Skip to main content

Synthesis and Modification Strategies of Chitosan and Its Interaction with Metal Ions

  • Chapter
  • First Online:
Chitosan for Biomaterials III

Part of the book series: Advances in Polymer Science ((POLYMER,volume 287))

Abstract

Chitosan is one of the most important and widely available biomaterials produced by nature for remediation of its resources. It is obtained by deacetylation of chitin extracted from marine waste materials and highly useful to adsorb the toxic ions existing in the water body as it has a large number of active functionalities of hydroxyl and amine groups. The chitosan has several advantages including low cost, bio-degradable, and bio-compatibility over other chemically synthesized materials in the laboratory. Different chitosan-based materials have been identified and tested in the removal of toxic anions, especially, metals, metalloids, dyes, hydrocarbons, organic pesticides, etc. In this review, we focused on the functionalized forms of chitosan with metal ions and their adsorption on toxic ions, such as fluoride, phosphate, nitrate, and arsenic from waters using batch experiments. Also, it intensively focused on the synthetic methods, feasibility, and the regeneration/reusability of the materials. The results of this review indicated that the metal-loaded chitosan-based composite materials have shown much higher efficiency than the raw forms of chitosan and metal/metal oxides or hydroxides due to the synergistic interaction and the affinity of the materials. In particular, the mechanism of interactions of toxic ions and the metal ions present in the composites was thoroughly reviewed using analytical and the experimental data that existed in the literature. The reported adsorption densities, collected by recently reported materials, and the selectivity test results were much higher than those of other bio-based materials and inorganic nanocomposites. This review critically discussed the real-water analysis, cost-effectiveness of the reported materials. Importantly, the clean-up and the disposal methods for the pollutant sorbed materials and other areas requiring further research were addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suresh PV (2012) Biodegradation of shrimp processing bio-waste and concomitant production of chitinase enzyme and N-acetyl-D-glucosamine by marine bacteria: production and process optimization. World J Microbiol Biotechnol 28:2945–2962

    Article  CAS  PubMed  Google Scholar 

  2. Suryawanshi N, Jujjavarapu SE, Ayothiraman S (2019) Marine shell industrial wastes–an abundant source of chitin and its derivatives: constituents, pretreatment, fermentation, and pleiotropic applications – a revisit. Int J Environ Sci Technol 16:3877–3898

    Article  CAS  Google Scholar 

  3. Zhao D, Huang W-C, Guo N, Zhang S et al (2019) Two-step separation of chitin from shrimp shells using citric acid and deep eutectic solvents with the assistance of microwave. Polymers (Basel) 11:409

    Article  CAS  Google Scholar 

  4. Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43–74

    Article  CAS  Google Scholar 

  5. Viswanathan N, Sundaram CS, Meenakshi S (2009) Removal of fluoride from aqueous solution using protonated chitosan beads. J Hazard Mater 161:423–430

    Article  CAS  PubMed  Google Scholar 

  6. Kousalya GN, Rajiv Gandhi M, Meenakshi S (2010) Sorption of chromium(VI) using modified forms of chitosan beads. Int J Biol Macromol 47:308–315

    Article  CAS  PubMed  Google Scholar 

  7. Rajiv Gandhi M, Kousalya GN, Viswanathan N, Meenakshi S (2011) Sorption behaviour of copper on chemically modified chitosan beads from aqueous solution. Carbohydr Polym 83:1082–1087

    Article  CAS  Google Scholar 

  8. Pokhrel S, Yadav PN (2019) Functionalization of chitosan polymer and their applications. J Macromol Sci A 56:450–475

    Article  CAS  Google Scholar 

  9. Macquarrie DJ, Hardy JJE (2005) Applications of functionalized chitosan in catalysis. Ind Eng Chem Res 44:8499–8520

    Article  CAS  Google Scholar 

  10. Mincke S, Asere TG, Verheye I, Folens K et al (2019) Functionalized chitosan adsorbents allow recovery of palladium and platinum from acidic aqueous solutions. Green Chem 21:2295–2306

    Article  CAS  Google Scholar 

  11. Carvalho IC, Medeiros Borsagli FGL, Mansur AAP, Caldeira CL et al (2019) 3D sponges of chemically functionalized chitosan for potential environmental pollution remediation: biosorbents for anionic dye adsorption and ‘antibiotic-free’ antibacterial activity. Environ Technol:1–21

    Google Scholar 

  12. Zarghami Z, Akbari A, Latifi AM, Amani MA (2016) Design of a new integrated chitosan-PAMAM dendrimer biosorbent for heavy metals removing and study of its adsorption kinetics and thermodynamics. Bioresour Technol 205:230–238

    Article  CAS  PubMed  Google Scholar 

  13. Ji J, Wang L, Yu H, Chen Y et al (2014) Chemical modifications ofcChitosan and its applications. Polym.-Plast. Technol. Engineering 53:1494–1505

    CAS  Google Scholar 

  14. Bhatt R, Kushwaha S, Bojja S, Padmaja P (2018) Chitosan–thiobarbituric acid: a superadsorbent for mercury. ACS Omega 3:13183–13194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao L-B, Huang R, Bai M-X, Wu D-Y, Tian Z-Q (2011) Effect of aromatic amine−metal interaction on surface vibrational raman spectroscopy of adsorbed molecules investigated by density functional theory. J Phys Chem C 115:4174–4183

    Article  CAS  Google Scholar 

  16. Barik B, Nayak PS, Achary LSK, Kumar A, Dash P (2020) Synthesis of alumina-based cross-linked chitosan–HPMC biocomposite film: an efficient and user-friendly adsorbent for multipurpose water purification. New J Chem 44:322–337

    Article  CAS  Google Scholar 

  17. Mohapatra M, Anand S, Mishra BK, Giles DE, Singh P (2009) Review of fluoride removal from drinking water. J Environ Manage 91:67–77

    Article  CAS  PubMed  Google Scholar 

  18. Wambu EW, Ambusso WO, Onindo C, Muthakia GK (2015) Review of fluoride removal from water by adsorption using soil adsorbents – an evaluation of the status. J Water Reuse Desalin 6:1–29

    Article  CAS  Google Scholar 

  19. Viswanathan N, Sundaram CS, Meenakshi S (2009) Sorption behaviour of fluoride on carboxylated cross-linked chitosan beads. Colloids Surf B Biointerfaces 68:48–54

    Article  CAS  PubMed  Google Scholar 

  20. Muthu Prabhu S, Meenakshi S (2014) Enriched fluoride sorption using chitosan supported mixed metal oxides beads: synthesis, characterization and mechanism. J Water Process Eng 2:96–104

    Article  Google Scholar 

  21. Muthu Prabhu S, Meenakshi S (2015) A dendrimer-like hyper branched chitosan beads toward fluoride adsorption from water. Int J Biol Macromol 78:280–286

    Google Scholar 

  22. Hu H, Yang L, Lin Z, Xiang X et al (2018) Preparation and characterization of novel magnetic Fe3O4/chitosan/Al(OH)3 beads and its adsorption for fluoride. Int J Biol Macromol 114:256–262

    Article  CAS  PubMed  Google Scholar 

  23. Pandi K, Viswanathan N, Meenakshi S (2019) Hydrothermal synthesis of magnetic iron oxide encrusted hydrocalumite-chitosan composite for defluoridation studies. Int J Biol Macromol 132:600–605

    Article  CAS  PubMed  Google Scholar 

  24. Pandi K, Periyasamy S, Viswanathan N (2017) Remediation of fluoride from drinking water using magnetic iron oxide coated hydrotalcite/chitosan composite. Int J Biol Macromol 104:1569–1577

    Article  CAS  PubMed  Google Scholar 

  25. Pandi K, Viswanathan N (2015) Synthesis and applications of eco-magnetic nano-hydroxyapatite chitosan composite for enhanced fluoride sorption. Carbohydr Polym 134:732–739

    Article  CAS  PubMed  Google Scholar 

  26. Prasad KS, Amin Y, Selvaraj K (2014) Defluoridation using biomimetically synthesized nano zirconium chitosan composite: kinetic and equilibrium studies. J Hazard Mater 276:232–240

    Article  CAS  PubMed  Google Scholar 

  27. Ghanbarian M, Ghanbarian M, Mahvi AH, Tabatabaie T (2020) Enhanced fluoride removal over MgFe2O4–chitosan–CaAl nanohybrid: response surface optimization, kinetic and isotherm study. Int J Biol Macromol 148:574–590

    Article  CAS  PubMed  Google Scholar 

  28. Affonso LN, Marques JL, Lima VVC, Gonçalves JO et al (2020) Removal of fluoride from fertilizer industry effluent using carbon nanotubes stabilized in chitosan sponge. J Hazard Mater 388:122042

    Article  CAS  PubMed  Google Scholar 

  29. Viswanathan N, Meenakshi S (2008) Enhanced fluoride sorption using La(III) incorporated carboxylated chitosan beads. J Colloid Interface Sci 322:375–383

    Article  CAS  PubMed  Google Scholar 

  30. Viswanathan N, Meenakshi S (2008) Selective sorption of fluoride using Fe(III) loaded carboxylated chitosan beads. J Fluor Chem 129:503–509

    Article  CAS  Google Scholar 

  31. Liang P, An R, Li R, Wang D (2018) Comparison of La3+ and mixed rare earths-loaded magnetic chitosan beads for fluoride adsorption. Int J Biol Macromol 111:255–263

    Article  CAS  PubMed  Google Scholar 

  32. Tandekar S, Saravanan D, Korde S, Jugade R (2020) Gamma degraded chitosan-Fe(III) beads for defluoridation of water. Mater Today: Proc 29:726–732

    CAS  Google Scholar 

  33. Viswanathan N, Pandi K, Meenakshi S (2014) Synthesis of metal ion entrapped silica gel/chitosan biocomposite for defluoridation studies. Int J Biol Macromol 70:347–353

    Article  CAS  PubMed  Google Scholar 

  34. Nagaraj A, Pillay K, Kishor Kumar S, Rajan M (2020) Dicarboxylic acid cross-linked metal ion decorated bentonite clay and chitosan for fluoride removal studies. RSC Adv 10:16791–16803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Muthu Prabhu S, Meenakshi S (2016) Defluoridation of water using dicarboxylic acids mediated chitosan-polyaniline/zirconium biopolymeric complex. Int J Biol Macromol 85:16–22

    Article  CAS  PubMed  Google Scholar 

  36. Preethi J, Karthikeyan P, Vigneshwaran S, Meenakshi S (2021) Facile synthesis of Zr4+ incorporated chitosan/gelatin composite for the sequestration of chromium(VI) and fluoride from water. Chemosphere 262:128317

    Article  CAS  PubMed  Google Scholar 

  37. Muthu Prabhu S, Elanchezhiyan SS, Lee G, Meenakshi S (2016) Defluoridation of water by Tea-bag model using La3+ modified synthetic resin@chitosan biocomposite. Int J Biol Macromol 91:1002–1009

    Google Scholar 

  38. Muthu Prabhu S, Subaramanian M, Meenakshi S (2016) A simple one-pot in-situ method for the synthesis of aluminum and lanthanum binary oxyhydroxides in chitosan template towards defluoridation of water. Chem Eng J 283:1081–1089

    Google Scholar 

  39. Chaudhary M, Rawat S, Jain N, Bhatnagar A, Maiti A (2019) Chitosan-Fe-Al-Mn metal oxyhydroxides composite as highly efficient fluoride scavenger for aqueous medium. Carbohydr Polym 216:140–148

    Article  CAS  PubMed  Google Scholar 

  40. Srivastava A, Kumari M, Ramanathan A, Selvaraj K et al (2020) Removal of fluoride from aqueous solution by mesoporous silica nanoparticles functionalized with chitosan derived from mushroom. J Macromol Sci A 57:619–627

    Article  CAS  Google Scholar 

  41. Zhu T, Zhu T, Gao J, Zhang L, Zhang W (2017) Enhanced adsorption of fluoride by cerium immobilized cross-linked chitosan composite. J Fluor Chem 194:80–88

    Article  CAS  Google Scholar 

  42. Hao L, Liu M, Wang N, Li G (2018) A critical review on arsenic removal from water using iron-based adsorbents. RSC Adv 8:39545–39560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kwok KCM, Koong LF, Chen G, McKay G (2014) Mechanism of arsenic removal using chitosan and nanochitosan. J Colloid Interface Sci 416:1–10

    Article  CAS  PubMed  Google Scholar 

  44. Chen CC, Chung YC (2006) Arsenic removal using a biopolymer chitosan sorbent. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:645–658

    Article  CAS  PubMed  Google Scholar 

  45. Pontoni L, Fabbricino M (2012) Use of chitosan and chitosan-derivatives to remove arsenic from aqueous solutions – a mini review. Carbohydr Res 356:86–92

    Article  CAS  PubMed  Google Scholar 

  46. Lin X, Wang L, Jiang S, Cui L, Wu G (2019) Iron-doped chitosan microsphere for As(III) adsorption in aqueous solution: kinetic, isotherm and thermodynamic studies. Korean J Chem Eng 36:1102–1114

    Article  CAS  Google Scholar 

  47. Priya VN, Rajkumar M, Magesh G, Mobika J, Sibi SPL (2020) Chitosan assisted Fe-Al double layered hydroxide/reduced graphene oxide composites for As(V) removal. Mater Chem Phys 251

    Google Scholar 

  48. Shan H, Peng S, Zhao C, Zhan H, Zeng C (2020) Highly efficient removal of As(III) from aqueous solutions using goethite/graphene oxide/chitosan nanocomposite. Int J Biol Macromol 164:13–26

    Article  CAS  PubMed  Google Scholar 

  49. Abou El-Reash YG, Otto M, Kenawy IM, Ouf AM (2011) Adsorption of Cr(VI) and As(V) ions by modified magnetic chitosan chelating resin. Int J Biol Macromol 49:513–522

    Article  CAS  PubMed  Google Scholar 

  50. Liu B, Wang D, Li H, Xu Y, Zhang L (2011) As(III) removal from aqueous solution using α-Fe2O3 impregnated chitosan beads with As(III) as imprinted ions. Desalination 272:286–292

    Article  CAS  Google Scholar 

  51. Chauhan D, Dwivedi J, Sankararamakrishnan N (2014) Novel chitosan/PVA/zerovalent iron biopolymeric nanofibers with enhanced arsenic removal applications. Environ Sci Pollut Res Int 21:9430–9442

    Article  CAS  PubMed  Google Scholar 

  52. Wang J, Xu W, Chen L, Huang X, Liu J (2014) Preparation and evaluation of magnetic nanoparticles impregnated chitosan beads for arsenic removal from water. Chem Eng J 251:25–34

    Article  CAS  Google Scholar 

  53. Ren L, Zhou W, Sun B, Li H et al (2019) Defects-engineering of magnetic γ-Fe2O3 ultrathin nanosheets/mesoporous black TiO2 hollow sphere heterojunctions for efficient charge separation and the solar-driven photocatalytic mechanism of tetracycline degradation. Appl Catal Environ 240:319–328

    Article  CAS  Google Scholar 

  54. Salih SS, Mahdi A, Kadhom M, Ghosh TK (2019) Competitive adsorption of As(III) and As(V) onto chitosan/diatomaceous earth adsorbent. J Environ Chem Eng 7

    Google Scholar 

  55. Zhang S, Liu Y, Gu P, Ma R et al (2019) Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: mechanism exploration from both experimental and DFT studies. Appl Catal Environ 248:1–10

    Article  CAS  Google Scholar 

  56. Ayub A, Raza ZA, Majeed MI, Tariq MR, Irfan A (2020) Development of sustainable magnetic chitosan biosorbent beads for kinetic remediation of arsenic contaminated water. Int J Biol Macromol 163:603–617

    Article  CAS  PubMed  Google Scholar 

  57. de Brião, G. V., de Andrade, J. R., da Silva, M. G. C., Vieira, M. G. A., Removal of toxic metals from water using chitosan-based magnetic adsorbents. A review. Environ Chem Lett 2020, 18, 1145–1168

    Google Scholar 

  58. Kloster GA, Valiente M, Marcovich NE, Mosiewicki MA (2020) Adsorption of arsenic onto films based on chitosan and chitosan/nano-iron oxide. Int J Biol Macromol 165:1286–1295

    Article  CAS  PubMed  Google Scholar 

  59. Lobo C, Castellari J, Colman Lerner J, Bertola N, Zaritzky N (2020) Functional iron chitosan microspheres synthesized by ionotropic gelation for the removal of arsenic (V) from water. Int J Biol Macromol 164:1575–1583

    Article  CAS  PubMed  Google Scholar 

  60. Sierra-Trejo PV, Guibal E, Louvier-Hernández JF (2020) Arsenic sorption on chitosan-based sorbents: comparison of the effect of molybdate and tungstate loading on As(V) sorption properties. J Polym Environ 28:934–947

    Article  CAS  Google Scholar 

  61. Tan P, Zheng Y, Hu Y (2020) Efficient removal of arsenate from water by lanthanum immobilized electrospun chitosan nanofiber. Colloids Surf A Physicochem Eng Asp 589

    Google Scholar 

  62. Yang Q, Gong L, Huang L, Xie Q et al (2020) Adsorption of As(V) from aqueous solution on chitosan-modified diatomite. Int J Environ Res Public Health 17

    Google Scholar 

  63. Zeng H, Wang F, Xu K, Zhang J, Li D (2020). Optimization and regeneration of chitosan-alginate hybrid adsorbent embedding iron-manganese sludge for arsenic removal. Colloids Surf A 607:125500

    Google Scholar 

  64. Zeng H, Yu Y, Wang F, Zhang J, Li D (2020) Arsenic(V) removal by granular adsorbents made from water treatment residuals materials and chitosan. Colloids Surf A Physicochem Eng Asp 585

    Google Scholar 

  65. Zeng J, Qi P, Shi J, Pichler T et al (2020) Chitosan functionalized iron nanosheet for enhanced removal of As(III) and Sb(III): synergistic effect and mechanism. Chem Eng J 382

    Google Scholar 

  66. Muthu Prabhu S, Sasaki K (2017) Fabrication of chitosan-reinforced ZrxAl1-xOOH nanocomposites and their arsenite and fluoride depollution densities from single/binary systems. ChemistrySelect 2:6375–6387

    Article  CAS  Google Scholar 

  67. Hamoudi S, Belkacemi K (2013) Adsorption of nitrate and phosphate ions from aqueous solutions using organically-functionalized silica materials: kinetic modeling. Fuel 110:107–113

    Article  CAS  Google Scholar 

  68. Mohsen MS (2004) Treatment and reuse of industrial effluents: case study of a thermal power plant. Desalination 167:75–86

    Article  CAS  Google Scholar 

  69. Kumar IA, Jeyaprabha C, Meenakshi S, Viswanathan N (2019) Hydrothermal encapsulation of lanthanum oxide derived Aegle marmelos admixed chitosan bead system for nitrate and phosphate retention. Int J Biol Macromol 130:527–535

    Article  CAS  PubMed  Google Scholar 

  70. Kumar IA, Jeyaprabha C, Viswanathan N (2020) Effect of polyvalent metal ions encrusted biopolymeric hybrid beads on nitrate adsorption. J Environ Chem Eng 8:103894

    Article  CAS  Google Scholar 

  71. Banu HT, Karthikeyan P, Meenakshi S (2019) Zr4+ ions embedded chitosan-soya bean husk activated bio-char composite beads for the recovery of nitrate and phosphate ions from aqueous solution. Int J Biol Macromol 130:573–583

    Article  CAS  PubMed  Google Scholar 

  72. Jiang H, Chen P, Luo S, Tu X et al (2013) Synthesis of novel nanocomposite Fe3O4/ZrO2/chitosan and its application for removal of nitrate and phosphate. Appl Surf Sci 284:942–949

    Article  CAS  Google Scholar 

  73. Karthikeyan P, Banu HAT, Meenakshi S (2019) Removal of phosphate and nitrate ions from aqueous solution using La3+ incorporated chitosan biopolymeric matrix membrane. Int J Biol Macromol 124:492–504

    Article  CAS  PubMed  Google Scholar 

  74. Karthikeyan P, Banu HAT, Meenakshi S (2019) Synthesis and characterization of metal loaded chitosan-alginate biopolymeric hybrid beads for the efficient removal of phosphate and nitrate ions from aqueous solution. Int J Biol Macromol 130:407–418

    Article  CAS  PubMed  Google Scholar 

  75. Karthikeyan P, Meenakshi S (2019) In-situ fabrication of cerium incorporated chitosan-β-cyclodextrin microspheres as an effective adsorbent for toxic anions removal. Environ Nanotechnol Monitor Manage 12:100272

    Article  Google Scholar 

  76. Karthikeyan P, Meenakshi S (2019) In-situ fabrication of zirconium entrenched biopolymeric hybrid membrane for the removal of toxic anions from aqueous medium. Int J Biol Macromol 141:1199–1209

    Article  CAS  PubMed  Google Scholar 

  77. Karthikeyan P, Vigneshwaran S, Meenakshi S (2020) Al3+ incorporated chitosan-gelatin hybrid microspheres and their use for toxic ions removal: assessment of its sustainability metrics. Environ Chem Ecotoxicol 2:97–106

    Article  Google Scholar 

  78. Kim J-H, Kim S-B, Lee S-H, Choi J-W (2018) Laboratory and pilot-scale field experiments for application of iron oxide nanoparticle-loaded chitosan composites to phosphate removal from natural water. Environ Technol 39:770–779

    Article  CAS  PubMed  Google Scholar 

  79. Kumar IA, Viswanathan N (2017) Development of multivalent metal ions imprinted chitosan biocomposites for phosphate sorption. Int J Biol Macromol 104:1539–1547

    Article  CAS  PubMed  Google Scholar 

  80. Liu Q, Hu P, Wang J, Zhang L, Huang R (2016) Phosphate adsorption from aqueous solutions by zirconium (IV) loaded cross-linked chitosan particles. J Taiwan Inst Chem Eng 59:311–319

    Article  CAS  Google Scholar 

  81. Liu X, Zhang L (2015) Removal of phosphate anions using the modified chitosan beads: adsorption kinetic, isotherm and mechanism studies. Powder Technol 277:112–119

    Article  CAS  Google Scholar 

  82. Mahaninia MH, Wilson LD (2016) Cross-linked chitosan beads for phosphate removal from aqueous solution. J Appl Polym Sci 133

    Google Scholar 

  83. Nthumbi RM, Catherine Ngila J, Moodley B, Kindness A, Petrik L (2012) Application of chitosan/polyacrylamide nanofibres for removal of chromate and phosphate in water. Phys Chem Earth 50–52:243–251

    Article  Google Scholar 

  84. Sowmya A, Meenakshi S (2013) An efficient and regenerable quaternary amine modified chitosan beads for the removal of nitrate and phosphate anions. J Environ Chem Eng 1:906–915

    Article  CAS  Google Scholar 

  85. Sowmya A, Meenakshi S (2014) A novel quaternized chitosan–melamine–glutaraldehyde resin for the removal of nitrate and phosphate anions. Int J Biol Macromol 64:224–232

    Article  CAS  PubMed  Google Scholar 

  86. Sowmya A, Meenakshi S (2014) Effective removal of nitrate and phosphate anions from aqueous solutions using functionalised chitosan beads. Desalin Water Treat 52:2583–2593

    Article  CAS  Google Scholar 

  87. Sowmya A, Meenakshi S (2015) Phosphate uptake studies on different types of lanthanum-loaded polymeric materials. Environ Prog Sustain Energy 34:146–154

    Article  CAS  Google Scholar 

  88. Sowmya A, Meenakshi S (2014) Zr(IV) loaded cross-linked chitosan beads with enhanced surface area for the removal of nitrate and phosphate. Int J Biol Macromol 69:336–343

    Article  CAS  PubMed  Google Scholar 

  89. Sowmya A, Meenakshi S (1674-1683) Effective utilization of the functional groups in chitosan by loading Zn(II) for the removal of nitrate and phosphate. Desalin Water Treat 2015:54

    Google Scholar 

  90. Thagira Banu H, Karthikeyan P, Meenakshi S (2018) Lanthanum (III) encapsulated chitosan-montmorillonite composite for the adsorptive removal of phosphate ions from aqueous solution. Int J Biol Macromol 112:284–293

    Article  CAS  PubMed  Google Scholar 

  91. Zavareh S, Behrouzi Z, Avanes A (2017) Cu (II) binded chitosan/Fe3O4 nanocomomposite as a new biosorbent for efficient and selective removal of phosphate. Int J Biol Macromol 101:40–50

    Article  CAS  PubMed  Google Scholar 

  92. Kumar IA, Viswanathan N (2018) Preparation and testing of a tetra-amine copper(II) chitosan bead system for enhanced phosphate remediation. Carbohydr Polym 183:173–182

    Article  CAS  PubMed  Google Scholar 

  93. Kumar IA, Viswanathan N (2019) Hydrothermal fabrication of amine-grafted magnetic gelatin hybrid composite for effective adsorption of nitrate and phosphate. Ind Eng Chem Res 58:21521–21530

    Google Scholar 

  94. Kumar IA, Viswanathan N (2018) Hydrothermal fabrication of zirconium oxyhydroxide capped chitosan/kaolin framework for highly selective nitrate and phosphate retention. Ind Eng Chem Res 57:14470–14481

    Article  CAS  Google Scholar 

  95. Kumar IA, Viswanathan N (2019) Development of magnetic particles encrusted LDH-admixed biopolymeric complex beads for selective phosphate remediation. J Chem Eng Data 64:5725–5736

    Article  CAS  Google Scholar 

  96. Zhao T, Feng T (2016) Application of modified chitosan microspheres for nitrate and phosphate adsorption from aqueous solution. RSC Adv 6:90878–90886

    Article  CAS  Google Scholar 

  97. Golie WM, Upadhyayula S (2017) An investigation on biosorption of nitrate from water by chitosan based organic-inorganic hybrid biocomposites. Int J Biol Macromol 97:489–502

    Article  CAS  PubMed  Google Scholar 

  98. Banu HT, Meenakshi S (2017) One pot synthesis of chitosan grafted quaternized resin for the removal of nitrate and phosphate from aqueous solution. Int J Biol Macromol 104:1517–1527

    Article  CAS  PubMed  Google Scholar 

  99. Hu Q, Chen N, Feng C, Hu W (2015) Nitrate adsorption from aqueous solution using granular chitosan-Fe3+ complex. Appl Surf Sci 347:1–9

    Article  CAS  Google Scholar 

  100. Zhang B, Chen N, Feng C, Zhang Z (2018) Adsorption for phosphate by crosslinked/non-crosslinked-chitosan-Fe(III) complex sorbents: characteristic and mechanism. Chem Eng J 353:361–372

    Article  CAS  Google Scholar 

  101. Zhao Y, Guo L, Shen W, An Q et al (2020) Function integrated chitosan-based beads with throughout sorption sites and inherent diffusion network for efficient phosphate removal. Carbohydr Polym 230:115639

    Article  CAS  PubMed  Google Scholar 

  102. Teimouri A, Nasab SG, Vahdatpoor N, Habibollahi S et al (2016) Chitosan/zeolite Y/Nano ZrO2 nanocomposite as an adsorbent for the removal of nitrate from the aqueous solution. Int J Biol Macromol 93:254–266

    Article  CAS  PubMed  Google Scholar 

  103. Salehi S, Hosseinifard M (2020) Optimized removal of phosphate and nitrate from aqueous media using zirconium functionalized nanochitosan-graphene oxide composite. Cellul 27:8859–8883

    Article  CAS  Google Scholar 

  104. Yazdani MR, Virolainen E, Conley K, Vahala R (2018) Chitosan–zinc(II) complexes as a bio-sorbent for the adsorptive abatement of phosphate: mechanism of complexation and assessment of adsorption performance. Polymers 10:25

    Article  CAS  Google Scholar 

  105. Yazdi F, Anbia M, Salehi S (2019) Characterization of functionalized chitosan-clinoptilolite nanocomposites for nitrate removal from aqueous media. Int J Biol Macromol 130:545–555

    Article  CAS  PubMed  Google Scholar 

  106. Fu C-C, Tran HN, Chen X-H, Juang R-S (2020) Preparation of polyaminated Fe3O4@chitosan core-shell magnetic nanoparticles for efficient adsorption of phosphate in aqueous solutions. J Ind Eng Chem 83:235–246

    Article  CAS  Google Scholar 

  107. Liu B, Yu Y, Han Q, Lou S et al (2020) Fast and efficient phosphate removal on lanthanum-chitosan composite synthesized by controlling the amount of cross-linking agent. Int J Biol Macromol 157:247–258

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

SMP would like to thank the National Research Foundation of Korea (NRF) (2020H1D3A1A04106215) for the Korea Post-doctoral fellowship program.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Subbaiah, M.P., Sankaran, M. (2021). Synthesis and Modification Strategies of Chitosan and Its Interaction with Metal Ions. In: Jayakumar, R., Prabaharan, M. (eds) Chitosan for Biomaterials III. Advances in Polymer Science, vol 287. Springer, Cham. https://doi.org/10.1007/12_2021_88

Download citation

Publish with us

Policies and ethics