Skip to main content
Log in

Chemically Modified Chitosan Bio-Sorbents for the Competitive Complexation of Heavy Metals Ions: A Potential Model for the Treatment of Wastewaters and Industrial Spills

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Heavy metal pollution of water sources has become one of the most serious environmental and health problems nowadays. Chitosan (CHI) and derivatives can be used in the complexation and adsorption of heavy metals in water. Hence, this study compared the influence of CHI and carboxymethyl chitosan (CMC) ligands on the competitive complexation between toxic heavy metal ions with opposite charges Cr(VI) and Cd(II) at different pH values as an alternative and ecologically sustainable proposal for industrial spills of heavy metals into aquatic environments. The properties of the synthesized products and CHI were extensively characterized by several spectroscopy techniques, the competitive kinetics of complexation of metal ions with CHI and two type of CMC (with methanol, CMC 40_ME, and with ethanol, CMC 60_ET) was evaluated by wavelength dispersive X-ray fluorescence spectroscopy (WDXRF). The results clearly indicated the influence of the pH and ligands on the competitive complexation of the cationic or anionic ions. The results demonstrated that O-carboxymethylation of chitosan has occurred with a degree of functionalization of (1.20 ± 0.02) and (0.88 ± 0.02) for CMC 40_ME and CMC 60_ET, respectively, leading to the formation of CMC soluble in alkaline medium (pH range of 3.5 ≤ pH ≤ 6.5 and 4.0 ≤ pH ≤ 8.0 for CMC 40_ME and CMC 60_ET, respectively). In alkaline media, complexation of CMC 40_ME is approximately 10% higher (147.2 ± 0.9 mg g−1) than CMC 60_ET (99.8 ± 2.9 mg g−1) with Cd2+ ions at pH 8.5, and approximately 21% lower [(95 ± 2 mg g−1) and (96.3 ± 2.8 mg g−1) for CMC 40_ME and CMC 60_ET, respectively] than CHI (121 ± 6 mg g−1) for CrxO z−y ions at pH 3.0. The kinetic analysis showed variations for each ion and a significant difference regarding the complexant towards the negatively charged ions. The CMC 40_ME, in any analyzed pH, the complexation occurred during the first 45 min of the process. These results showed that CMC, as polydentate functional ligand, was more efficient than CHI especially for the complexation of cations in basic media. Therefore, these systems appear to be attractive alternatives for the containment of industrial spills of heavy metals in wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. UNESCO (2015) United Nations Educational, Scientific and Cultural Organization Report. UNESCO, Paris

  2. Li X, Li Y, Zhang S, Ye Z (2012) Chem Eng J 183:88–97

    Article  CAS  Google Scholar 

  3. Bailey SE, Olin TJ, Bricka RM, Adran DD (1999) Water Res 33:2469–2479

    Article  CAS  Google Scholar 

  4. Alakhras F (2019) Arab J Sci Eng 44:279–288

    Article  CAS  Google Scholar 

  5. Al-Shahrani H, Alakhras F, Al-Abbad E, Al-Mazaideh G, Hosseini-Bandegharaei A, Ouerfelli N (2018) Glob Nest J 20:620–627

    Article  Google Scholar 

  6. Rojas G, Silva J, Flores JA, Rodriguez A, Ly M, Maldonado H (2005) Sep Purif Technol 44:31–36

    Article  CAS  Google Scholar 

  7. Lalvani SB, Wiltowski T, Hubner A, Weston A, Mandich N (1998) Carbon 36:1219–1226

    Article  CAS  Google Scholar 

  8. Selvaraj K, Manonmani S, Pattabhi S (2003) Bioresour Technol 89:207–211

    Article  CAS  PubMed  Google Scholar 

  9. Erosa MSD, Medina TIS, Mendoza RN, Rodriguez MA (2001) Hydrometallurgy 61:157–167

    Article  Google Scholar 

  10. Brooks CS (1991) Metal recovery from industrial wastes. Lewis Publishers, Chelsea

    Google Scholar 

  11. Laus R, de Favere VT (2011) Bioresour Technol 102:8769–8776

    Article  CAS  PubMed  Google Scholar 

  12. Monier M (2012) Int J Biol Macromol 50:773–781

    Article  CAS  PubMed  Google Scholar 

  13. Spinelli VA, Laranjeira MCM, Fávere VT (2004) React Funct Polym 61:347–352

    Article  CAS  Google Scholar 

  14. Zhang L, Xue J, Zhou X, Fei X, Wang Y, Zhou Y, Zhong L, Han X (2014) Carbohydr Polym 114:514–520

    Article  CAS  PubMed  Google Scholar 

  15. Boamah PO, Huang Y, Hua M, Zhang Q, Liu Y, Onumah J, Wang W, Song Y (2015) Carbohydr Polym 122:255–264

    Article  CAS  PubMed  Google Scholar 

  16. Boamah PO, Huang Y, Hua M, Zhang Q, Wu J, Onumah J, Sam-Amoah LK, Boamah PO (2015) Ecotoxicol Environ Saf 116:113–120

    Article  CAS  PubMed  Google Scholar 

  17. Kyzas GZ, Kostoglou M (2015) Sep Purif Technol 149:92–102

    Article  CAS  Google Scholar 

  18. Jiang R, Zhu H, Yao J, Fu Y, Guan Y (2012) Appl Surf Sci 258:3513–3518

    Article  CAS  Google Scholar 

  19. Gao C, Liu T, Dang Y, Yu Z, Wang W, Guo J, Zhang X, He G, Zheng H, Yin Y, Kong X (2014) Carbohydr Polym 111:964–970

    Article  CAS  PubMed  Google Scholar 

  20. Pratt DY, Wilson LD, Kozinski JA (2013) J Colloid Interface Sci 395:205–211

    Article  CAS  PubMed  Google Scholar 

  21. Schmitz T, Grabovac V, Palmberger TF, Hoffer MH, Bernkop-Schnurch A (2008) Int J Pharm 347:79–85

    Article  CAS  PubMed  Google Scholar 

  22. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Prog Polym Sci 36:981–1014

    Article  CAS  Google Scholar 

  23. Wang L, Peng Q, Li S, Du L, Cai H (2013) J Ind Eng Chem 19:655–658

    Article  CAS  Google Scholar 

  24. Alakhras F, Al-Shahrani H, Al-Abbad E, Al-Rimawi F, Ouerfelli N (2019) Pol J Environ Stud 28:1523–1534

    Article  Google Scholar 

  25. Muzzarelli RAA (2011) Carbohydr Polym 83:1433–1445

    Article  CAS  Google Scholar 

  26. Farag RK, Mohamed RR (2012) Molecules 18:190–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Summer ME (1999) Handbook of soil science, manuals. I. Library of Congress, Section B, Cap. 7 and 8. CRC Press, Boca Raton

  28. Voleski B, Holan ZR (1995) J Biotechnol 11:235–250

    Google Scholar 

  29. Echeverría JC, Morera MT, Maziarán C, Garrido JJ (1998) Environ Pollut 101:275–284

    Article  PubMed  Google Scholar 

  30. Murali V, Aylmore LAG (1983) Soil Sci 135:143–150

    Article  CAS  Google Scholar 

  31. Alakhras F, Ouerfelli N, Al-Mazaideh G, Ababneh T, Al-Abbad E, Abouzeid F (2019) Arab J Sci Eng 44:159–168

    Article  Google Scholar 

  32. Chen X-G, Park H-J (2003) Carbohydr Polym 53:355–359

    Article  CAS  Google Scholar 

  33. de Abreu FR, Campana-Filho SP (2009) Carbohydr Polym 75:214–221

    Article  CAS  Google Scholar 

  34. Nahalka J, Nahálková J, Gemeiner P, Blanárik P (1998) Biotechnol Lett 20:841–845

    Article  CAS  Google Scholar 

  35. de Oliveira-Rosa TR, Debrassi A, da Silva RML, Bressan C, de Freitas RA, Rodrigues CA (2012) J Appl Polym Sci 124:4206–4212

    Article  CAS  Google Scholar 

  36. Hasan S, Ghosh TK, Viswanath DS, Boddu VM (2008) J Hazard Mater 152:826–837

    Article  CAS  PubMed  Google Scholar 

  37. Zhao F, Repo E, Yin D, Sillanpaa ME (2013) J Colloid Interface Sci 409:174–182

    Article  CAS  PubMed  Google Scholar 

  38. Roberts GAF (1992) Chitin chemistry. Macmillan, London

    Book  Google Scholar 

  39. Sorlier P, Viton C, Domard A (2002) Biomacromol 3:1336–1342

    Article  CAS  Google Scholar 

  40. Yan H, Dai J, Yang Z, Yang H, Cheng R (2011) Chem Eng J 174:586–594

    Article  CAS  Google Scholar 

  41. Liu XF, Guan Y, Yang DZ, Li Z, Yao KD (2000) J Appl Polym Sci 79:1324–1335

    Google Scholar 

  42. Franca EF (2009) Biomolecular characterization of biopolymers in solution using computer simulation. PhD Thesis in Chemistry. Center for Science and Technology of Federal University of São Carlos, São Carlos

  43. Delgado AV, Gonzalez-Caballero F, Hunter RJ, Koopal LK, Lyklema J (2005) Pure Appl Chem 77:1753–1805

    Article  CAS  Google Scholar 

  44. Tan SC, Khor E, Tan TK, Wong SM (1998) Talanta 45:713–719

    Article  CAS  PubMed  Google Scholar 

  45. Heidari A, Younesi H, Mehraban Z, Heikkinen H (2013) Int J Biol Macromol 61:251–263

    Article  CAS  PubMed  Google Scholar 

  46. Jung C, Heo J, Han J, Her N, Lee S-J, Oh J, Ryu J, Yoon Y (2013) Sep Purif Technol 106:63–71

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from CNPq, CAPES, FAPEMIG and FINEP/CT-INFRA. The authors express their gratitude to Prof. Luiz Carlos and PhD Student Poliane Chagas (ICEX-UFMG) for the Nuclear Magnetic Resonance analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Guerra Lima Medeiros Borsagli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borsagli, F.G.L.M., Borsagli, A. Chemically Modified Chitosan Bio-Sorbents for the Competitive Complexation of Heavy Metals Ions: A Potential Model for the Treatment of Wastewaters and Industrial Spills. J Polym Environ 27, 1542–1556 (2019). https://doi.org/10.1007/s10924-019-01449-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01449-4

Keywords

Navigation