Skip to main content
Log in

A reversible fluorescent INHIBIT logic gate for determination of silver and iodide based on the use of graphene oxide and a silver–selective probe DNA

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a reversible fluorescent DNA–based INHIBIT logic gate for the determination of silver(I) and iodide ions using graphene oxide (GO) as a signal transducer and Ag(I) and iodide as mechanical activators. The basic performance, optimized conditions, sensitivity and selectivity of the logic gate were investigated and revealed that the method is highly sensitive and selective over potentially interfering ions. The limits of detection for Ag(I) and iodide are 10 nM and 50 nM, respectively. This logic gate was successfully applied to the determination of Ag(I) and iodide in (spiked) tap water and river water. It was also used for the determination of iodide in human urine samples with satisfactory results. Compared to other methods, this INHIBIT logic gate is simple in design and has small background interference.

A simple and reversible fluorescent DNA-based INHIBIT logic gate is designed by using graphene oxide as a signal transducer and silver ions and iodide as mechanical activators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A (2010) Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater 22(40):4467–4472

    Article  CAS  Google Scholar 

  2. Morales-Narváez E, Merkoçi A (2012) Graphene oxide as an optical biosensing platform. Adv Mater 24(25):3298–3308

    Article  Google Scholar 

  3. Li C, Wei L, Liu X, Lei L, Li G (2014) Ultrasensitive detection of lead ion based on target induced assembly of DNAzyme modified gold nanoparticle and graphene oxide. Anal Chim Acta 831:60–64

    Article  CAS  Google Scholar 

  4. Zhu X, Sun L, Chen Y, Ye Z, Shen Z, Li G (2013) Combination of cascade chemical reactions with graphene–DNA interaction to develop new strategy for biosensor fabrication. Biosens Bioelectron 47:32–37

    Article  CAS  Google Scholar 

  5. Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2(12):1015–1024

    Article  CAS  Google Scholar 

  6. Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29(5):205–212

    Article  Google Scholar 

  7. Tang L, Wang Y, Liu Y, Li J (2011) DNA-directed self-assembly of graphene oxide with applications to ultrasensitive oligonucleotide assay. ACS Nano 5(5):3817–3822

    Article  CAS  Google Scholar 

  8. Zhang C, Xu J, Zhang S, Ji X, He Z (2012) One-Pot synthesized DNA-CdTe quantum dots applied in a biosensor for the detection of sequence-specific oligonucleotides. Chem Eur J 18(27):8296–8300

    Article  CAS  Google Scholar 

  9. Lu C-H, Yang H-H, Zhu C-L, Chen X, Chen G-N (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48(26):4785–4787

    Article  CAS  Google Scholar 

  10. Wu M, Kempaiah R, Huang P-JJ, Maheshwari V, Liu J (2011) Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir 27(6):2731–2738

    Article  CAS  Google Scholar 

  11. Dong Z, Tian X, Chen Y, Hou J, Ma J (2013) Rhodamine group modified SBA-15 fluorescent sensor for highly selective detection of Hg2+ and its application as an INHIBIT logic device. RSC Adv 3(7):2227–2233

    Article  CAS  Google Scholar 

  12. Genot AJ, Bath J, Turberfield AJ (2011) Reversible logic circuits made of DNA. J Am Chem Soc 133(50):20080–20083

    Article  CAS  Google Scholar 

  13. Yang Y, Li W, Qi H, Zhang Q, Chen J, Wang Y, Wang B, Wang S, Yu C (2012) Detection of silver(I) ions based on the controlled self-assembly of a perylene fluorescence probe. Anal Biochem 430(1):48–52

    Article  CAS  Google Scholar 

  14. Wang Y, Geng F, Xu H, Qu P, Zhou X, Xu M (2012) A label-free oligonucleotide based thioflavin-T fluorescent switch for Ag + detection with low background emission. J Fluoresc 22(3):925–929

    Article  CAS  Google Scholar 

  15. Jiang Y, Tian J, Hu K, Zhao Y, Zhao S (2014) Sensitive aptamer-based fluorescence polarization assay for mercury(II) ions and cysteine using silver nanoparticles as a signal amplifier. Micochim Acta 181(11–12):1423–1430

    Article  CAS  Google Scholar 

  16. Zimmermann MB, Ito Y, Hess SY, Fujieda K, Molinari L (2005) High thyroid volume in children with excess dietary iodine intakes. Am J Clin Nutr 81(4):840–844

    CAS  Google Scholar 

  17. Haldimann M, Zimmerli B, Als C, Gerber H (1998) Direct determination of urinary iodine by inductively coupled plasma mass spectrometry using isotope dilution with iodine-129. Clin Chem 44(4):817–824

    CAS  Google Scholar 

  18. Ohashi T, Yamaki M, Pandav CS, Karmarkar MG, Irie M (2000) Simple microplate method for determination of urinary iodine. Clin Chem 46(4):529–536

    CAS  Google Scholar 

  19. Singh AK, Mehtab S (2008) Polymeric membrane sensors based on Cd(II) schiff base complexes for selective iodide determination in environmental and medicinal samples. Talanta 74(4):806–814

    Article  CAS  Google Scholar 

  20. Wen G, Lin C, Tang M, Liu G, Liang A, Jiang Z (2013) A highly sensitive aptamer method for Ag+ sensing using resonance Rayleigh scattering as the detection technique and a modified nanogold probe. RSC Adv 3(6):1941

    Article  CAS  Google Scholar 

  21. Below H, Kahlert H (2001) Determination of iodide in urine by ion-pair chromatography with electrochemical detection. Fresenius J Anal Chem 371(4):431–436

    Article  CAS  Google Scholar 

  22. Cataldi TRI, Rubino A, Ciriello R (2005) Sensitive quantification of iodide by ion-exchange chromatography with electrochemical detection at a modified platinum electrode. Anal Bioanal Chem 382(1):134–141

    Article  CAS  Google Scholar 

  23. Ratanawimarnwong N, Amomthammarong N, Choengchan N, Chaisuwan P, Amatatongchai M, Wilairat P, McKelvie ID, Nacapricha D (2005) Determination of iodide by detection of iodine using gas-diffusion flow injection and chemiluminescence. Talanta 65(3):756–761

    Article  CAS  Google Scholar 

  24. Wang F, Wu Y, Zhan S, He L, Zhi W, Zhou X, Zhou P (2013) A simple and sensitive colorimetric detection of silver ions based on cationic polymer-directed AuNPs aggregation. Aust J Chem 66(1):113–118

    Article  CAS  Google Scholar 

  25. Li D-H, Shen J-S, Chen N, Ruan Y-B, Jiang Y-B (2011) A ratiometric luminescent sensing of Ag+ ion via in situ formation of coordination polymers. Chem Commun 47(20):5900–5902

    Article  CAS  Google Scholar 

  26. Chang C-C, Lin S, Wei S-C, Chu-Su Y, Lin C-W (2012) Surface plasmon resonance detection of silver ions and cysteine using DNA intercalator-based amplification. Anal Bioanal Chem 402(9):2827–2835

    Article  CAS  Google Scholar 

  27. Zhang M, Ye B-C (2012) A reversible fluorescent DNA logic gate based on graphene oxide and its application for iodide sensing. Chem Commun 48(30):3647–3649

    Article  CAS  Google Scholar 

  28. Liu H, Wang Y, Shen A, Zhou X, Hu J (2012) Highly selective and sensitive method for cysteine detection based on fluorescence resonance energy transfer between FAM-tagged ssDNA and graphene oxide. Talanta 93:330–335

    Article  CAS  Google Scholar 

  29. Qing Z, He X, Wang K, Zou Z, Yang X, Huang J, Yan G (2012) Colorimetric multiplexed analysis of mercury and silver ions by using a unimolecular DNA probe and unmodified gold nanoparticles. Anal Methods 4(10):3320–3325

    Article  CAS  Google Scholar 

  30. Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130(18):5856–5857

    Article  CAS  Google Scholar 

  31. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  32. Jang H, Kim Y-K, Kwon H-M, Yeo W-S, Kim D-E, Min D-H (2010) A graphene-based platform for the assay of duplex-DNA unwinding by helicase. Angew Chem 122(33):5839–5843

    Article  Google Scholar 

  33. Wang Y, Li Z, Hu D, Lin C-T, Li J, Lin Y (2010) Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc 132(27):9274–9276

    Article  CAS  Google Scholar 

  34. He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fang H, Fan C (2010) A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater 20(3):453–459

    Article  CAS  Google Scholar 

  35. Guo H, Jiao T, Zhang Q, Guo W, Peng Q, Yan X (2015) Preparation of graphene oxide-based hydrogels as efficient Dye adsorbents for wastewater treatment. Nanoscale Res Lett 10(1):931–931

    Google Scholar 

  36. Mahmoudi E, Ng LY, Ba-Abbad MM, Mohammad AW (2015) Novel nanohybrid polysulfone membrane embedded with silver nanoparticles on graphene oxide nanoplates. Chem Eng J 277:1–10

    Article  CAS  Google Scholar 

  37. Yang Q, Li F, Huang Y, Xu H, Tang L, Wang L, Fan C (2013) Highly sensitive and selective detection of silver(I) in aqueous solution with silver(I)-specific DNA and Sybr green I. Analyst 138(7):2057–2060

    Article  Google Scholar 

  38. Zhang J, Xu X, Yang C, Yang F, Yang X (2011) Colorimetric iodide recognition and sensing by citrate-stabilized core/shell Cu@Au nanoparticles. Anal Chem 83(10):3911–3917

    Article  CAS  Google Scholar 

  39. Ma B, Zeng F, Zheng F, Wu S (2011) A fluorescence turn-on sensor for iodide based on a thymine-HgII-thymine complex. Chem Eur J 17(52):14844–14850

    Article  CAS  Google Scholar 

  40. Zheng H, Yan M, Fan X-X, Sun D, Yang S-Y, Yang L-J, Li J-D, Jiang Y-B (2012) A heptamethine cyanine-based colorimetric and ratiometric fluorescent chemosensor for the selective detection of Ag + in an aqueous medium. Chem Commun 48(16):2243–2245

    Article  CAS  Google Scholar 

  41. Du F, Zeng F, Ming Y, Wu S (2013) Carbon dots-based fluorescent probes for sensitive and selective detection of iodide. Micochim Acta 180(5–6):453–460

    Article  CAS  Google Scholar 

  42. Wang M, Wu Z, Yang J, Wang G, Wang H, Cai W (2012) Au25(SG)18 as a fluorescent iodide sensor. Nanoscale 4(14):4087–4090

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21173071) and the key projects of science and technology of Henan Educational Committee (Grant No. 14B150049).

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yumin Liu or Jianji Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, H., Li, S., Liu, Y. et al. A reversible fluorescent INHIBIT logic gate for determination of silver and iodide based on the use of graphene oxide and a silver–selective probe DNA. Microchim Acta 182, 2513–2520 (2015). https://doi.org/10.1007/s00604-015-1620-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1620-7

Keywords

Navigation