015.09.053

    Article  CAS  Google Scholar 

  • Wu, X., Li, Y., Yang, S., Tian, H., & Sun, B. (2020). A multiple-detection-point fluorescent probe for the rapid detection of mercury(II), hydrazine and hydrogen sulphide. Dyes and Pigments, 174, 108056. https://doi.org/10.1016/j.dyepig.2019.108056

    Article  CAS  Google Scholar 

  • Xiao, L., Sun, S., Pei, Z., Pei, Y., Pang, Y., & Xu, Y. (2015). A Ga(3+)self-assembled fluorescent probe for ATP imaging in vivo. Biosensors & Bioelectronics, 65, 166–170. https://doi.org/10.1016/j.bios.2014.10.038

    Article  CAS  Google Scholar 

  • Xie, Y. F., Cheng, Y. Y., Liu, M. L., Zou, H. Y., & Huang, C. Z. (2019). A single gold nanoprobe for colorimetric detection of silver(i) ions with dark-field microscopy. The Analyst, 144(6), 2011–2016. https://doi.org/10.1039/c8an02397b

    Article  CAS  Google Scholar 

  • Yang, C. H., Ding, Y. L., & Qian, J. (2018). Design of magnetic-fluorescent based nanosensor for highly sensitive determination and removal of HG(2+). Ceramics International, 44(8), 9746–9752. https://doi.org/10.1016/j.ceramint.2018.02.209

    Article  CAS  Google Scholar 

  • Yin, B. C., Zuo, P., Huo, H., Zhong, X. H., & Ye, B. C. (2010). DNAzyme self-assembled gold nanoparticles for determination of metal ions using fluorescence anisotropy assay. Analytical Biochemistry, 401(1), 47–52. https://doi.org/10.1016/j.ab.2010.02.014

    Article  CAS  Google Scholar 

  • Zeng, S. L., Huang, H. K., Huang, Y., Liu, X. Q., Qin, J., Zhao, S. L., … Liang, H. (2015). Label-free and amplified colorimetric assay of ribonuclease H activity and inhibition based on a novel enzyme-responsive DNAzyme cascade. Rsc Advances, 5(54), 43105–43109. https://doi.org/10.1039/c5ra05712d

  • Zhang, J., Han, J., Feng, S., Niu, C., Liu, C., Du, J., & Chen, Y. (2018). A label-free fluorescent DNA machine for sensitive cyclic amplification detection of ATP. Materials (Basel), 11(12). https://doi.org/10.3390/ma11122408

  • Zhang, J., Yang, C., Niu, C., Liu, C., Cai, X., Du, J., & Chen, Y. (2018). A label-free fluorescent AND logic gate aptasensor for sensitive ATP detection. Sensors (Basel), 18(10). https://doi.org/10.3390/s18103281

  • Zhang, J., Zhang, S., Niu, C., Liu, C., Du, J., & Chen, Y. (2018). A Label-Free Fluorescent DNA Calculator Based on Gold Nanoparticles for Sensitive Detection of ATP. Molecules, 23(10). https://doi.org/10.3390/molecules23102494

  • Zhang, J., Xu, H., Li, C., Wang, Y., Liu, D., & Zhao, S. (2021). A label-free logic gate hairpin aptasensor for sensitive detection of ATP based on graphene oxide and PicoGreen dye. Journal of Analytical Science and Technology, 12(1). https://doi.org/10.1186/s40543-021-00262-w

  • Zhou, F., Li, B., & Ma, J. (2015). A linear DNA probe as an alternative to a molecular beacon for improving the sensitivity of a homogenous fluorescence biosensing platform for DNA detection using target-primed rolling circle amplification. Rsc Advances, 5(6), 4019–4025. https://doi.org/10.1039/c4ra14467h

    Article  CAS  Google Scholar 

  • Zhu, B., Ren, G., Tang, M., Chai, F., Qu, F., Wang, C., & Su, Z. (2018). Fluorescent silicon nanoparticles for sensing Hg2+ and Ag+ as well visualization of latent fingerprints. Dyes and Pigments, 149, 686–695. https://doi.org/10.1016/j.dyepig.2017.11.041

    Article  CAS  Google Scholar 

  • Zhu, N. N., Xu, J. H., Ma, Q. J., Geng, Y., Li, L. K., Liu, S. Z., … Wang, G. G. (2022). Rhodamine-based fluorescent probe for highly selective determination of Hg2+. Acs Omega, 7(33), 29236–29245. https://doi.org/10.1021/acsomega.2c03336

Download references

Funding

This work was supported by the Natural Science Foundation of Hainan Province (Grant No. 222MS008), the Hainan Province Science and Technology Special Fund (Grant No. ZDYF2020038), the Education Department of Hainan Province (Project number: Hnky2021-18), the Famous teachers’ Studio of Hainan University (Grant No. hdms202022), and the Educational and Teaching Reform Research Project of Hainan University (Grant No. hdjy2106).

Author information

Authors and Affiliations

Authors

Contributions

Jingjing Zhang wrote the paper; Ziqi Deng performed the experiments; Hongbo Feng analyzed the data, and Bingqian Shao and Debing Liu conceived and designed the experiments.

Corresponding authors

Correspondence to Bingqian Shao or Debing Liu.

Ethics declarations

Ethics approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Deng, Z., Feng, H. et al. A multifunctional fluorescent sensor for Ag+ and Hg2+ detection in seawater. Environ Monit Assess 196, 22 (2024). https://doi.org/10.1007/s10661-023-12217-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12217-2

Keywords

Navigation