Skip to main content
Log in

A review on heavy metal biosorption utilizing modified chitosan

  • Review
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Heavy metal pollution in water bodies is a global concern. The prominent source of metal contamination in aqueous streams and groundwater is wastewater containing heavy metal ions. Elevated concentrations of heavy metals in water bodies can have a negative impact on water quality and public health. The most effective way to remove metal contaminants from drinking water is thought to be adsorption. A deacetylated derivative of chitin, chitosan, has a wide range of commercial uses since it is biocompatible, nontoxic, and biodegradable. Due to its exceptional adsorption behavior toward numerous hazardous heavy metals from aqueous solutions, chitosan and its modifications have drawn a lot of interest in recent years. Due to its remarkable adsorption behavior toward a range of dangerous heavy metals, chitosan is a possible agent for eliminating metals from aqueous solutions. The review has focused on the ideas of biosorption, its kinds, architectures, and characteristics, as well as using modified (physically and chemically modified) chitosan, blends, and composites to remove heavy metals from water. The main objective of the review is to describe the most important aspects of chitosan-based adsorbents that might be beneficial for enhancing the adsorption capabilities of modified chitosan and promoting the usage of this material in the removal of heavy metal pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

DMSO :

Dimethyl sulphoxide

CCB :

Chitosan cross-linked bentonite beads

CCGP :

Chitosan–grafted–polyaniline composite

CAN :

Chitosan-g-acrylonitrile

CS–MAA :

Chitosan methacrylic acid

TMCD :

Thiourea-modified chitosan derivative

EMCR :

Ethylenediamine-modified magnetic cross-linking chitosan microspheres

MCGO :

Magnetic chitosan and graphene oxide

KSF-CTS :

Chitosan-montmorillonite

CTS/REC :

Chitosan and rectorie cross-linked composite

COCB :

Chitosan–oxalate complex biosorbent

CTS-PVA :

Chitosan and poly (vinyl alcohol) hydrogel

CCGP :

Cross-linked–chitosan–grafted–polyaniline composite

CGP :

Chitosan–grafted–polyaniline composite

M-CTS :

Methyl methacrylate grafted with cross-linked chitosan

DEO :

Water soluble diepoxy compound 1,2:7,8-diepoxyoctane

References

  • Ahmed, M. A., & Mohamed, A. A. (2023). The use of chitosan-based composites for environmental remediation: A review. International Journal of Biological Macromolecules, 242(II), 124787.

    Article  CAS  Google Scholar 

  • Ahmed, S., Fatema-Tuj-Zohra, Mahdi, M. M., Nurnabi, M., Alam, M. Z., & Choudhury, T. R. (2022). Health risk assessment for heavy metal accumulation in leafy vegetables grown on tannery effluent contaminated soil. Toxicology Reports, 9, 346–355.

    Article  CAS  Google Scholar 

  • Álvarez, M. S., Longo, M. A., Rodríguez, A., & Deive, F. J. (2023). Heavy metals removal from soil/sediments washing effluents via biocompatible aqueous two-phase systems. Journal of Water Process Engineering, 53, 103851. https://doi.org/10.1016/j.jwpe.2023.103851

    Article  Google Scholar 

  • Bandura, L., Franus, M., Madej, J., Kołodyńska, D., & Hubicki, Z. (2020). Zeolites in phenol removal in the presence of Cu(II) ions—Comparison of sorption properties after chitosan modification. Materials, 13(3), 643.

    Article  CAS  Google Scholar 

  • Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4), 361–367.

    Article  CAS  Google Scholar 

  • Begum, S., Yuhana, N. Y., Saleh, N. M., Kamarudin, N. H. N., & Sulong, A. B. (2021). Review of chitosan composite as a heavy metal adsorbent: Material preparation and properties. Carbohydrate Polymers, 259, 117613.

    Article  CAS  Google Scholar 

  • Benettayeb, A., Ghosh, S., Usman, M., Seihoub, F. Z., Sohoo, I., Chia, C. H., & Sillanpää, M. (2022). Some well-known alginate and chitosan modifications used in adsorption: A review. Water, 14(9), 1353.

    Article  CAS  Google Scholar 

  • Benettayeb, A., Guibal, E., Morsli, A., & Kessas, R. (2017). Chemical modification of alginate for enhanced sorption of Cd(II), Cu(II) and Pb(II). Chemical Engineering Journal, 316, 704–714.

    Article  CAS  Google Scholar 

  • Benettayeb, A., Usman, M., Tinashe, C. C., Adam, T., & Haddou, B. (2022). A critical review with emphasis on recent pieces of evidence of Moringa oleifera biosorption in water and wastewater treatment. Environmental Science and Pollution Research, 29(32), 48185–48209.

    Article  Google Scholar 

  • Biswas, S., Rashid, T. U., Debnath, T., & Haque, P. (2020). Application of chitosan-clay biocomposite beads for removal of heavy metal and dye from industrial effluent. Journal of Composite Science, 4(16), 1–14.

    Google Scholar 

  • Borda, M. J., & Sparks, D. L. (2008). Kinetics and mechanisms of sorption-desorption in soils: A multiscale assessment. In A. Violante, P. M. Huang, & G. M. Gadd (Eds.), Biophysico-Chemical Processes of Heavy Metals and Metalloids in Soil Environments (pp. 97–124). Wiley.

    Google Scholar 

  • Borsagli, F. G. L. M., & Borsagli, A. (2019). Chemically modified chitosan bio-sorbents for the competitive complexation of heavy metals ions: A potential model for the treatment of wastewaters and industrial spills. Journal of Polymers and the Environment, 27(7), 1542–1556.

    Article  CAS  Google Scholar 

  • Çelebi, H. (2020). Recovery of detox tea wastes: Usage as a lignocellulosic adsorbent in Cr6+ adsorption. Journal of Environmental Chemical Engineering, 8(5), 104310.

    Article  Google Scholar 

  • Chang, Y. C., & Chen, D. H. (2005). Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu (II) ions. Journal of Colloid Interface Science, 283, 446–451.

    Article  CAS  Google Scholar 

  • Copello, G. J., Varela, F., Vivot, R. M., & Díaz, L. E. (2008). Immobilized chitosan as biosorbent for the removal of Cd (II), Cr (III) and Cr (VI) from aqueous solutions. Bioresource Technology, 99, 6538–6544.

    Article  CAS  Google Scholar 

  • Cornu, J. Y., Huguenot, D., Jézéquel, K., Lollier, M., & Lebeau, T. (2017). Bioremediation of copper-contaminated soils by bacteria. World Journal of Microbiology and Biotechnology, 33, 26. https://doi.org/10.1007/s11274-016-2191-4

    Article  CAS  Google Scholar 

  • Crini, G. (2005). Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science, 30, 38–70.

    Article  CAS  Google Scholar 

  • Crini, G., & Badot, P. M. (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in polymer Science, 33, 399–447.

    Article  CAS  Google Scholar 

  • Dalida, M. L. P., Mariano, A. F. V., Futalan, C. M., Kan, C. C., Tsai, W. C., & Wan, M. W. (2011). Adsorptive removal of Cu (II) from aqueous solutions using non-crosslinked and crosslinked chitosan-coated bentonite beads. Desalination, 275, 154–159.

    Article  CAS  Google Scholar 

  • Dhankhar, R., & Hooda, A. (2011). Fungal biosorption – an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental Technology, 32, 467–491.

    Article  CAS  Google Scholar 

  • Dragan, E. S., & Dinu, M. V. (2020). Advances in porous chitosan-based composite hydrogels: Synthesis and applications. Reactive and Functional Polymers, 146, 104372.

    Article  CAS  Google Scholar 

  • Dragan, E. S., Dinu, M. V., & Timpu, D. (2010). Preparation and characterization of novel composites based on chitosan and clinoptilolite with enhanced adsorption properties for Cu2+. Bioresource Technology, 101, 812–817.

    Article  CAS  Google Scholar 

  • Dunn, Q. L. E. T., Grandmaison, E. W., & Gooson, M. F. (1997). Application and properties of chitosan. Technomic Publishing Co..

    Google Scholar 

  • Elwakeel, K. Z., & Guibal, E. (2015). Selective removal of Hg(II) from aqueous solution by functionalized magneticmacromolecular hybrid material. Chemical Engineering Journal, 281(Ii), 345–359. https://doi.org/10.1016/j.cej.2015.05.110

  • EPA. (1987). Environmental Criteria and Assessment Office. ECAO-CIN-417.

    Google Scholar 

  • Fan, L., Luo, C., Sun, M., Li, X., & Qiu, H. (2013). Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/ graphene oxide composites. Colloids and Surfaces B: Biointerfaces, 103, 523–529.

    Article  CAS  Google Scholar 

  • Fan, C., Li, K., He, Y., Wang, Y., Qian, X., & Jia, J. (2018). Evaluation of magnetic chitosan beads for adsorption of heavy metal ions. The Science of the Total Environment, 627, 1396–1403. https://doi.org/10.1016/j.scitotenv.2018.02.033

    Article  CAS  Google Scholar 

  • Ferrero, F., Tonetti, C., & Periolatto, M. (2014). Adsorption of chromate and cupric ions onto chitosan-coated cotton gauze. Carbohydrate Polymers, 110, 367–373.

    Article  CAS  Google Scholar 

  • Futalan, C. M., Kan, C. C., Dalida, M. L., Hsien, K. J., Pascua, C., & Wan, M. W. (2011). Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite. Carbohydrate Polymers, 83, 528–536.

    Article  CAS  Google Scholar 

  • Gadd, G. M. (2009). Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology, 84(1), 13–28. https://doi.org/10.1002/jctb.1999

    Article  CAS  Google Scholar 

  • Gadd, G. M., & Fomina, M. (2011). Uranium and fungi. Journal of Geomicrobiology, 28, 471–482.

    Article  CAS  Google Scholar 

  • Gandhi, M. R., Kousalya, G. N., Viswanathan, N., & Meenakshi, S. (2011). Sorption behaviour of copper on chemically modified chitosan beads from aqueous solution. Carbohydrate Polymers., 83, 1082–1087.

    Article  CAS  Google Scholar 

  • Gandhi, M. R., Viswanathan, N., & Meenakshi, S. (2010). Preparation and application of alumina/chitosan biocomposite. International Journal of Biological Macromolecules, 47, 146–154.

    Article  Google Scholar 

  • Ge, H., & Hua, T. (2016). Synthesis and characterization of poly(maleic acid)-grafted crosslinked chitosan nanomaterial with high uptake and selectivity for Hg(II) sorption. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2016.07.110

  • Gibaga, C. R. L., Samaniego, J. O., Tanciongco, A. M., & Quierrez, R. N. M. (2023). Pollution assessment of mercury and other potentially toxic elements in the marine sediments of Mambulao Bay, Jose Panganiban, Camarines Norte, Philippines. Marine Pollution Bulletin, 192, 115032. https://doi.org/10.1016/j.marpolbul.2023.115032

    Article  CAS  Google Scholar 

  • Guibal, E. (2004). Interactions of metal ions with chitosan-based sorbents: A review. Separation and Purification Technology, 38, 43–74.

    Article  CAS  Google Scholar 

  • Guibal, E., Milot, C., & Tobin, J. M. (1998). Metal-anion sorption by chitosan beads: Equilibrium and kinetic studies. Industrial & Engineering Chemistry Research., 37, 1454–1463.

    Article  Google Scholar 

  • Guo, N., Su, S. J., Liao, B., Ding, S.-l., & Sun, W.-y. (2017). Preparation and properties of a novel macro porous Ni2+-imprinted chitosan foam adsorbents for adsorption of nickel ions from aqueous solution. Carbohydrate Polymers, 165, 376–383.

    Article  CAS  Google Scholar 

  • Guo, D., An, M., Xiao, Q. D., Zhai, Z. Y., & Yang, S. R. D. J. (2018). Efficient removal of Pb(II), Cr(VI) and organic dyes by polydopamine modified chitosan aerogels. Carbohydrate Polymers, 202, 306–314.

    Article  CAS  Google Scholar 

  • Hamza, M. F., Wei, Y., Benettayeb, A., Wang, X., & Guibal, E. (2019). Efficient removal of uranium, cadmium and mercury from aqueous solutions using grafted hydrazide-micro-magnetite chitosan derivative. Journal of Materials Science, 55(10), 4193–4212.

    Article  Google Scholar 

  • Han, R., Zou, L., Zhao, X., Xu, Y., Xu, F., Li, Y., et al. (2009). Characterization and properties of iron oxide-coated zeolite as adsorbent for removal of copper (II) from solution in fixed bed column. Chemical Engineering Journal, 149, 123–131.

    Article  CAS  Google Scholar 

  • Heidari, A., Younesi, H., Mehraban, Z., & Heikkinen, H. (2013). Selective adsorption of Pb (II), Cd (II), and Ni (II) ions from aqueous solution using chitosan–MAA nanoparticles. International Journal of Biological Macromolecules, 61, 251–263.

    Article  CAS  Google Scholar 

  • Hernberg, S. (2000). Lead poisoning in a historical perspective. American Journal of Industrial Medicine, 38(3), 244–254.

    Article  CAS  Google Scholar 

  • Huang, X., Liu, Y., Liu, S., Tan, X., Ding, Y., Zeng, G., Zhou, Y., Zhang, M., Wang, S., & Zhang B. (2016). Effective removal of Cr(vi) using β-cyclodextrin–chitosan modified biochars with adsorption/reduction bifunctional roles. RSC Advances, 6, 94–104.

    Article  CAS  Google Scholar 

  • Iamsaard, K., Weng, C. H., Yen, L. T., Tzeng, J. H., Poonpakdee, C., & Lin, Y. T. (2022). Adsorption of metal on pineapple leaf biochar: Key affecting factors, mechanism identification, and regeneration evaluation. Bioresource Technology, 344, 126131.

    Article  CAS  Google Scholar 

  • Ifthikar, J., Jiao, X., Ngambia, A., Wang, T., Khan, A., Jawad, A., Xue, Q., Liu, L., & Chen, H. (2018). Facile one-pot synthesis of sustainable carboxymethyl chitosan – Sewage sludge biochar for effective heavy metal chelation and regeneration. Bioresource Technology, 262, 22–31.

    Article  CAS  Google Scholar 

  • Inglezakis, V. J., Stylianou, M. A., Gkantzou, D., & Loizidou, M. D. (2007). Removal of Pb (II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. Desalination, 210, 248–256.

    Article  CAS  Google Scholar 

  • Javanbakht, V., Ghoreishi, S. M., Habibi, N., & Javanbakht, M. (2016). A novel magnetic chitosan/clinoptilolite/magnetite nanocomposite for highly efficient removal of Pb (II) ions from aqueous solution. Powder Technology. https://doi.org/10.1016/j.powtec.2016.08.069

  • Jayakumar, R., Menon, D., Manzoor, K., Nair, S. V., & Tamura, H. (2010). Biomedical applications of chitin and chitosan-based nanomaterials— A short review. Carbohydrate Polymers, 82, 227–232.

    Article  CAS  Google Scholar 

  • Jayakumar, R., Prabaharan, M., Reis, R. L., & Mano, J. F. (2005). Graft copolymerized chitosan – Present status and applications. Carbohydrate Polymers, 62, 142–158.

    Article  CAS  Google Scholar 

  • Ji, C., Xu, M., Yu, H., Lv, L., & Zhang, W. (2022). Mechanistic insight into selective adsorption and easy regeneration of carboxyl-functionalized MOFs towards heavy metals. Journal of Hazardous Materials, 424, 127684.

    Article  CAS  Google Scholar 

  • Jiang, C., Wang, X., Wang, G., Hao, C., Li, X., & Li, T. (2019). Adsorption performance of a polysaccharide composite hydrogel based on crosslinked glucan/chitosan for heavy metal ions. Composites Part B: Engineering, 169, 45–54.

    Article  CAS  Google Scholar 

  • Jiang, D., Gao, C., Liu, L., Yu, T., Li, Y., & Wang, H. (2022). Application of nanoporous ceramic membrane derived from Fe/S/Si/Al/O-rich mining solid waste in oil–water separation and heavy metal removal of industrial high concentrated emulsifying wastewater. Separation and Purification Technology, 295, 121317.

    Article  CAS  Google Scholar 

  • Kamari, A., & Ngah, W. S. W. (2009). Isotherm, kinetic and thermodynamic studies of lead and copper uptake by H2SO4 modified chitosan. Colloids and Surfaces B: Biointerfaces, 73, 257–266.

    Article  CAS  Google Scholar 

  • Kandile, N. G., Mohamed, H. M., & Mohamed, M. I. (2015). New heterocycle modified chitosan adsorbent for metal ions (II) removal from aqueous systems. International Journal of Biological Macromolecules, 72, 110–116.

    Article  CAS  Google Scholar 

  • Karthik, R., & Meenakshi, S. (2014). Facile synthesis of cross linked-chitosan–grafted-polyaniline composite and its Cr (VI) uptake studies. International Journal of Biological Macromolecules, 67, 210–219.

    Article  CAS  Google Scholar 

  • Kasiri, M. B. (2018). Application of chitosan derivatives as promising adsorbents for treatment of textile wastewater. In The impact and prospects of green chemistry for textile technology. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102491-1.00014-9

  • Keshvardoostchokami, M., Majidi, M., Zamani, A., & Liu, B. (2021). A review on the use of chitosan and chitosan derivatives as the bio-adsorbents for the water treatment: Removal of nitrogen-containing pollutants. Carbohydrate Polymers, 273, 118625.

    Article  CAS  Google Scholar 

  • Khalil, T. E., Abdel-Salam, A. H., Mohamed, L. A., El-Meligy, E., & El-Dissouky, A. (2023). Crosslinked modified chitosan biopolymer for enhanced removal of toxic Cr(VI) from aqueous solution. International Journal of Biological Macromolecules, 234, 123719. https://doi.org/10.1016/j.ijbiomac.2023.123719

    Article  CAS  Google Scholar 

  • Kuczajowska-Zadrożna, M., Filipkowska, U., & Jóźwiak, T. (2020). Adsorption of Cu (II) and Cd (II) from aqueous solutions by chitosan immobilized in alginate beads. Journal of Environmental Chemical Engineering, 8(4), 103878.

    Article  Google Scholar 

  • Kyzas, G. Z., Travlou, N. A., & Deliyann, E. A. (2014). The role of chitosan as nanofiller of graphite oxide for the removal of toxic mercury ions. Colloids and Surfaces B: Biointerfaces, 113, 467–476.

    Article  CAS  Google Scholar 

  • Li, D., Tian, X., Wang, Z., Guan, Z., Li, X., Qiao, H., Ke, H., Luo, L., & Wei, Q. (2020). Multifunctional adsorbent based on metal-organic framework modified bacterial cellulose/chitosan composite aerogel for highly efficient removal of heavy metal ion and organic pollutant. Chemical Engineering Journal, 383, 123127.

    Article  CAS  Google Scholar 

  • Li, M., Li, M., Feng, Y., & Zeng, Q. X. (2014). Preparation and characterization of multi-carboxyl-functionalized silica gel for removal of Cu (II), Cd (II), Ni (II) and Zn (II) from aqueous solution. Applied Surface Science, 314, 1063–1069.

    Article  CAS  Google Scholar 

  • Li, N., & Bai, R. (2005). Copper adsorption on chitosan-cellulose hydrogel beads: Behaviors and mechanisms. Separation and Purification Technology, 42(3), 237–247. https://doi.org/10.1016/j.seppur.2004.08.002

    Article  CAS  Google Scholar 

  • Li, Y., Rahman, S. U., Qiu, Z., Shahzad, S. M., Nawaz, M. F., Huang, J., Naveed, S., Li, L., Wang, X., & Cheng, H. (2023). Toxic effects of cadmium on the physiological and biochemical attributes of plants, and phytoremediation strategies: A review. Environmental Pollution, 325, 121433. https://doi.org/10.1016/j.envpol.2023.121433

    Article  CAS  Google Scholar 

  • Liao, J., & Huang, H. (2019). Magnetic chitin hydrogels prepared from Hericium erinaceus residues with tunable characteristics: A novel bio sorbent for Cu2+ removal. Carbohydrate Polymers, 220, 191–201.

    Article  CAS  Google Scholar 

  • Lima, R., Fernandes, C., & Pinto, M. M. M. (2022). Molecular modifications, biological activities, and applications of chitosan and derivatives: A recent update. Chirality, 34, 1166–1190.

    Article  CAS  Google Scholar 

  • Liu, B. J., Wang, D. F., Yu, G. L., & Meng, X. H. (2013). Adsorption of heavy metal ions, dyes and proteins by chitosan composites and derivatives – A review. Journal of Ocean University of China, 12, 500–508.

    Article  CAS  Google Scholar 

  • Liu, J., Chen, Y., Han, T., Cheng, M., Zhang, W., Long, J., et al. (2019a). A biomimetic SiO2@chitosan composite as highly-efficient adsorbent for removing heavy metal ions in drinking water. Chemosphere, 214, 738–742. https://doi.org/10.1016/j.chemosphere.2018.09.172

    Article  CAS  Google Scholar 

  • Liu, Y., Hu, L., Tan, B., Li, J., Gao, X., He, Y., et al. (2019b). Adsorption behavior of heavy metal ions from aqueous solution onto composite dextran-chitosan macromolecule resin adsorbent. International Journal of Biological Macromolecules, 141, 738–746.

    Article  CAS  Google Scholar 

  • Maleki, A., Pajootan, E., & Hayati, B. (2015). Ethyl acrylate grafted chitosan for heavy metal removal from wastewater: Equilibrium, kinetic and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers, 51, 127–134.

    Article  CAS  Google Scholar 

  • Malik, A. (2004). Metal bioremediation through growing cells. Environmental International, 30, 261–278.

    Article  CAS  Google Scholar 

  • Mi, F. L., Wu, S. J., & Lin, F. N. (2015). Adsorption of copper (II) ions by a chitosan–oxalate complex biosorbent. International Journal of Biological Macromolecules, 72, 136–144.

    Article  CAS  Google Scholar 

  • Michalak, I., Chojnacka, K., & Witek-Krowiak, A. (2013). State of the art for the biosorption process—A review. Applied Biochemistry and Biotechnology, 170, 1389–1416.

    Article  CAS  Google Scholar 

  • Milosavljevic, N. B., Milasinovic, N. Z., Popovic, I. G., Filipovic, J. M., & Krusic, M. T. K. (2011). Preparation and characterization of pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid. Polymer International, 60, 443–452.

    Article  CAS  Google Scholar 

  • Mittal, H., Ray, S. S., Kaith, B. S., Bhatia, J. K., Sharma, J., & Alhassan, S. M. (2018 December). Recent progress in the structural modification of chitosan for applications in diversified biomedical fields. European Polymer Journal, 109, 402–434.

    Article  CAS  Google Scholar 

  • Mojiri, A., Kazeroon, R. A., & Gholami, A. (2019). Cross-linked magnetic chitosan/activated biochar for removal of emerging micropollutants from water: Optimization by the artificial neural network. Water, 11(3), 1–18. https://doi.org/10.3390/w11030551

    Article  CAS  Google Scholar 

  • Monteiro, O. A. C., & Airoldi, C. (1999). Some studies of crosslinking chitosan–glutaraldehyde interaction in a homogeneous system. International Journal of Biological Macromolecules, 26, 119–128.

    Article  CAS  Google Scholar 

  • Muzzarelli, R. A. A. (2011). Potential of chitin/chitosan-bearing materials for uranium recovery: An interdisciplinary review. Carbohydrate Polymers, 84, 54–63.

    Article  CAS  Google Scholar 

  • Muzzarelli, R. A. A., Boudrant, J., Meyer, D., Manno, N., DeMarchis, M., & Paoletti, M. G. (2012). Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydrate Polymers, 87, 995–1012.

    Article  CAS  Google Scholar 

  • Needleman, H. (2004). Lead poisoning. Annual Revue De Medecine, 55, 209–222.

    Article  CAS  Google Scholar 

  • Ng, J. C. Y., Cheung, W. H., & McKay, G. (2002). Equilibrium studies of the sorption of Cu (II) ions onto chitosan. Journal of Colloid Interface Science, 255, 64–74.

    Article  CAS  Google Scholar 

  • Ngah, W. S. W., & Fatinathan, S. (2010). Adsorption characterization of Pb (II) and Cu (II) ions onto chitosan-tripolyphosphate beads: Kinetic, equilibrium and thermodynamic studies. Journal of Environmental Management, 91, 958–969.

    Article  CAS  Google Scholar 

  • Ngah, W. S. W., Teong, L. C., & Hanafiah, M. A. K. M. (2011). Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 83, 1446–1456.

    Article  Google Scholar 

  • Omer, A. M., Dey, R., Eltaweil, A. S., Abd El-Monaem, E. M., & Ziora, Z. M. (2022). Insights into recent advances of chitosan-based adsorbents for sustainable removal of heavy metals and anions. Arabian Journal of Chemistry, 15, 103543.

    Article  CAS  Google Scholar 

  • Omidvar, A. (2021). Removal of toxic heavy metal ions from waste water using superchalcogens: A theoretical study. Journal of Environmental Chemistry and Engineering, 9, 104787.

    Article  CAS  Google Scholar 

  • Pal, P., & Pal, A. (2017). Modifications of chitosan for cadmium removal: A short review. Journal of Polymer Materials, 34(1), 331–341.

    CAS  Google Scholar 

  • Pal, P., & Pal, A. (2019). Dye removal using waste beads: Efficient utilization of surface-modified chitosan beads generated after lead adsorption process. Journal of Water Process Engineering, 31. https://doi.org/10.1016/j.jwpe.2019.100882

  • Park, D., Yun, Y. S., & Park, J. M. (2010). The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering, 15, 86–102.

    Article  CAS  Google Scholar 

  • Pellis, A., Guebitz, G. M., & Nyanhongo, G. S. (2022). Chitosan: Sources, processing and modification techniques. Gels, 8, 393.

    Article  CAS  Google Scholar 

  • Peralta, M. E., Nisticò, R., Franzoso, F., Magnacca, G., Fernandez, L., Parolo, M. E., León, E. G., & Carlos, L. (2019). Highly efficient removal of heavy metals from waters by magnetic chitosan-based composite. Adsorption, 25, 1337–1347.

    Article  CAS  Google Scholar 

  • Pereira, F. A. R., Sousa, K. S., Cavalcanti, G. R. S., Fonseca, M. G., de Souza, A. G., & Alves, A. P. M. (2013). Chitosan-montmorillonite biocomposite as an adsorbent for copper (II) cations from aqueous solutions. International Journal of Biological Macromolecules, 61, 471–478.

    Article  CAS  Google Scholar 

  • Phuong, H. T., Ba, V. N., Thien, B. N., & Loan, T. T. H. (2022). Accumulation of lead radionuclides in 18 leaf vegetable types in Viet Nam. Journal of Environmental Radioactivity, 251–252, 106960. https://doi.org/10.1016/j.jenvrad.2022.106960

    Article  CAS  Google Scholar 

  • Pillai, C. K. S., Paul, W., & Sharma, C. P. (2009). Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science, 34, 641–678.

    Article  CAS  Google Scholar 

  • Popuri, S. R., Vijaya, Y., Boddu, V. M., & Abburi, K. (2009). Adsorptive removal of copper and nickel ions from water using chitosan-coated PVC beads. Bioresource Technology, 100, 194–199.

    Article  CAS  Google Scholar 

  • Priyadarshanee, M., & Das, S. (2021). Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: A comprehensive review. Journal of Environmental Chemical Engineering, 9(1), 104686.

    Article  CAS  Google Scholar 

  • Qu, J., Hu, Q., Shen, K., Zhang, K., Li, Y., Li, H., Zhang, Q., Wang, J., & Quan, W. (2011). The preparation and characterization of chitosan rods modified with Fe3+ by a chelation mechanism. Carbohydrate Research, 346, 822–827.

    Article  CAS  Google Scholar 

  • Rangel-Mendez, J., Monroy-Zepeda, R., Leyva-Ramos, E., Diaz-Flores, P., & Shirai, K. (2009). Chitosan selectivity for removing cadmium (II), copper (II), and lead (II) from aqueous phase: pH and organic matter effect. Journal of Hazardous Materials, 162(1), 503–511. https://doi.org/10.1016/j.jhazmat.2008.05.073

    Article  CAS  Google Scholar 

  • Rathinam, K., Singh, S. P., Arnusch, C. J., & Kasher, R. (2018). An environmentally-friendly chitosan-lysozyme biocomposite for the effective removal of dyes and heavy metals from aqueous solutions. Carbohydrate Polymers, 199, 506–515.

    Article  CAS  Google Scholar 

  • Repo, E., Warchol, J. K., Bhatnagar, A., & Sillanpaa, M. (2011). Heavy metals adsorption by novel EDTA-modified chitosan–silica hybrid materials. Journal of Colloid and Interface Science, 358, 261–267.

    Article  CAS  Google Scholar 

  • Rhazi, M., Desbriereres, J., Tolaimat, A., Rinaudo, M., Vottero, P., & Alagui, A. (2002). Contribution to the study of the complexation of copper by chitosan and oligomers. Carbohydrate Polymers, 43, 1267–1276.

    CAS  Google Scholar 

  • Saheed, I. O., Oh, W. D., & Suah, F. B. M. (2021). Chitosan modifications for adsorption of pollutants – A review. Journal of Hazardous Materials, 408, 124889.

    Article  CAS  Google Scholar 

  • Sakib, M. N., Mallik, A. K., & Rahman, M. M. (2021). Update on chitosan-based electro spun nanofibers for wastewater treatment: A review. Carbohydrate Polymers, 2, 100064.

    CAS  Google Scholar 

  • Saravanan, A., Karishma, S., Kumar, P. S., Varjani, S., Yaashikaa, P., Jeevanantham, S., Ramamurthy, R., & Reshma, B. (2021). Simultaneous removal of Cu (II) and reactive green 6 dye from wastewater using immobilized mixed fungal biomass and its recovery. Chemosphere, 271, 129519.

    Article  CAS  Google Scholar 

  • Saravanan, A., Senthil Kumar, P., & Preetha, B. (2015). Optimization of process parameters for the removal of chromium (VI) and nickel (II) from aqueous solutions by mixed biosorbents (custard apple seeds and Aspergillus niger) using response surface methodology. Desalination and Water Treatment, 57(31), 14530–14543.

    Article  Google Scholar 

  • Sargın, I., & Arslan, G. (2015). Chitosan/sporopollenin microcapsules: Preparation, characterisation and application in heavy metal removal. International Journal of Biological Macromolecules, 75, 230–238.

    Article  Google Scholar 

  • Septhum, A., Rattanaphani, A., Bremner, J. B., & Rattanaphani, V. (2007). An adsorption study of Al (III) ions onto chitosan. Journal of Hazardous Materials, 148, 185–191.

    Article  CAS  Google Scholar 

  • Shahnaz, T., Sharma, V., Subbiah, S., & Narayanasamy, S. (2020). Multivariate optimisation of Cr (VI), Co (III) and Cu (II) adsorption onto nanobentonite incorporated nanocellulose/chitosan aerogel using response surface methodology. Journal of Water Process Engineering. https://doi.org/10.1016/j.jwpe.2020.101283

  • Shankar, P., Gomathi, T., Vijayalakshmi, K., & Sudha, P. N. (2014). Comparative studies on the removal of heavy metals ions onto cross linked chitosan-g-acrylonitrile copolymer. International Journal of Biological Macromolecules, 67, 180–188.

    Article  CAS  Google Scholar 

  • Shenvi, S. S., Rashid, S. A., Ismail, A. F., Kassim, M. A., & Isloor, A. M. (2013). Preparation and characterization of PPEES/chitosan composite nanofiltration membrane. Desalination, 315, 135–141.

    Article  CAS  Google Scholar 

  • Sheth, Y., Dharaskar, S., Khalid, M., & Sonawane, S. (2021). An environment friendly approach for heavy metal removal from industrial wastewater using chitosan based biosorbent: A review. Sustainable Energy Technologies and Assessments, 43, 100951.

    Article  Google Scholar 

  • Shoueir, K. R., El-Desouky, N., Rashad, M. M., Ahmed, M. K., Janowska, I., & El-Kemary, M. (2021). Chitosan based-nanoparticles and nanocapsules: Overview, physicochemical features, applications of a nanofibrous scaffold, and bioprinting. International Journal of Biological Macromolecules, 167, 1176–1197.

    Article  CAS  Google Scholar 

  • Singhon, R., Husson, J., Knorr, M., Lakard, B., & Euvrard, M. (2012). Adsorption of Ni (II) ions on colloidal hybrid organic–inorganic silica composites. Colloids and Surfaces B: Biointerfaces, 93, 1–7.

    Article  CAS  Google Scholar 

  • Su, C., Wang, J., Chen, Z., Meng, J., Yin, G., Zhou, Y., & Wang, T. (2023). Sources and health risks of heavy metals in soils and vegetables from intensive human intervention areas in South China. Science of the Total Environment, 857, 159389.

    Article  CAS  Google Scholar 

  • Sutirman, Z. A., Rahim, E. A., Sanagi, M. M., Abd Karim, K. J., & Wan Ibrahim, W. A. (2020). New efficient chitosan derivative for Cu(II) ions removal: Characterization and adsorption performance. International Journal of Biological Macromolecules, 153, 513–522. https://doi.org/10.1016/j.ijbiomac.2020.03.015

    Article  CAS  Google Scholar 

  • Tan, W. S., & Ting, A. S. Y. (2014). Alginate-immobilized bentonite clay: Adsorption efficacy and reusability for Cu (II) removal from aqueous solution. Bioresource Technology, 160, 115–118.

    Article  CAS  Google Scholar 

  • Tang, S., Yang, J., Lin, L., Peng, K., Chen, Y., Jin, S., et al. (2020). Construction of physically crosslinked chitosan/sodium alginate/calcium ion double-network hydrogel and its application to heavy metal ions removal. Chemical Engineering Journal, 393, 124728. https://doi.org/10.1016/j.cej.2020.124728

  • Tian, T., Bai, Z., Wang, B., Zhao, S., & Zhang, Y. (2020). Facile fabrication of polyacrylic acid functionalized carboxymethyl chitosan microspheres for selective and efficient removal of Ni(II) from multicomponent wastewater. Colloids and Surfaces A, Physicochemical and Engineering Aspects. https://doi.org/10.1016/j.colsurfa.2020.124676

  • Trikkaliotis, D. G., Ainali, N. M., Tolkou, A. K., Mitropoulos, A. C., Lambropoulou, D. A., Bikiaris, D. N., & Kyzas, G. Z. (2022). Removal of heavy metal ions from wastewaters by using chitosan/poly (vinyl alcohol) adsorbents: A review. Macromolecule, 2, 403–425.

    CAS  Google Scholar 

  • Uragami, T., & Tokura, S. (2006). Material science of chitin and chitosan. Springer.

    Book  Google Scholar 

  • Varma, A. J., Deshpande, S. V., & Kennedy, J. F. (2004). Metal complexation by chitosan and its derivatives: A review. Carbohydrate Polymers, 55, 77–93.

    Article  CAS  Google Scholar 

  • Vidal, R. R. L., & Moraes, J. S. (2019). Removal of organic pollutants from wastewater using chitosan: A literature review. International Journal of Environmental Science and Technology, 16, 1741–1754.

    Article  CAS  Google Scholar 

  • Vieira, R. S., Oliveira, M. M., Guibal, E., Castellón, E. R., & Beppu, M. M. (2011). Copper, mercury and chromium adsorption on natural and crosslinked chitosan films: An XPS investigation of mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 374, 108–114.

    Article  CAS  Google Scholar 

  • Vijaya, Y., Popuri, S. R., Boddu, V. M., & Krishnaiah, A. (2008). Modified chitosan and calcium alginate biopolymer sorbents for removal of nickel (II) through adsorption. Carbohydrate Polymers, 72, 261–271.

    Article  CAS  Google Scholar 

  • Vold, I. M. N., Varum, K. M., Guibal, E., & Smidsrod, O. (2003). Binding of ions to chitosan—Selectivity studies. Carbohydrate Polymers, 54, 471–477.

    Article  CAS  Google Scholar 

  • Volesky, B. (2003). Sorption and biosorption. BV Sorbex Inc.

    Google Scholar 

  • Wadhawan, S., Jain, A., Nayyar, J., & Mehta, S. K. (2020). Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: A review. Journal of Water Process and Engineering, 33, 101038.

    Article  Google Scholar 

  • Wan, M. W., Kan, C. C., Rogel, B. D., & Dalida, M. L. P. (2010). Adsorption of copper (II) and lead (II) ions from aqueous solution on chitosan-coated sand. Carbohydrate Polymers, 80(3), 891–899.

    Article  CAS  Google Scholar 

  • Wang, J., & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances, 24, 427–451.

    Article  CAS  Google Scholar 

  • Wang, L., Xing, R., Liu, S., Cai, S., Yu, H., Feng, J., Li, R., & Li, P. (2010). Synthesis and evaluation of a thiourea-modified chitosan derivative applied for adsorption of Hg (II) from synthetic wastewater. International Journal of Biological Macromolecules, 46, 524–528.

    Article  CAS  Google Scholar 

  • Wang, X., Sun, R., & Wang, C. (2014). pH dependence and thermodynamics of Hg (II) adsorption onto chitosan-poly (vinyl alcohol) hydrogel adsorbent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 441, 51–58.

    Article  CAS  Google Scholar 

  • Wang, X., Zheng, Y., & Wang, A. (2009). Fast removal of copper ions from aqueous solution by chitosan-g-poly (acrylic acid)/attapulgite composites. Journal of Hazardous Materials, 168, 970–977.

    Article  CAS  Google Scholar 

  • Wu, S., P., Dai, X, Z., Kan, J, R., Shilong, F, D., & Zhu, M. Y. (2017). Fabrication of carboxymethyl chitosan–hemicellulose resin for adsorptive removal of heavy metals from wastewater. Chinese Chemical Letters, 28, 625–632.

    Article  Google Scholar 

  • Xu, K., Li, L., Huang, Z., Tian, Z., & Li, H. (2022). Efficient adsorption of heavy metals from wastewater on nanocomposite beads prepared by chitosan and paper sludge. Science of the Total Environment, 846, 157399.

    Article  CAS  Google Scholar 

  • Yang, R., Su, Y., Aubrecht, K. B., Wang, X., Ma, H., Grubbs, R. B., Hsiao, B. S., & Chu, B. (2015). Thiol-functionalized chitin nanofibers for As (III) adsorption. Polymer, 60, 9–17.

    Article  CAS  Google Scholar 

  • Yazdi, F., Anbia, M., & Sepehrian, M. (2023). Recent advances in removal of inorganic anions from water by chitosan-based composites: A comprehensive review. Carbohydrate Polymers, 320, 121230.

    Article  CAS  Google Scholar 

  • Youcefi, F., Ouahab, L. W., Borsali, L., & Bengherbi, S. E.-I. (2022). Heavy metal removal efficiency and antibacterial activity of chitosan beads prepared from crustacean waste. Materials Today: Proceedings, 53, 265–268.

    CAS  Google Scholar 

  • Yu, J., Zheng, J., Lu, Q., Yang, S., Zhang, X., Wang, X., et al. (2016). Selective adsorption and reusability behavior for Pb2+ and Cd2+ on chitosan/poly(ethylene glycol)/poly (acrylic acid) adsorbent prepared by glow-discharge electrolysis plasma. Colloid and Polymer Science, 294(10), 1585–1598.

    Article  CAS  Google Scholar 

  • Yu, R., Shi, Y., Yang, D., Liu, Y., Qu, J., & Yu, Z. Z. (2017). Graphene oxide/chitosan aerogel microspheres with honeycomb-cobweb and radially oriented microchannel structures for broad-spectrum and rapid adsorption of water contaminants. ACS Applied Materials & Interfaces, 9(26), 21809–21819.

    Article  CAS  Google Scholar 

  • Zeng, L., Chen, Y., Zhang, Q., Guo, X., Peng, Y., Xiao, H., Chen, X., & Luo, J. (2015). Adsorption of Cd(II), Cu(II) and Ni(II) ions by cross-linking chitosan/rectorite nano-hybrid composite microspheres. Carbohydrate Polymers, 130, 333–343.

    Article  CAS  Google Scholar 

  • Zhang, L., Yang, S., Han, T., Zhong, L., Ma, C., Zhou, Y., et al. (2012). Improvement of Ag (I) adsorption onto chitosan/triethanolamine composite sorbent by an ion-imprinted technology. Applied Surface Science, 263, 696–703. https://doi.org/10.1016/j.apsusc.2012.09.143

    Article  CAS  Google Scholar 

  • Zhang, B., Hu, R., Sun, D., Wu, T., & Li, Y. (2018). Fabrication of chitosan/magnetite-graphene oxide composites as a novel bioadsorbent for adsorption and detoxification of Cr (VI) from aqueous solution. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598-018-33925-7

    Article  CAS  Google Scholar 

  • Zhang, L., Tang, S., He, F., Liu, Y., Mao, W., & Guan, Y. (2019). Highly efficient and selective capture of heavy metals by poly (acrylic acid) grafted chitosan and biochar composite for wastewater treatment. Chemical Engineering Journal, 378, 122215.

    Article  CAS  Google Scholar 

  • Zhang, L., Zhong, L., Yang, S., Liu, D., Wang, Y., Wang, S., Han, X., & Zhang, X. (2015). Adsorption of Ni (II) ion on Ni (II) ion-imprinted magnetic chitosan/poly(vinyl alcohol) composite. Colloid Polymer Science, 293, 2497–2506.

    Article  CAS  Google Scholar 

  • Zhang, Q., Zhao, D., Feng, S., Wang, Y., Jin, J., Alsaedi, A., Hayat, T., & Chen, C. (2019). Synthesis of nanoscale zero-valent iron loaded chitosan for synergistically enhanced removal of U(VI) based on adsorption and reduction. Journal of Colloid and Interface Science, 552, 735–743.

    Article  CAS  Google Scholar 

  • Zhang, Y., Haris, M., Zhang, L., Zhang, C., Wei, T., Li, X., Niu, Y., & Li, Y. (2022). Amino-modified chitosan/gold tailings composite for selective and highly efficient removal of lead and cadmium from wastewater. Chemosphere, 308, 136086.

    Article  CAS  Google Scholar 

  • Zhang, Y., Zhao, M., Cheng, Q., Wang, C., Li, H., Han, X., Fan, Z., Su, G., Pan, D., & Li, Z. (2021). Research progress of adsorption and removal of heavy metals by chitosan and its derivatives: A review. Chemosphere, 279, 130927.

    Article  CAS  Google Scholar 

  • Zhao, H., Xu, J., Lan, W., Wang, T., & Luo, G. (2013). Microfluidic production of porous chitosan/silica hybrid microspheres and its Cu (II) adsorption performance. Chemical Engineering Journal, 229, 82–89.

    Article  CAS  Google Scholar 

  • Zhou, L., Liu, Z., Liu, J., & Huang, Q. (2010). Adsorption of Hg (II) from aqueous solution by ethylenediamine-modified magnetic crosslinking chitosan microspheres. Desalination, 258, 41–47.

    Article  CAS  Google Scholar 

  • Zhou, L., Wang, Y., Liu, Z., & Huang, Q. (2009). Characteristics of equilibrium, kinetics studies for adsorption of Hg (II), Cu (II), and Ni (II) ions by thiourea modified magnetic chitosan microspheres. Journal of Hazardous Materials, 161, 995–1002.

    Article  CAS  Google Scholar 

  • Zhou, W., Meng, X., Gao, J., Zhao, H., Zhao, G., & Ma, J. (2021). Electrochemical regeneration of carbon-based adsorbents: A review of regeneration mechanisms, reactors, and future prospects. Chemical Engineering Journal Advances, 5, 100083. https://doi.org/10.1016/j.ceja.2020.100083

    Article  CAS  Google Scholar 

  • Zhu, C., Tia, H., Cheng, K., Liu, K., Wang, K., Hua, S., Gao, J., & Zhou, J. (2016). Potentials of whole process control of heavy metals emissions from coal-fired power plants in China. Journal of Cleaner Production, 114, 343–351.

    Article  CAS  Google Scholar 

  • Zia, Q., Tabassum, M., Lu, Z., Khawar, M. T., Song, J., Gong, H., et al. (2020). Porous poly (L–lactic acid)/chitosan nanofibres for copper ion adsorption. Carbohydrate Polymers, 227, 115343.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the facilities provided by the Vice-chancellor of Gautam Buddha University, Greater Noida, Uttar Pradesh India.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

The first author, Shiv Shankar, wrote the manuscript and formulated and designed the study. The corresponding author, Sarita Joshi, wrote the manuscript and prepared the figures and tables. The co-author, Rajeev Kumar Srivastava, reviewed the manuscript.

Corresponding author

Correspondence to Sarita Joshi.

Ethics declarations

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Competing interests

There are no any financial and non-financial competing interests among the authors of the manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

•Chitosan is the second most abundant biopolymer found in nature.

•Production of chitosan from chitin obtained from different sources is discussed.

•Various physical and chemical agents for modifications of chitosan are reviewed.

•The advantages of cross-linking and grafting of chitosan are reviewed.

•Disposal of spent chitosan composites is discussed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankar, S., Joshi, S. & Srivastava, R.K. A review on heavy metal biosorption utilizing modified chitosan. Environ Monit Assess 195, 1350 (2023). https://doi.org/10.1007/s10661-023-11963-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11963-7

Keywords

Navigation