Skip to main content
Log in

Fluorometric aptamer based determination of adenosine triphosphate based on deoxyribonuclease I-aided target recycling and signal amplification using graphene oxide as a quencher

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an aptamer based fluorometric assay for the determination of ATP. It is based on deoxyribonuclease I-aided target recycling and signal amplification. The DNA probe consists of two regions (sequences) that represent the capture probe and the signal probe, respectively. In the absence of ATP, the probe is adsorbed by the surface of graphene oxide (GO) via π-stacking interactions. This results in quenching of the fluorescent label (carboxyfluorescein) and protects it from being cleaved by DNase. Upon adding ATP, the probe will be repelled by GO because ATP binds to the aptamer. This triggers an increase in fluorescence as measured at excitation/emission wavelengths of 480/514 nm. The detection limit is as low as 0.2 nM, and the calibration plot is linear in the 10 to 400 nM ATP concentration range. The assay is specific and sensitive, and in our perception has a large potential in terms of detecting other species including pathogenic microorganisms, small molecules, metal ions, and proteins.

Schematic of the fluorescent strategy for adenosine triphosphate assay by using aptamer-based target recognition and deoxyribonuclease I-aided signal amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rangan G (2013) Role of extracellular ATP and P2 receptor signaling in regulating renal cyst growth and interstitial inflammation in polycystic kidney disease. Front Physiol 4:218

    Article  Google Scholar 

  2. Gourine AV, Llaudet E, Dale N (2005) Spyer KM ATP is a mediator of chemosensory transduction in the central nervous system. Nature 436:108–111

    Article  CAS  Google Scholar 

  3. Harkness RA, Saugstad OD (1997) The importance of the measurement of ATP depletion and subsequent cell damage with an estimate of size and nature of the market for a practicable method: a review designed for technology transfer. Scand J Clin Lab Invest 57:655–672

    Article  CAS  Google Scholar 

  4. Annunziato L, Pignataro G, Di Renzo GF (2004) Pharmacology of brain Na+/Ca2+ exchanger: from molecular biology to therapeutic perspectives. Pharmacol Rev 56:633–654

    Article  CAS  Google Scholar 

  5. Przedborski S, Vila S (2001) MPTP: a review of its mechanisms of neurotoxicity. Clin Neurosci Res 1:407–418

    Article  CAS  Google Scholar 

  6. Garroum I, Bidzinski P, Daraspe J, Mucciolo A, Humbel BM, Morel JB, Nawrath C (2016) Cuticular defects in Oryza sativa ATP-binding cassette transporter G31 mutant plants cause dwarfism, elevated defense responses and pathogen resistance. Plant Cell Physiol 57:1179–1188

    Article  CAS  Google Scholar 

  7. Kim JH, Ahn JH, Barone PW, Jin H, Zhang J, Heller DA, Strano MS (2010) A luciferase/single-walled carbon nanotube conjugate for near-infrared fluorescent detection of cellular ATP. Angew Chem Int Ed Engl 49:1456–1459

    Article  CAS  Google Scholar 

  8. He YF, Liao LF, Xu CH, Wu RR, Li SJ, Yang YY (2015) Determination of ATP by resonance light scattering using a binuclear uranyl complex and aptamer modified gold nanoparticles as optical probes. Microchim Acta 182:419–426

    Article  CAS  Google Scholar 

  9. Tian JN, Wang Y, Chen S, Jiang YX, Zhao YC, Zhao SL (2013) Mass-amplifying quantum dots in a fluorescence polarization-based aptasensor for ATP. Microchim Acta 180:203–209

    Article  CAS  Google Scholar 

  10. Tang DP, Hou L (2016) Aptasensor for ATP based on analyte-induced dissociation of ferrocene-aptamer conjugates from manganese dioxide nanosheets on a screen-printed carbon electrode. Microchim Acta 183:2705–2711

    Article  CAS  Google Scholar 

  11. Gao PY, Xia YF, Yang LL, Ma TF, Yang L, Guo QQ, Huang SS (2014) Aptasensor for adenosine triphosphate based on electrode-supported lipid bilayer membrane. Microchim Acta 181:205–212

    Article  CAS  Google Scholar 

  12. Ning Y, Li WK, Duan YF, Yang M, Deng L (2014) High specific DNAzyme-Aptamer sensor for Salmonella paratyphi A using single-walled nanotubes-based dual fluorescence-spectrophotometric methods. J Biomol Screen 19:1099–1106

    Article  CAS  Google Scholar 

  13. Zhang YL, Sun ZY, Tang LN, Zhang H, Zhang GJ (2016) Aptamer based fluorescent cocaine assay based on the use of graphene oxide and exonuclease III-assisted signal amplification. Microchim Acta 183:2791–2797

    Article  CAS  Google Scholar 

  14. Li L, Li B, Qi Y, Jin Y (2009) Label-free Aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal Bioanal Chem 8:2051–2057

    Article  Google Scholar 

  15. Ning Y, Cheng LJ, Ling M, Feng XR, Chen LL, Wu MX, Deng L (2015) Efficient suppression of biofilm formation by a nucleic acid aptamer. Pathog Dis 73:ftv034

    Article  Google Scholar 

  16. Duan YF, Ning Y, Song Y, Deng L (2014) Fluorescent aptasensor for the determination of Salmonella typhimurium based on a graphene oxide platform. Microchim Acta 181:647–653

    Article  CAS  Google Scholar 

  17. Zhou J, Rossi JJ (2010) Aptamer-targeted cell-specific RNA interference. Silence 1:4

    Article  Google Scholar 

  18. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC (2007) Quantum dot-Aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7:3065–3070

    Article  CAS  Google Scholar 

  19. Berezovski MV, Lechmann M, Musheev MU, Mak TW, Krylov SN (2008) Aptamer-facilitated biomarker discovery (AptaBiD). J Am Chem Soc 130:9137–9143

    Article  CAS  Google Scholar 

  20. Freeman R, Girsh J, Jou AF, Ho JA, Hug T, Dernedde J, Willner I (2012) Optical aptasensors for the analysis of the vascular endothelial growth factor (VEGF). Anal Chem 84:6192–6198

    Article  CAS  Google Scholar 

  21. Liu X, Aizen R, Freeman R, Yehezkeli O, Willner I (2012) Multiplexed aptasensors and amplified DNA sensors using functionalized graphene oxide: application for logic gate operations. ACS Nano 6:3553–3563

    Article  CAS  Google Scholar 

  22. Chu-Mong K, Thammakhet C, Thavarungkul P, Kanatharana P, Buranachai C (2016) A FRET based aptasensor coupled with non-enzymatic signal amplification for mercury (II) ion detection. Talanta 155:305–313

    Article  CAS  Google Scholar 

  23. Yang J, Dou B, Yuan R, Xiang Y (2016) Proximity binding and metal ion-dependent DNAzyme cyclic amplification-integrated Aptasensor for label-free and sensitive electrochemical detection of thrombin. Anal Chem 88:8218–8223

    Article  CAS  Google Scholar 

  24. Ling M, Peng ZH, Cheng LJ, Deng L (2015) Rapid fluorescent detection of ETEC K88 based on Graphene oxide-dependent nanoqucher and Klenow fragment-triggered target cyclic amplification. Appl Spectrosc 69:1175–1181

    Article  CAS  Google Scholar 

  25. Tang Y, Long F, Gu C, Wang C, Han S, He M (2016) Reusable split-aptamer-based biosensor for rapid detection of cocaine in serum by using an all-fiber evanescent wave optical biosensing platform. Anal Chim Acta 933:182–188

    Article  CAS  Google Scholar 

  26. Wang H, Sun K, Tao F, Stacchiola DJ, Hu YH (2013) 3D honeycomb-like structured Graphene and its high efficiency as a CounterElectrode catalyst for dye-sensitized solar cells. Angew Chem Int Ed Engl 52:9210–9214

    Article  CAS  Google Scholar 

  27. Sun F, Huang K, Qi X, Gao T, Liu Y, Zou X, Wei X, Zhong J (2013) A rationally designed composite of alternating strata of Si nanoparticles and Graphene: a high-performance lithium-ion battery anode. Nanoscale 5:8586–8592

    Article  CAS  Google Scholar 

  28. Liu KY, Yan X, Mao BY, Wang S, Deng L (2016) Aptamer-based detection of Salmonella enteritidis using double signal amplification by Klenow fragment and dual fluorescence. Microchim Acta 183:643–649

    Article  CAS  Google Scholar 

  29. Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29:205–212

    Article  Google Scholar 

  30. Chen ML, He YJ, Chen XW, Wang JH (2013) Quantum-dot-conjugated Graphene as a probe for simultaneous cancer-targeted fluorescent imaging, tracking, and monitoring drug delivery. Bioconjug Chem 24:387–397

    Article  CAS  Google Scholar 

  31. Ning Y, Gao Q, Zhang XQ, Wei K, Chen LL (2016) A Graphene oxide–based sensing platform for the determination of methicillin-resistant Staphylococcus aureus based on strand-displacement polymerization recycling and synchronous fluorescent signal amplification. J Biomol Screen 21:851–857

    Article  CAS  Google Scholar 

  32. Ning Y, Duan YF, Feng YY, Deng L (2014) Label-free fluorescent Aptasensor based on a Graphene oxide self-assembled probe for the determination of adenosine triphosphate. Anal Lett 47:2350–2360

    Article  CAS  Google Scholar 

  33. Ding XJ, Wang YH, Cheng W, Mo F, Sang Y, Xu LL, Ding SJ (2017) Aptamer based electrochemical adenosine triphosphate assay based on a target-induced dendritic DNA nanoassembly. Microchim Acta. doi:10.1007/s00604-016-2026-x

    Google Scholar 

  34. Liu F, Zhang J, Chen R, Chen LL, Deng L (2011) Highly effective colorimetric and visual detection of ATP by a DNAzyme Aptamer sensor. Chem Biodivers 8:311–316

    Article  CAS  Google Scholar 

  35. Qiu HZ, Liu ZE, Huang ZJ, Chen M, Cai XH, Weng SH, Lin XH (2015) Aptamer based turn-off fluorescent ATP assay using DNA concatamers. Microchim Acta 182:2387–2393

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank National Natural Science Foundation of hunan province (2016JJ3098), Outstanding Youth Scientific Research Project Funded by Education department of Hunan Province (15B169), Science and technology Innovation Team in Colleges and Universities in Hunan Province《Chinese traditional medicine for treatment of infectious diseases》(No: 15, Grxjb-7), Doctor start-up Foundation of Hunan University of Chinese Medicine (9982-1001019), Key Subjects of Hunan University of Chinese Medicine《pathogenic biology》(NO.1) and Project Funded by Hunan Provincial Level Course《Immunology and pathogenic biology》(No. 48) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Xiang.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, Y., Wei, K., Cheng, L. et al. Fluorometric aptamer based determination of adenosine triphosphate based on deoxyribonuclease I-aided target recycling and signal amplification using graphene oxide as a quencher. Microchim Acta 184, 1847–1854 (2017). https://doi.org/10.1007/s00604-017-2194-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2194-3

Keywords

Navigation