Skip to main content
Log in

Selective and Sensitive Detection of Hg2+ and Ag+ by a Fluorescent and Colorimetric Probe with Large Stokes Shift

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Development of fluorescent sensors with large Stokes shift for selective detection of heavy metals is of great importance. A novel fluorescent probe with extremely large Stokes shift (212 nm) was synthesized for selective and simultaneous detection of Hg2+ and Ag+ ions. The deep yellow probe turned colorless or pale yellow after addition of Hg2+ or Ag+. The new probe could be utilized for absorption spectral detection of Hg2+ and Ag+ both in ethanol and aqueous solution. Addition of Hg2+ and Ag+ ions caused significant decrease in the fluorescence intensity of the new probe and the selective recognition of Hg2+ and Ag+ was not interfered by common competitive metal ions including Li+, Na+, K+, Cu2+, Fe2+, Zn2+, Co2+, Ni2+, Mn2+, Sr2+, Ca2+, Mg2+, Al3+, Cr3+ and Fe3+. The detection limit for Hg2+ and Ag+ was calculated to be 4.68 μM and 4.29 μM, respectively. Application of the new probe for quantitative determination of Hg2+ and Ag+ concentrations in real water samples was accomplished.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 2

Similar content being viewed by others

Data Availability

Yes, our manuscript has data included as electronic supplementary material.

Code Availability

Not applicable.

References

  1. Ebrahimi-znajafabadi H, Pasdaran A, Bezebjani RR, Bozorgzadeh E (2019) Determination of toxic heavy matals in rice samples using ultrasound assisted emulsification microextraction combined with inductively coupled plasma optical emission spectroscopy. Food Chem 289:26–32. https://doi.org/10.1016/j.foodchem.2019.03.046

    Article  CAS  Google Scholar 

  2. Hutton LA, O’Neil GD, Read TL, Ayres ZJ, Newton ME, Macpherson JV (2014) Electrochemical x-ray fluorescence spectroscopy for trace heavy metal analysis: Enhanced x-ray fluorescence detection capabilities by four orders of magnitude. Anal Chem 86:4566–4572. https://doi.org/10.1021/ac500608d

    Article  CAS  PubMed  Google Scholar 

  3. Safari Y, Karimaei M, Sharafi K, Arfaeinia H, Moradi M, Fattahi N (2018) Persistent sample circulation microextraction combined with graphite furnace atomic absorption spectroscopy for trace determination of heavy metals in fish species marketed in Kermanshah, Iran, and human health risk assessment. J Sci Food Agric 98:2915–2924. https://doi.org/10.1002/jsfa.8786

    Article  CAS  PubMed  Google Scholar 

  4. Hanhauser E, Bono Jr MS, Vaishnav C, Hart AJ, Karnik R (2020) Solid-phase extraction, preservation, storage, transport, and analysis of trace contaminants for water quality monitoring of heavy metals. Environ Sci Technol 54:2646−2657. https://doi.org/10.1021/acs.est.9b04695

  5. Bings NH, Bogaerts A, Broekaert JAC (2010) Atomic spectroscopy: a review. Anal Chem 82:4653–4681. https://doi.org/10.1021/ac1010469

    Article  CAS  PubMed  Google Scholar 

  6. Ding Q, Li C, Wang H, Xu C, Kuang H (2021) Electrochemical detection of heavy metal ions in water. Chem Commun 57:7215–7231. https://doi.org/10.1039/d1cc00983d

    Article  CAS  Google Scholar 

  7. Tian C, Zhao L, Zhu J, Zhang S (2022) Simultaneous detection of trace Hg2+ and Ag+ by SERS Aptasensor based on a novel cascade amplification in environmental water. Chem Eng J 435:133879. https://doi.org/10.1016/j.cej.2021.133879

    Article  CAS  Google Scholar 

  8. Liu C, Ye Z, Wei X, Mao S (2022) Recent advances in field-effect transistor sensing strategies for fast and highly efficient analysis of heavy metal ions. Electrochem Sci Adv 2:e2100137. https://doi.org/10.1002/elsa.202100137

    Article  CAS  Google Scholar 

  9. Rurack K, Kollmannsberger M, Resch-Genger U, Daub J (2000) A selective and sensitive fluoroionophore for HgII, AgI, and CuII with virtually decoupled fluorophore and receptor units. J Am Chem Soc 122:968−969. https://doi.org/10.1021/ja9926630a

  10. Hien NK, Bao NC, Nhung NTA, Trung NT, Nam PC, Duong T, Kim JS, Quang DT (2015) A highly sensitive fluorescent chemosensor for simultaneous determination of Ag(I), Hg(II), and Cu(II) ions: Design, synthesis, characterization and application. Dyes Pigm 116:89−96. https://doi.org/10.1016/j.dyepig.2015.01.014

  11. Zhang S, Wu X, Niu Q, Guo Z, Li T, Liu H (2017) Highly selective and sensitive colorimetric and fluorescent chemosensor for rapid detection of Ag+, Cu2+ and Hg2+ based on a simple Schiff base. J Fluoresc 27 729−737. https://doi.org/10.1007/s10895-016-2005-y

  12. Ribeiro DSM, Castro RC, Páscoa RNMJ, Soares JX, Rodrigues SSM, Santos JLM (2019) Tuning CdTe quantum dots reactivity for multipoint detection of Mercury(II), Silver(I) and Copper(II). J Lumin 207:386−396. https://doi.org/10.1016/j.jlumin.2018.11.035

  13. Chen J, Wang N, Tong H, Song C, Ma H, Zhang Y, Gao F, Xu H, Wang W, Lou K (2021) A compact fluorescence/circular dichroism dual-modality probe for detection, differentiation, and detoxification of multiple heavy metal ions via bond-cleavage cascade reactions. Chin Chem Lett 32:3876−3881. https://doi.org/10.1016/j.cclet.2021.05.047

  14. He Y, Wang Y, Mao G, Liang C, Fan M (2022) Ratiometric fluorescent nanoprobes based on carbon dots and multicolor CdTe quantum dots for multiplexed determination of heavy metal ions. Anal Chim Acta 1191:339251. https://doi.org/10.1016/j.aca.2021.339251

    Article  CAS  PubMed  Google Scholar 

  15. Wang S-e, Si S (2013) Aptamer biosensing platform based on carbon nanotube long-range energy transfer for sensitive, selective and multicolor fluorescent heavy metal ion analysis. Anal Methods 5:2947–2953. https://doi.org/10.1039/c3ay40360b

    Article  CAS  Google Scholar 

  16. Deng Y, Chen Y, Zhou X (2018) Simultaneous sensitive detection of Lead(II), Mercury(II) and silver ions using a new nucleic acid-based fluorescence sensor. Acta Chim Slov 65:271−277. https://doi.org/10.17344/acsi.2017.3620

  17. Lu Z, Wang P, Xiong W, Qi B, Shi R, Xiang D, Zhai K (2021) Simultaneous detection of Mercury (II), Lead (II) and Silver (I) based on fluorescently labelled aptamer probes and graphene oxide. Environ Technol 42:3065–3072. https://doi.org/10.1080/09593330.2020.1721565

    Article  CAS  PubMed  Google Scholar 

  18. Song J, Ma Q, Zhang S, Liu H, Guo Y, Feng F (2018) S,N-Co-doped carbon nanoparticles with high quantum yield for metal ion detection, IMP logic gates and bioimaging applications. New J Chem 42:20180‒20189. https://doi.org/10.1039/c8nj04527e

  19. Pavadai R, Amalraj A, Subramanian S, Perumal P (2021) High catalytic activity of fluorophore-labeled Y-Shaped DNAzyme/3D MOF-MoS2NBs as a versatile biosensing platform for the simultaneous detection of Hg2+, Ni2+, and Ag+ ions. ACS Appl Mater Interfaces 13:31710–31724. https://doi.org/10.1021/acsami.1c07086

    Article  CAS  PubMed  Google Scholar 

  20. Wu Y-T, Zhao J-L, Mu L, Zeng X, Wei G, Redshaw C, Jin Z (2017) A 2-Styryl-1,8-Naphthyridine derivative as a versatile fluorescent probe for the selective recognition of Hg2+, Ag+ and F ions by tuning the solvent. Sens Actuators B 252:1089–1097. https://doi.org/10.1016/j.snb.2017.06.057

    Article  CAS  Google Scholar 

  21. Krishnaveni K, Iniya M, Siva A, Vidhyalakshmi N, Sasikumar S, Ramesh UKP, Murugesan S (2020) Naphthyl hydrazone anchored with nitrosalicyl moiety as fluorogenic and chromogenic receptor for heavy metals (Ag+, Hg2+) and biologically important F Ion and its live cell imaging applications in HeLa cells zebrafish embryos. J Mol Struct 1217:128446. https://doi.org/10.1016/j.molstruc.2020.128446

    Article  CAS  Google Scholar 

  22. Saleh N (2009) Luminescent sensor for Cd2+, Hg2+ and Ag+ in water based on a sulphur-containing receptor: Quantitative binding-softness relationship. Luminescence 24:30–34. https://doi.org/10.1002/bio.1058

    Article  CAS  PubMed  Google Scholar 

  23. Wang M, Meng G, Huang Q (2014) Iodeosin-based fluorescent and colorimetric sensing for Ag+, Hg2+, Fe3+ and further for halide ions in aqueous solution. RSC Adv 4:8055–8058. https://doi.org/10.1039/c3ra47928e

    Article  CAS  Google Scholar 

  24. Mohanty P, Dash PP, Naik S, Behura R, Mishra M, Sahoo H, Sahoo SK, Barick AK, Jali BR (2023) A Thiourea-based fluorescent turn-on chemosensor for detecting Hg2+, Ag+ and Au3+ in aqueous medium. J Photochem Photobiol A 437:114491. https://doi.org/10.1016/j.photochem.2022.114491

    Article  CAS  Google Scholar 

  25. He X, Jia K, Bai Y, Chen Z, Liu Y, Huang Y, Liu X (2021) Quantum dots encoded white-emitting polymeric superparticles for simultaneous detection of multiple heavy metal ions. J Hazard Mater 405:124263. https://doi.org/10.1016/j.jhazmat.2020.124263

    Article  CAS  PubMed  Google Scholar 

  26. Nie K, Dong B, Shi H, Liu Z, Liang B (2017) Thienyl Diketopyrrolopyrrole as a robust sensing platform for multiple ions and its application in molecular logic system. Sens Actuators B 244:849–853. https://doi.org/10.1016/j.snb.2017.01.037

    Article  CAS  Google Scholar 

  27. Darroudi M, Ziarani GM, Ghasemi JB, Badiei A (2021) Facile and green preparation of colorimetric and fluorescent sensors for mercury, silver, and carbonate ions visual detecting: Spectroscopy and theoretical studies. J Mol Struct 1241:130626. https://doi.org/10.1016/j.molstruc.2021.130626

    Article  CAS  Google Scholar 

  28. Sui N, Wang L, Yan T, Liu F, Sui J, Jiang Y, Wan J, Liu M, Yu WW (2014) Selective and sensitive biosensors based on metal-enhanced fluorescence. Sens Actuators B 202:1148–1153. https://doi.org/10.1016/j.snb.2014.05.122

    Article  CAS  Google Scholar 

  29. Shi W, Sun S, Li X, Ma H (2010) Imaging different interactions of mercury and silver with live cells by a designed fluorescence probe rhodamine B selenolactone. Inorg Chem 49:1206–1210. https://doi.org/10.1021/ic902192a

    Article  CAS  PubMed  Google Scholar 

  30. Tsukamoto K, Shinohara Y, Iwasaki S, Maeda H (2011) A Coumarin-based fluorescent probe for Hg2+ and Ag+ with an N’-Acetylthioureido group as a fluorescence switch. Chem Commun 47:5073–5075. https://doi.org/10.1039/c1cc10933b

    Article  CAS  Google Scholar 

  31. He X, Qing Z, Wang K, Zou Z, Shi H, Huang J (2012) Engineering a unimolecular multifunctional DNA probe for analysis of Hg2+ and Ag+. Anal Methods 4:345–347. https://doi.org/10.1039/c2ay05823e

    Article  CAS  Google Scholar 

  32. Zhang X, Xu Y, Guo P, Qian X (2012) A dual channel chemodosimeter for Hg2+ and Ag+ Using a 1,3-Dithiane modified BODIPY. New J Chem 36:1621–1625. https://doi.org/10.1039/c2nj40242d

    Article  CAS  Google Scholar 

  33. Fan J, Chen C, Lin Q, Fu N (2012) A fluorescent probe for the dual-channel detection of Hg2+/Ag+ and Its Hg2+-based complex for detection of mercapto biomolecules with a tunable measuring range. Sens Actuators B 173:874–881. https://doi.org/10.1016/j.snb.2012.08.004

    Article  CAS  Google Scholar 

  34. Khatua S, Schmittel M (2013) A single molecular light-up sensor for quantification of Hg2+ and Ag+ in aqueous medium: high selectivity toward Hg2+ over Ag+ in a mixture. Org Lett 15:4422–4425. https://doi.org/10.1021/ol401970n

    Article  CAS  PubMed  Google Scholar 

  35. Lin G, Xu H, Cui Y, Wang Z, Yang Y, Qian G (2013) An ortho-methylated fluorescent chemosensor based on pyrromethene for highly selective and sensitive detection of Ag+ and Hg2+ ions. Mater Chem Phys 141:591–595. https://doi.org/10.1016/j.matchemphys.2013.06.0225

    Article  CAS  Google Scholar 

  36. Wang Z-X, Ding S-N (2014) One-pot green synthesis of high quantum yield oxygen-doped, nitrogen-rich, photoluminescent polymer carbon nanoribbons as an effective fluorescent sensing platform for sensitive and selective detection of Silver(I) and Mercury(II) Ions. Anal Chem 86:7436−7445. https://doi.org/10.1021/ac501085d

  37. Li F, Meng F, Wang Y, Zhu C, Cheng Y (2015) Polymer-based fluorescence sensor incorporating thiazole moiety for direct and visual detection of Hg2+ and Ag+. Tetrahedron 71:1700–1704. https://doi.org/10.1016/j.tet.2015.01.052

    Article  CAS  Google Scholar 

  38. Hiruta Y, Koiso H, Ozawa H, Sato H, Hamada K, Yabushita S, Citterio D, Suzuki K (2015) Near IR emitting red-shifting ratiometric fluorophores based on borondipyrromethene. Org Lett 17:3022–3025. https://doi.org/10.1021/acs.orglett.5b01299

    Article  CAS  PubMed  Google Scholar 

  39. Wu Z, Feng M, Chen X, Tang X (2016) N-Dots as a photoluminescent probe for the rapid and selective detection of Hg2+ and Ag+ in aqueous solution. J Mater Chem B 4:2086–2089. https://doi.org/10.1039/c5tb02628h

    Article  CAS  PubMed  Google Scholar 

  40. Shi W, Chen Y, Chen X, Xie Z, Hui Y (2016) Simple-structured, hydrazinecarbothioamide derivatived dual-channel optical probe for Hg2+ and Ag+. J Lumin 174:56–62. https://doi.org/10.1016/j.jlumin.2016.01.032

    Article  CAS  Google Scholar 

  41. Ren G, Zhang Q, Li S, Fu S, Chai F, Wang C, Qu F (2017) One pot synthesis of highly fluorescent N Doped C-Dots and used as fluorescent probe detection for Hg2+ and Ag+ in aqueous solution. Sens Actuators B 243:244−253. https://doi.org/10.1016/j.snb.2016.11.149

  42. Maiti S, Prins LJ (2017) A modular self-assembled sensing system for heavy metal ions with tunable sensitivity and selectivity. Tetrahedron 73:4950–4954. https://doi.org/10.1016/j.tet.2017.05.028

    Article  CAS  Google Scholar 

  43. Lee SY, Bok KH, Kim C (2017) A fluorescence, “turn-on” chemosensor for Hg2+ and Ag+ based on NBD (7-Nitrobenzo-2-Oxa-1,3-Diazolyl). RSC Adv 7:290–299. https://doi.org/10.1039/c6ra25585j

    Article  CAS  Google Scholar 

  44. Zhou W, Ding J, Liu J (2017) 2-Aminopurine-Modified DNA homopolymers for robust and sensitive detection of mercury and silver. Biosens Bioelectron 87:171–177. https://doi.org/10.1016/j.bios.2016.08.033

    Article  CAS  PubMed  Google Scholar 

  45. Li Y, Liu Y, Zhou H, Chen W, Mei J, Su J (2017) Ratiometric Hg2+/Ag+ probes with orange red-white-blue fluorescence response constructed by integrating vibration-induced emission with an aggregation-induced emission motif. Chem Eur J 23:9280–9287. https://doi.org/10.1002/chem.201700945

    Article  CAS  PubMed  Google Scholar 

  46. Ravikumar A, Panneerselvam P, Morad N (2018) Metal-polydopamine framework as an effective fluorescent quencher for highly sensitive detection of Hg(II) and Ag(I) Ions through Exonuclease III activity. ACS Appl Mater Interfaces 10:20550–20558. https://doi.org/10.1021/acsami.8b05041

    Article  CAS  PubMed  Google Scholar 

  47. Zhu B, Ren G, Tang M, Chai F, Qu F, Wang C, Su Z (2018) Fluorescent silicon nanoparticles for sensing Hg2+ and Ag+ as well visualization of latent fingerprints. Dyes Pigm 149:686–695. https://doi.org/10.1016/j.dyepig.2017.11.041

    Article  CAS  Google Scholar 

  48. Wei G, Jiang Y, Wang F (2018) A novel AIEE polymer sensor for detection of Hg2+ and Ag+ in aqueous solution. J Photochem Photobiol A 358:38–43. https://doi.org/10.1016/j.photochem.2018.03.006

    Article  CAS  Google Scholar 

  49. Chen S, Wang W, Yan M, Tu Q, Chen S-W, Li T, Yuan M-S, Wang J (2018) 2-Hydroxy Benzothiazole modified rhodol: Aggreration-induced emission and dual-channel fluorescence sensing of Hg2+ and Ag+ Ions. Sens Actuators B 255:2086–2094. https://doi.org/10.1016/j.snb.2017.09.008

    Article  CAS  Google Scholar 

  50. Zhang Y-M, Chen X-P, Liang G-Y, Zhong K-P, Lin Q, Yao H, Wei T-B (2018) A novel water soluble pillar[5]arene and phenazine derivative self-assembled pseudorotaxane sensor for the selective detection of Hg2+ and Ag+ with high selectivity and sensitivity. New J Chem 42:10148–10152. https://doi.org/10.1039/c8nj00508g

    Article  CAS  Google Scholar 

  51. Luo L, Wang P, Wang Y, Wang F (2018) pH assisted selectice detection of Hg(II) and Ag(I) based on nitrogen-rich carbon dots. Sens Actuators B 273:1640–1647. https://doi.org/10.1016/j.snb.2018.07.090

    Article  CAS  Google Scholar 

  52. Ye F, Liang X-M, Xu K-X, Pang X-X, Chai Q, Fu Y (2019) A novel dithiourea-appended naphthalimide “on-off” fluorescent probe for detecting Hg2+ and Ag+ and its application in cell imaging. Talanta 200:494–502. https://doi.org/10.1016/j.talanta.2019.03.076

    Article  CAS  PubMed  Google Scholar 

  53. Chen Y-J, Chen M-Y, Lee K-T, Shen L-C, Hung H-C, Niu H-C, Chung W-S (2020) 1,3-Alternate Calix[4]arene functionalized with pyrazole and triazole ligands as a highly selective fluorescent sensor for Hg2+ and Ag+ ions. Front Chem 8:593261. https://doi.org/10.3389/fchem.2020.593261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang N-H, Liu Y, Li R-T, Chen J, Hu P-P, Young DJ, Chen J-X, Zhang W-H (2020) Sequential Ag+/Biothiol and synchronous Ag+/Hg2+ biosensing with Zwitterionic Cu2+-based metal-organic frameworks. Analyst 145:2779–2788. https://doi.org/10.1039/d0an00002g

    Article  CAS  PubMed  Google Scholar 

  55. Khoshbin Z, Housaindokht MR, Verdian A (2020) A low-cost paper-based aptasensor for simultaneous trace-level monitoring of Mercury (II) and Silver (I) ions. Anal Biochem 597:113689. https://doi.org/10.1016/j.ab.2020.113689

    Article  CAS  PubMed  Google Scholar 

  56. Saiyasombat W, Kiatisevi S (2021) Bis-BODIPY linked-triazole based on catechol core for selective dual detection of Ag+ and Hg2+. RSC Adv 11:3703–3712. https://doi.org/10.1039/d0ra09686e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Correia C, Martinho J, Maçôas E (2022) A fluorescent nanosensor for Silver (Ag+) and Mercury (Hg2+) ions using Eu(III)-Doped carbon dots. Nanomaterials 12:385. https://doi.org/10.3390/nano12030385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cao Q-W, Yue T-C, Dong Q-W, Ma Q-C, Xie Z-B, Wang D-Z, Wang L-L (2023) Effective detection of Ag+, Hg2+ and dye adsorption properties of Ln-MOFs based on a benzimidazole carboxylic acid ligand. Dalton Trans 52:6008–6018. https://doi.org/10.1039/d3dt00579h

    Article  CAS  PubMed  Google Scholar 

  59. Zheng T, Xu Z, Zhao Y, Li H, Jian R, Lu C (2018) Multiresponsive polysiloxane bearing photochromic spirobenzopyran for sensing pH changes and Fe3+ Ions and sequential sensing of Ag+ and Hg2+ ions. Sens Actuators B 255:3305–3315. https://doi.org/10.1016/j.snb.2017.09.158

    Article  CAS  Google Scholar 

  60. Qi Y, Li Y, Nan T, Li H, Tang J, Liu S, Wang Y (2022) A novel fluorescent probe with large stokes shift for the detection of Ag+ and Hg2+. Opt Mater 123:111929. https://doi.org/10.1016/j.optmat.2021.111929

    Article  CAS  Google Scholar 

  61. Jiang L, Zheng T, Xu Z, Li J, Li H, Tang J, Liu S, Wang Y (2022) New NIR spectroscopic probe with a large stokes shift for Hg2+ and Ag+ detection and living cells imaging. Spectrochim Acta A 271:120916. https://doi.org/10.1016/j.saa.2022.120916

    Article  CAS  Google Scholar 

  62. Hu C-F, Zhang P-L, Sui Y-F, Lv J-S, Ansari MF, Battini N, Li S, Zhou C-H, Geng R-X (2020) Ethylenic conjugated coumarin thiazolidinediones as new efficient antimicrobial modulators against clinical methicillin-resistant Staphylococcus aureus. Bioorg Chem 94:103434. https://doi.org/10.1016/j.bioorg.2019.103434

    Article  CAS  PubMed  Google Scholar 

  63. Munive L, Gómez-Calvario V, Olivo HF (2017) Manganese triacetate oxidation of methyl 1-Hydroxy-2-Naphthalene carboxylates. Tetrahedron Lett 58:2445–2447. https://doi.org/10.1016/j.tetlet.2017.05.028

    Article  CAS  Google Scholar 

  64. Hao C, Xua L, Xing C, Kuang H, Wang L, Xu C (2012) Oligonucleotide-based fluorogenic sensor for simultaneous detection of heavy metal ions. Biosens Bioelectron 36:174–178. https://doi.org/10.1016/j.bios.2012.04.008

    Article  CAS  PubMed  Google Scholar 

  65. Nandre JP, Patil SR, Sahoo SK, Pradeep CP, Churakov A, Yu F, Chen L, Redshaw C, Patil AA, Patil UD (2017) A chemosensor for micro- and nano-molar detection of Ag+ and Hg2+ ions in pure aqueous media and its applications in cell imaging. Dalton Trans 46:14201–14209. https://doi.org/10.1039/c7dt02524f

    Article  CAS  PubMed  Google Scholar 

  66. Chen Z-E, Zhang H, Iqbal Z (2019) A new thiosemicarbazone fluorescent probe based on 9,9’-Bianthracene for Hg2+ and Ag+. Spectrochim Acta A 215:34–40. https://doi.org/10.1016/j.saa.2019.02.036

    Article  CAS  Google Scholar 

  67. Xiao L, Liu K, Duan L, Cheng X (2021) Reaction-based fluorescent silk probes with high sensitivity and selectivity to Hg2+ and Ag+ ions. J Mater Chem C 9:4877–4887. https://doi.org/10.1039/d0tc05429a

    Article  CAS  Google Scholar 

  68. Jagadhane KS, Bhosale SR, Gunjal DB, Nille OS, Kolekar GB, Kolekar SS, Dongale TD, Anbhule PV (2022) Tetraphenylethene-based fluorescent chemosensor with mechanochromic and aggregation-induced emission (AIE) properties for the selective and sensitive detection of Hg2+ and Ag+ ions in aqueous media: Application to environmental analysis. ACS Omega 7:34888–34900. https://doi.org/10.1021/acsomega.2c03437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mahata S, Kumar S, Dey S, Mandal BB, Manivannan V (2022) A Probe with Hydrazinecarbothioamide and 1,8-Naphthalimide groups for “turn-on” fluorescence detection of Hg2+ and Ag+ ions and live-cell imaging studies. Inorg Chim Acta 535:120876. https://doi.org/10.1016/j.ica.2022.120876

    Article  CAS  Google Scholar 

Download references

Funding

The Funding for the Open Research Program of State Key Laboratory of Molecular Engineering of Polymers, Fudan University (K2022-38 to Yanxi Song) is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Hongqi Li, Jiabao Yan and Lin Jiang wrote the main manuscript text; Jiabao Yan, Lin Jiang and Yong Zhao performed research and analyzed the data. Yanxi Song, Jirui Yu and Lang Cheng prepared the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hongqi Li.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 881 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Yan, J., Jiang, L. et al. Selective and Sensitive Detection of Hg2+ and Ag+ by a Fluorescent and Colorimetric Probe with Large Stokes Shift. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03478-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03478-8

Keywords

Navigation