Skip to main content
Log in

Targeting vimentin: a multifaceted approach to combatting cancer metastasis and drug resistance

  • REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

This comprehensive review explores vimentin as a pivotal therapeutic target in cancer treatment, with a primary focus on mitigating metastasis and overcoming drug resistance. Vimentin, a key player in cancer progression, is intricately involved in processes such as epithelial-to-mesenchymal transition (EMT) and resistance mechanisms to standard cancer therapies. The review delves into diverse vimentin inhibition strategies. Precision tools, including antibodies and nanobodies, selectively neutralize vimentin's pro-tumorigenic effects. DNA and RNA aptamers disrupt vimentin-associated signaling pathways through their adaptable binding properties. Innovative approaches, such as vimentin-targeted vaccines and microRNAs (miRNAs), harness the immune system and post-transcriptional regulation to combat vimentin-expressing cancer cells. By dissecting vimentin inhibition strategies across these categories, this review provides a comprehensive overview of anti-vimentin therapeutics in cancer treatment. It underscores the growing recognition of vimentin as a pivotal therapeutic target in cancer and presents a diverse array of inhibitors, including antibodies, nanobodies, DNA and RNA aptamers, vaccines, and miRNAs. These multifaceted approaches hold substantial promise for tackling metastasis and overcoming drug resistance, collectively presenting new avenues for enhanced cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

This is a review paper, and no new data is generated. All previously published data are cited in the manuscript.

References

  1. Pérez-González, A., Bévant, K., & Blanpain, C. (2023). Cancer cell plasticity during tumor progression, metastasis and response to therapy. Nature Cancer, 4(8), 1063–1082. https://doi.org/10.1038/s43018-023-00595-y

    Article  PubMed  PubMed Central  Google Scholar 

  2. Torborg, S. R., Li, Z., Chan, J. E., & Tammela, T. (2022). Cellular and molecular mechanisms of plasticity in cancer. Trends in Cancer, 8(9), 735–746. https://doi.org/10.1016/j.trecan.2022.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vitale, I., Shema, E., Loi, S., & Galluzzi, L. (2021). Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nature Medicine, 27(2), 212–224. https://doi.org/10.1038/s41591-021-01233-9

    Article  CAS  PubMed  Google Scholar 

  4. Greaves, M., & Maley, C. C. (2012). Clonal evolution in cancer. Nature, 481(7381), 306–313. https://doi.org/10.1038/nature10762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Proietto, M., Crippa, M., Damiani, C., Pasquale, V., Sacco, E., Vanoni, M., et al. (2023). Tumor heterogeneity: preclinical models, emerging technologies, and future applications. [Review]. Frontiers in Oncology, 13. https://doi.org/10.3389/fonc.2023.1164535

  6. Zhou, H., Tan, L., Liu, B., & Guan, X.-Y. (2023). Cancer stem cells: Recent insights and therapies. Biochemical Pharmacology, 209, 115441. https://doi.org/10.1016/j.bcp.2023.115441

    Article  CAS  PubMed  Google Scholar 

  7. Walcher, L., Kistenmacher, A.-K., Suo, H., Kitte, R., Dluczek, S., Strauß, A., et al. (2020). Cancer stem cells—origins and biomarkers: perspectives for targeted personalized therapies. [Review]. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.01280.

  8. Quan, Q., Wang, X., Lu, C., Ma, W., Wang, Y., Xia, G., et al. (2020). Cancer stem-like cells with hybrid epithelial/mesenchymal phenotype leading the collective invasion. Cancer Science, 111(2), 467–476. https://doi.org/10.1111/cas.14285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ayob, A. Z., & Ramasamy, T. S. (2018). Cancer stem cells as key drivers of tumour progression. Journal of Biomedical Science, 25(1), 20. https://doi.org/10.1186/s12929-018-0426-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, Y., Wang, Z., Ajani, J. A., & Song, S. (2021). Drug resistance and Cancer stem cells. Cell Communication and Signaling: CCS, 19(1), 19. https://doi.org/10.1186/s12964-020-00627-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bakir, B., Chiarella, A. M., Pitarresi, J. R., & Rustgi, A. K. (2020). EMT, MET, plasticity, and tumor metastasis. Trends in Cell Biology, 30(10), 764–776. https://doi.org/10.1016/j.tcb.2020.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  12. Akhmetkaliyev, A., Alibrahim, N., Shafiee, D., & Tulchinsky, E. (2023). EMT/MET plasticity in cancer and Go-or-Grow decisions in quiescence: The two sides of the same coin? Molecular Cancer, 22(1), 90. https://doi.org/10.1186/s12943-023-01793-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yuan, S., Norgard, R. J., & Stanger, B. Z. (2019). Cellular plasticity in cancer. Cancer Discovery, 9(7), 837–851. https://doi.org/10.1158/2159-8290.Cd-19-0015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shen, S., & Clairambault, J. (2020). Cell plasticity in cancer cell populations. F1000Research, 9, F1000 Faculty Rev-635. https://doi.org/10.12688/f1000research.24803.1

  15. Aanen, D. K., & Debets, A. J. M. (2019). Mutation-rate plasticity and the germline of unicellular organisms. Proceedings of the Royal Society B: Biological Sciences, 286(1902), 20190128. https://doi.org/10.1098/rspb.2019.0128

    Article  CAS  PubMed Central  Google Scholar 

  16. Wu, S., Du, Y., Beckford, J., & Alachkar, H. (2018). Upregulation of the EMT marker vimentin is associated with poor clinical outcome in acute myeloid leukemia. Journal of Translational Medicine, 16(1), 170. https://doi.org/10.1186/s12967-018-1539-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuburich, N. A., den Hollander, P., Pietz, J. T., & Mani, S. A. (2022). Vimentin and cytokeratin: Good alone, bad together. Seminars in Cancer Biology, 86(Pt 3), 816–826. https://doi.org/10.1016/j.semcancer.2021.12.006

    Article  CAS  PubMed  Google Scholar 

  18. Liu, C. Y., Lin, H. H., Tang, M. J., & Wang, Y. K. (2015). Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget, 6(18), 15966–15983. https://doi.org/10.18632/oncotarget.3862

    Article  PubMed  PubMed Central  Google Scholar 

  19. Berr, A. L., Wiese, K., dos Santos, G., Koch, C. M., Anekalla, K. R., Kidd, M., et al. (2023). Vimentin is required for tumor progression and metastasis in a mouse model of non–small cell lung cancer. Oncogene, 42(25), 2074–2087. https://doi.org/10.1038/s41388-023-02703-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Usman, S., Waseem, N. H., Nguyen, T. K. N., Mohsin, S., Jamal, A., Teh, M.-T., et al. (2021). Vimentin is at the heart of epithelial mesenchymal transition (EMT) mediated metastasis. Cancers, 13(19), 4985.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, Z., Fang, Z., & Ma, J. (2021). Regulatory mechanisms and clinical significance of vimentin in breast cancer. Biomedicine & Pharmacotherapy, 133, 111068. https://doi.org/10.1016/j.biopha.2020.111068

    Article  CAS  Google Scholar 

  22. Qin, S., Jiang, J., Lu, Y., Nice, E. C., Huang, C., Zhang, J., et al. (2020). Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduction and Targeted Therapy, 5(1), 228. https://doi.org/10.1038/s41392-020-00313-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang, Y., Hong, W., & Wei, X. (2022). The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. Journal of Hematology & Oncology, 15(1), 129. https://doi.org/10.1186/s13045-022-01347-8

    Article  Google Scholar 

  24. Lindsey, S., & Langhans, S. A. (2014). Crosstalk of oncogenic signaling pathways during epithelial-mesenchymal transition. Frontiers in Oncology, 4, 358. https://doi.org/10.3389/fonc.2014.00358

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gonzalez, D. M., & Medici, D. (2014). Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal, 7(344), re8. https://doi.org/10.1126/scisignal.2005189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu, C., Wei, Y., & Wei, X. (2019). AXL receptor tyrosine kinase as a promising anti-cancer approach: Functions, molecular mechanisms and clinical applications. Molecular Cancer, 18(1), 153. https://doi.org/10.1186/s12943-019-1090-3

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tanaka, K., Tokunaga, E., Inoue, Y., Yamashita, N., Saeki, H., Okano, S., et al. (2016). Impact of expression of vimentin and Axl in breast cancer. Clinical Breast Cancer, 16(6), 520-526.e522. https://doi.org/10.1016/j.clbc.2016.06.015

    Article  CAS  PubMed  Google Scholar 

  28. Li, X. L., Liu, L., Li, D. D., He, Y. P., Guo, L. H., Sun, L. P., et al. (2017). Integrin β4 promotes cell invasion and epithelial-mesenchymal transition through the modulation of Slug expression in hepatocellular carcinoma. Science and Reports, 7, 40464. https://doi.org/10.1038/srep40464

    Article  CAS  Google Scholar 

  29. Masugi, Y., Yamazaki, K., Emoto, K., Effendi, K., Tsujikawa, H., Kitago, M., et al. (2015). Upregulation of integrin β4 promotes epithelial-mesenchymal transition and is a novel prognostic marker in pancreatic ductal adenocarcinoma. Laboratory Investigation, 95(3), 308–319. https://doi.org/10.1038/labinvest.2014.166

    Article  CAS  PubMed  Google Scholar 

  30. Jaiswal, R. K., Varshney, A. K., & Yadava, P. K. (2018). Diversity and functional evolution of the plasminogen activator system. Biomedicine & Pharmacotherapy, 98, 886–898. https://doi.org/10.1016/j.biopha.2018.01.029

    Article  CAS  Google Scholar 

  31. Wang, Q., Wang, Y., Zhang, Y., Zhang, Y., & Xiao, W. (2015). Involvement of urokinase in cigarette smoke extract-induced epithelial-mesenchymal transition in human small airway epithelial cells. Laboratory Investigation, 95(5), 469–479. https://doi.org/10.1038/labinvest.2015.33

    Article  CAS  PubMed  Google Scholar 

  32. Mauro, C. D., Pesapane, A., Formisano, L., Rosa, R., D’Amato, V., Ciciola, P., et al. (2017). Urokinase-type plasminogen activator receptor (uPAR) expression enhances invasion and metastasis in RAS mutated tumors. Science and Reports, 7(1), 9388. https://doi.org/10.1038/s41598-017-10062-1

    Article  CAS  Google Scholar 

  33. Skrypek, N., Bruneel, K., Vandewalle, C., De Smedt, E., Soen, B., Loret, N., et al. (2018). ZEB2 stably represses RAB25 expression through epigenetic regulation by SIRT1 and DNMTs during epithelial-to-mesenchymal transition. Epigenetics & Chromatin, 11(1), 70. https://doi.org/10.1186/s13072-018-0239-4

    Article  CAS  Google Scholar 

  34. Francart, M. E., Vanwynsberghe, A. M., Lambert, J., Bourcy, M., Genna, A., Ancel, J., et al. (2020). Vimentin prevents a miR-dependent negative regulation of tissue factor mRNA during epithelial-mesenchymal transitions and facilitates early metastasis. Oncogene, 39(18), 3680–3692. https://doi.org/10.1038/s41388-020-1244-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Duarte, S., Viedma-Poyatos, Á., Navarro-Carrasco, E., Martínez, A. E., Pajares, M. A., & Pérez-Sala, D. (2019). Vimentin filaments interact with the actin cortex in mitosis allowing normal cell division. Nature Communications, 10(1), 4200. https://doi.org/10.1038/s41467-019-12029-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. An, J., Peng, C., Tang, H., Liu, X., & Peng, F. (2021). New advances in the research of resistance to neoadjuvant chemotherapy in breast cancer. International Journal of Molecular Sciences, 22(17). https://doi.org/10.3390/ijms22179644.

  37. Yang, Y., Li, Y., Yu, H., Ding, Z., Chen, L., Zeng, X., et al. (2023). Comprehensive landscape of resistance mechanisms for neoadjuvant therapy in esophageal squamous cell carcinoma by single-cell transcriptomics. Signal Transduction and Targeted Therapy, 8(1), 298. https://doi.org/10.1038/s41392-023-01518-0

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jakobsen, K. R., Demuth, C., Sorensen, B. S., & Nielsen, A. L. (2016). The role of epithelial to mesenchymal transition in resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Translational Lung Cancer Research, 5(2), 172–182.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Clement, M. S., Gammelgaard, K. R., Nielsen, A. L., & Sorensen, B. S. (2020). Epithelial-to-mesenchymal transition is a resistance mechanism to sequential MET-TKI treatment of MET -amplified EGFR-TKI resistant non-small cell lung cancer cells. Translational Lung Cancer Research, 9(5), 1904–1914.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Imani, S., Hosseinifard, H., Cheng, J., Wei, C., & Fu, J. (2016). Prognostic value of EMT-inducing transcription factors (EMT-TFs) in metastatic breast cancer: A systematic review and meta-analysis. Science and Reports, 6, 28587. https://doi.org/10.1038/srep28587

    Article  Google Scholar 

  41. Horn, L. A., Fousek, K., & Palena, C. (2020). Tumor plasticity and resistance to immunotherapy. Trends Cancer, 6(5), 432–441. https://doi.org/10.1016/j.trecan.2020.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gu, Y., Zhang, Z., & ten Dijke, P. (2023). Harnessing epithelial-mesenchymal plasticity to boost cancer immunotherapy. Cellular & Molecular Immunology, 20(4), 318–340. https://doi.org/10.1038/s41423-023-00980-8

    Article  CAS  Google Scholar 

  43. Terry, S., Savagner, P., Ortiz-Cuaran, S., Mahjoubi, L., Saintigny, P., Thiery, J. P., et al. (2017). New insights into the role of EMT in tumor immune escape. Molecular Oncology, 11(7), 824–846. https://doi.org/10.1002/1878-0261.12093

    Article  PubMed  PubMed Central  Google Scholar 

  44. Weng, C. H., Chen, L. Y., Lin, Y. C., Shih, J. Y., Lin, Y. C., Tseng, R. Y., et al. (2019). Epithelial-mesenchymal transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI. Oncogene, 38(4), 455–468. https://doi.org/10.1038/s41388-018-0454-2

    Article  CAS  PubMed  Google Scholar 

  45. Musaelyan, A., Lapin, S., Nazarov, V., Tkachenko, O., Gilburd, B., Mazing, A., et al. (2018). Vimentin as antigenic target in autoimmunity: A comprehensive review. Autoimmunity Reviews, 17(9), 926–934.

    CAS  PubMed  Google Scholar 

  46. Parry, D. A., Strelkov, S. V., Burkhard, P., Aebi, U., & Herrmann, H. (2007). Towards a molecular description of intermediate filament structure and assembly. Experimental Cell Research, 313(10), 2204–2216.

    CAS  PubMed  Google Scholar 

  47. Tang, D. D. (2008). Intermediate filaments in smooth muscle. American Journal of Physiology-Cell Physiology, 294(4), C869–C878.

    CAS  PubMed  Google Scholar 

  48. Kraxner, J., Lorenz, C., Menzel, J., Parfentev, I., Silbern, I., Denz, M., et al. (2021). Post-translational modifications soften vimentin intermediate filaments. Nanoscale, 13(1), 380–387.

    CAS  PubMed  Google Scholar 

  49. Mónico, A., Guzmán-Caldentey, J., Pajares, M. A., Martín-Santamaría, S., & Pérez-Sala, D. (2021). Elucidating vimentin interaction with zinc ions and its interplay with oxidative modifications through crosslinking assays and molecular dynamics simulations. bioRxiv, 2021.2002. 2012.430929.

  50. Danielsson, F., Peterson, M. K., Caldeira Araújo, H., Lautenschläger, F., & Gad, A. K. B. (2018). Vimentin diversity in health and disease. Cells, 7(10), 147.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ostrowska-Podhorodecka, Z., & McCulloch, C. A. (2021). Vimentin regulates the assembly and function of matrix adhesions. Wound Repair and Regeneration, 29(4), 602–612.

    PubMed  Google Scholar 

  52. Tarbet, H. J., Dolat, L., Smith, T. J., Condon, B. M., O’Brien, E. T., III., Valdivia, R. H., et al. (2018). Site-specific glycosylation regulates the form and function of the intermediate filament cytoskeleton. elife, 7, e31807.

    PubMed  PubMed Central  Google Scholar 

  53. Robert, A., Hookway, C., & Gelfand, V. I. (2016). Intermediate filament dynamics: What we can see now and why it matters. BioEssays, 38(3), 232–243.

    PubMed  PubMed Central  Google Scholar 

  54. Eriksson, J. E., He, T., Trejo-Skalli, A. V., Härmälä-Braskén, A.-S., Hellman, J., Chou, Y.-H., et al. (2004). Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. Journal of Cell Science, 117(6), 919–932.

    CAS  PubMed  Google Scholar 

  55. Brennich, M. E., Vainio, U., Wedig, T., Bauch, S., Herrmann, H., & Köster, S. (2019). Mutation-induced alterations of intra-filament subunit organization in vimentin filaments revealed by SAXS. Soft Matter, 15(9), 1999–2008.

    CAS  PubMed  Google Scholar 

  56. Velez-delValle, C., Marsch-Moreno, M., Castro-Muñozledo, F., Galván-Mendoza, I. J., & Kuri-Harcuch, W. (2016). Epithelial cell migration requires the interaction between the vimentin and keratin intermediate filaments. Scientific Reports, 6(1), 1–10.

    Google Scholar 

  57. Schietke, R., Bröhl, D., Wedig, T., Mücke, N., Herrmann, H., & Magin, T. M. (2006). Mutations in vimentin disrupt the cytoskeleton in fibroblasts and delay execution of apoptosis. European Journal of Cell Biology, 85(1), 1–10.

    CAS  PubMed  Google Scholar 

  58. Bornheim, R., Müller, M., Reuter, U., Herrmann, H., Büssow, H., & Magin, T. M. (2008). A dominant vimentin mutant upregulates Hsp70 and the activity of the ubiquitin-proteasome system, and causes posterior cataracts in transgenic mice. Journal of Cell Science, 121(22), 3737–3746.

    CAS  PubMed  Google Scholar 

  59. Müller, M., Bhattacharya, S. S., Moore, T., Prescott, Q., Wedig, T., Herrmann, H., et al. (2009). Dominant cataract formation in association with a vimentin assembly disrupting mutation. Human Molecular Genetics, 18(6), 1052–1057.

    PubMed  Google Scholar 

  60. Bang, H., Egerer, K., Gauliard, A., Lüthke, K., Rudolph, P. E., Fredenhagen, G., et al. (2007). Mutation and citrullination modifies vimentin to a novel autoantigen for rheumatoid arthritis. Arthritis & Rheumatism, 56(8), 2503–2511.

    CAS  Google Scholar 

  61. Cogné, B., Bouameur, J.-E., Hayot, G., Latypova, X., Pattabiraman, S., Caillaud, A., et al. (2020). A dominant vimentin variant causes a rare syndrome with premature aging. European Journal of Human Genetics, 28(9), 1218–1230.

    PubMed  PubMed Central  Google Scholar 

  62. Sharma, P., Alsharif, S., Fallatah, A., & Chung, B. M. (2019). Intermediate filaments as effectors of cancer development and metastasis: A focus on keratins, vimentin, and nestin. Cells, 8(5), 497.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Noh, H., Yan, J., Hong, S., Kong, L.-Y., Gabrusiewicz, K., Xia, X., et al. (2016). Discovery of cell surface vimentin targeting mAb for direct disruption of GBM tumor initiating cells. Oncotarget, 7(44), 72021.

    PubMed  PubMed Central  Google Scholar 

  64. Steinmetz, N. F., Maurer, J., Sheng, H., Bensussan, A., Maricic, I., Kumar, V., et al. (2011). Two domains of vimentin are expressed on the surface of lymph node, bone and brain metastatic prostate cancer lines along with the putative stem cell marker proteins CD44 and CD133. Cancers, 3(3), 2870–2885.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ramos, I., Stamatakis, K., Oeste, C. L., & Pérez-Sala, D. (2020). Vimentin as a multifaceted player and potential therapeutic target in viral infections. International Journal of Molecular Sciences, 21(13), 4675.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Suprewicz, Ł, Swoger, M., Gupta, S., Piktel, E., Byfield, F. J., Iwamoto, D. V., et al. (2022). Extracellular vimentin as a target against SARS-CoV-2 host cell invasion. Small (Weinheim an der Bergstrasse, Germany), 18(6), 2105640.

    CAS  Google Scholar 

  67. Yu, Y.T.-C., Chien, S.-C., Chen, I.-Y., Lai, C.-T., Tsay, Y.-G., Chang, S. C., et al. (2016). Surface vimentin is critical for the cell entry of SARS-CoV. Journal of Biomedical Science, 23(1), 1–10.

    Google Scholar 

  68. Amraei, R., Xia, C., Olejnik, J., White, M. R., Napoleon, M. A., Lotfollahzadeh, S., et al. (2022). Extracellular vimentin is an attachment factor that facilitates SARS-CoV-2 entry into human endothelial cells. Proceedings of the National Academy of Sciences, 119(6), e2113874119.

    CAS  Google Scholar 

  69. Babic, I., Nurmemmedov, E., Yenugonda, V. M., Juarez, T., Nomura, N., Pingle, S. C., et al. (2018). Pritumumab, the first therapeutic antibody for glioma patients. Human Antibodies, 26(2), 95–101.

    CAS  PubMed  Google Scholar 

  70. Noh, H., Zhao, Q., Yan, J., Kong, L.-Y., Gabrusiewicz, K., Hong, S., et al. (2018). Cell surface vimentin-targeted monoclonal antibody 86C increases sensitivity to temozolomide in glioma stem cells. Cancer Letters, 433, 176–185.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, C., Cigliano, A., Jiang, L., Li, X., Fan, B., Pilo, M. G., et al. (2015). 4EBP1/eIF4E and p70S6K/RPS6 axes play critical and distinct roles in hepatocarcinogenesis driven by AKT and N-Ras proto-oncogenes in mice. Hepatology, 61(1), 200–213.

    PubMed  Google Scholar 

  72. van Beijnum, J. R., Huijbers, E. J., van Loon, K., Blanas, A., Akbari, P., Roos, A., et al. (2022). Extracellular vimentin mimics VEGF and is a target for anti-angiogenic immunotherapy. Nature Communications, 13(1), 2842.

    PubMed  PubMed Central  Google Scholar 

  73. Yang, E. Y., & Shah, K. (2020). Nanobodies: Next generation of cancer diagnostics and therapeutics. Frontiers in Oncology, 10, 1182.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zottel, A., Novak, M., Šamec, N., Majc, B., Colja, S., Katrašnik, M., et al. (2023). Anti-vimentin nanobody decreases glioblastoma cell invasion in vitro and in vivo. Cancers, 15(3), 573.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zottel, A., Jovčevska, I., Šamec, N., Mlakar, J., Šribar, J., Križaj, I., et al. (2020). Anti-vimentin, anti-TUFM, anti-NAP1L1 and anti-DPYSL2 nanobodies display cytotoxic effect and reduce glioblastoma cell migration. Therapeutic Advances in Medical Oncology, 12, 1758835920915302.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu, J., Fu, M., Wang, M., Wan, D., Wei, Y., & Wei, X. (2022). Cancer vaccines as promising immuno-therapeutics: Platforms and current progress. Journal of Hematology & Oncology, 15(1), 28. https://doi.org/10.1186/s13045-022-01247-x

    Article  Google Scholar 

  77. van Loon, K., Huijbers, E. J. M., de Haan, J. D., & Griffioen, A. W. (2022). Cancer vaccination against extracellular vimentin efficiently adjuvanted with montanide ISA 720/CpG. Cancers (Basel), 14(11). https://doi.org/10.3390/cancers14112593

  78. Brentville, V. A., Metheringham, R. L., Gunn, B., Symonds, P., Daniels, I., Gijon, M., et al. (2016). Citrullinated vimentin presented on MHC-II in tumor cells is a target for CD4+ T-cell-mediated antitumor immunity. Cancer Research, 76(3), 548–560. https://doi.org/10.1158/0008-5472.can-15-1085

    Article  CAS  PubMed  Google Scholar 

  79. Jiang, Z., Cui, Y., Wang, L., Zhao, Y., Yan, S., & Chang, X. (2013). Investigating citrullinated proteins in tumour cell lines. World Journal of Surgical Oncology, 11, 260. https://doi.org/10.1186/1477-7819-11-260

    Article  PubMed  PubMed Central  Google Scholar 

  80. Brentville, V. A., Metheringham, R. L., Daniels, I., Atabani, S., Symonds, P., Cook, K. W., et al. (2020). Combination vaccine based on citrullinated vimentin and enolase peptides induces potent CD4-mediated anti-tumor responses. Journal for ImmunoTherapy of Cancer, 8(1), https://doi.org/10.1136/jitc-2020-000560.

  81. Wang, V., & Wu, W. (2009). MicroRNA-based therapeutics for cancer. BioDrugs, 23(1), 15–23.

    PubMed  Google Scholar 

  82. Darzi, L., Boshtam, M., Shariati, L., Kouhpayeh, S., Gheibi, A., Mirian, M., et al. (2017). The silencing effect of miR-30a on ITGA4 gene expression in vitro: An approach for gene therapy. Research in Pharmaceutical Sciences, 12(6), 456–464. https://doi.org/10.4103/1735-5362.217426

    Article  PubMed  PubMed Central  Google Scholar 

  83. Naidu, S., Magee, P., & Garofalo, M. (2015). MiRNA-based therapeutic intervention of cancer. Journal of Hematology & Oncology, 8, 1–8.

    CAS  Google Scholar 

  84. Kim, T. W., Lee, Y. S., Yun, N. H., Shin, C. H., Hong, H. K., Kim, H. H., et al. (2020). MicroRNA-17-5p regulates EMT by targeting vimentin in colorectal cancer. British Journal of Cancer, 123(7), 1123–1130.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Jimenez, L., Lim, J., Burd, B., Harris, T. M., Ow, T. J., Kawachi, N., et al. (2017). miR-375 regulates invasion-related proteins vimentin and L-plastin. The American Journal of Pathology, 187(7), 1523–1536.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Cheng, C.-W., Wang, H.-W., Chang, C.-W., Chu, H.-W., Chen, C.-Y., Yu, J.-C., et al. (2012). MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer. Breast Cancer Research and Treatment, 134, 1081–1093.

    CAS  PubMed  Google Scholar 

  87. Bockhorn, J., Yee, K., Chang, Y.-F., Prat, A., Huo, D., Nwachukwu, C., et al. (2013). MicroRNA-30c targets cytoskeleton genes involved in breast cancer cell invasion. Breast Cancer Research and Treatment, 137, 373–382.

    CAS  PubMed  Google Scholar 

  88. Arora, H., Qureshi, R., & Park, W.-Y. (2013). miR-506 regulates epithelial mesenchymal transition in breast cancer cell lines. PLoS ONE, 8(5), e64273.

    PubMed  PubMed Central  Google Scholar 

  89. Sun, Y., Hu, L., Zheng, H., Bagnoli, M., Guo, Y., Rupaimoole, R., et al. (2015). MiR-506 inhibits multiple targets in the epithelial-to-mesenchymal transition network and is associated with good prognosis in epithelial ovarian cancer. The Journal of Pathology, 235(1), 25–36.

    CAS  PubMed  Google Scholar 

  90. Zhu, S., He, C., Deng, S., Li, X., Cui, S., Zeng, Z., et al. (2016). MiR-548an, transcriptionally downregulated by HIF1α/HDAC1, suppresses tumorigenesis of pancreatic cancer by targeting vimentin expression. Molecular Cancer Therapeutics, 15(9), 2209–2219.

    CAS  PubMed  Google Scholar 

  91. Yamasaki, T., Seki, N., Yamada, Y., Yoshino, H., Hidaka, H., Chiyomaru, T., et al. (2012). Tumor suppressive microRNA-138 contributes to cell migration and invasion through its targeting of vimentin in renal cell carcinoma. International Journal of Oncology, 41(3), 805–817.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yu, C., Wang, M., Chen, M., Huang, Y., & Jiang, J. (2015). Upregulation of microRNA-138-5p inhibits pancreatic cancer cell migration and increases chemotherapy sensitivity. Molecular Medicine Reports, 12(4), 5135–5140.

    CAS  PubMed  Google Scholar 

  93. Liu, X., Wang, C., Chen, Z., Jin, Y., Wang, Y., Kolokythas, A., et al. (2011). MicroRNA-138 suppresses epithelial–mesenchymal transition in squamous cell carcinoma cell lines. Biochemical Journal, 440(1), 23–31.

    CAS  PubMed  Google Scholar 

  94. Lee, J. W., Guan, W., Han, S., Hong, D. K., Kim, L. S., & Kim, H. (2018). Micro RNA-708-3p mediates metastasis and chemoresistance through inhibition of epithelial-to-mesenchymal transition in breast cancer. Cancer Science, 109(5), 1404–1413.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Xu, Y., Yao, T., Huang, K., Liu, G., Huang, Y., Gao, J., et al. (2020). Circular RNA circTUBGCP3 Is up-regulated and promotes cell proliferation, migration and survivability via sponge mir-30b in osteosarcoma. OncoTargets and Therapy, 13, 3729.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Joglekar, M. V., Patil, D., Joglekar, V. M., Rao, G. V., Reddy, N. D., Mitnala, S., et al. (2009). The miR-30 family microRNAs confer epithelial phenotype to human pancreatic cells. Islets, 1(2), 137–147.

    PubMed  Google Scholar 

  97. Mao, L., Liu, S., Hu, L., Jia, L., Wang, H., Guo, M., et al. (2018). miR-30 family: a promising regulator in development and disease. BioMed Research International, 2018. https://doi.org/10.1155/2018/9623412

  98. Braun, J., Hoang-Vu, C., Dralle, H., & Hüttelmaier, S. (2010). Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene, 29(29), 4237–4244.

    CAS  PubMed  Google Scholar 

  99. Zhong, Z., Xia, Y., Wang, P., Liu, B., & Chen, Y. (2014). Low expression of microRNA-30c promotes invasion by inducing epithelial mesenchymal transition in non-small cell lung cancer. Molecular Medicine Reports, 10(5), 2575–2579.

    CAS  PubMed  Google Scholar 

  100. Liu, Z., Chen, L., Zhang, X., Xu, X., Xing, H., Zhang, Y., et al. (2014). RUNX 3 regulates vimentin expression via miR-30a during epithelial–mesenchymal transition in gastric cancer cells. Journal of Cellular and Molecular Medicine, 18(4), 610–623.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, Q., Mao, Z., & Sun, J. (2019). NF-κB inhibitor, BAY11-7082, suppresses M2 tumor-associated macrophage induced EMT potential via miR-30a/NF-κB/Snail signaling in bladder cancer cells. Gene, 710, 91–97. https://doi.org/10.1016/j.gene.2019.04.039

    Article  CAS  PubMed  Google Scholar 

  102. Zhao, J. J., Lin, J., Zhu, D., Wang, X., Brooks, D., Chen, M., et al. (2014). miR-30-5p functions as a tumor suppressor and novel therapeutic tool by targeting the oncogenic Wnt/β-catenin/BCL9 pathway. Cancer Research, 74(6), 1801–1813. https://doi.org/10.1158/0008-5472.can-13-3311-t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Qian, B.-J., You, L., Shang, F.-F., Liu, J., Dai, P., Lin, N., et al. (2015). Vimentin regulates neuroplasticity in transected spinal cord rats associated with micRNA138. Molecular Neurobiology, 51, 437–447.

    CAS  PubMed  Google Scholar 

  104. Bollong, M. J., Pietilä, M., Pearson, A. D., Sarkar, T. R., Ahmad, I., Soundararajan, R., et al. (2017). A vimentin binding small molecule leads to mitotic disruption in mesenchymal cancers. Proceedings of the National Academy of Sciences, 114(46), E9903–E9912.

    CAS  Google Scholar 

  105. Wu, J., Xie, Q., Liu, Y., Gao, Y., Qu, Z., Mo, L., et al. (2021). A small vimentin-binding molecule blocks cancer exosome release and reduces cancer cell mobility. Frontiers in Pharmacology, 12, 627394.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Li, Z., Wu, J., Zhou, J., Yuan, B., Chen, J., Wu, W., et al. (2021). A vimentin-targeting oral compound with host-directed antiviral and anti-inflammatory actions addresses multiple features of COVID-19 and related diseases. MBio, 12(5), e02542-e2521.

    PubMed  PubMed Central  Google Scholar 

  107. Bargagna-Mohan, P., Hamza, A., Kim, Y.-E., Ho, Y. K. A., Mor-Vaknin, N., Wendschlag, N., et al. (2007). The tumor inhibitor and antiangiogenic agent withaferin A targets the intermediate filament protein vimentin. Chemistry & Biology, 14(6), 623–634.

    CAS  Google Scholar 

  108. Thaiparambil, J. T., Bender, L., Ganesh, T., Kline, E., Patel, P., Liu, Y., et al. (2011). Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. International Journal of Cancer, 129(11), 2744–2755.

    CAS  PubMed  Google Scholar 

  109. Kaschula, C. H., Tuveri, R., Ngarande, E., Dzobo, K., Barnett, C., Kusza, D. A., et al. (2019). The garlic compound ajoene covalently binds vimentin, disrupts the vimentin network and exerts anti-metastatic activity in cancer cells. BMC Cancer, 19, 1–16.

    Google Scholar 

  110. Yoon, S., Armstrong, B., Habib, N., & Rossi, J. J. (2017). Blind SELEX approach identifies RNA aptamers that regulate EMT and inhibit metastasis. Molecular Cancer Research, 15(7), 811–820. https://doi.org/10.1158/1541-7786.Mcr-16-0462

    Article  CAS  PubMed  Google Scholar 

  111. Zamay, T. N., Kolovskaya, O. S., Glazyrin, Y. E., Zamay, G. S., Kuznetsova, S. A., Spivak, E. A., et al. (2014). DNA-aptamer targeting vimentin for tumor therapy in vivo. Nucleic Acid Therapeutics, 24(2), 160–170. https://doi.org/10.1089/nat.2013.0471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rong, Y., Chen, H., Zhou, X. F., Yin, C. Q., Wang, B. C., Peng, C. W., et al. (2016). Identification of an aptamer through whole cell-SELEX for targeting high metastatic liver cancers. Oncotarget, 7(7), 8282–8294. https://doi.org/10.18632/oncotarget.6988

    Article  PubMed  PubMed Central  Google Scholar 

  113. Costello, A. M., Elizondo-Riojas, M. A., Li, X., Volk, D. E., Pillai, A. K., & Wang, H. (2021). Selection and characterization of vimentin-binding aptamer motifs for ovarian cancer. Molecules, 26(21), https://doi.org/10.3390/molecules26216525.

  114. Zamay, G. S., Kolovskaya, O. S., Zamay, T. N., Glazyrin, Y. E., Krat, A. V., Zubkova, O., et al. (2015). Aptamers selected to postoperative lung adenocarcinoma detect circulating tumor cells in human blood. Molecular Therapy, 23(9), 1486–1496. https://doi.org/10.1038/mt.2015.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. De La Fuente, A., Zilio, S., Caroli, J., Van Simaeys, D., Mazza, E. M. C., Ince, T. A., et al. (2020). Aptamers against mouse and human tumor-infiltrating myeloid cells as reagents for targeted chemotherapy. Science Translational Medicine, 12(548), https://doi.org/10.1126/scitranslmed.aav9760.

  116. Costello, A. M., Elizondo-Riojas, M.-A., Li, X., Volk, D. E., Pillai, A. K., & Wang, H. (2021). Selection and characterization of vimentin-binding aptamer motifs for ovarian cancer. Molecules, 26(21), 6525.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Mirian, M., Khanahmad, H., Darzi, L., Salehi, M., & Sadeghi-Aliabadi, H. (2017). Oligonucleotide aptamers: Potential novel molecules against viral hepatitis. Research in Pharmaceutical Sciences, 12(2), 88–98. https://doi.org/10.4103/1735-5362.202447

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wang, H., Li, X., Volk, D. E., Lokesh, G.L.-R., Elizondo-Riojas, M.-A., Li, L., et al. (2016). Morph-X-select: Morphology-based tissue aptamer selection for ovarian cancer biomarker discovery. BioTechniques, 61(5), 249–259.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zheng, Y., Zhang, J., Huang, M., Wang, T., Qu, X., Wu, L., et al. (2020). Selection of aptamers against vimentin for isolation and release of circulating tumor cells undergoing epithelial mesenchymal transition. Analytical Chemistry, 92(7), 5178–5184.

    CAS  PubMed  Google Scholar 

  120. Zamay, T. N., Kolovskaya, O. S., Glazyrin, Y. E., Zamay, G. S., Kuznetsova, S. A., Spivak, E. A., et al. (2014). DNA-aptamer targeting vimentin for tumor therapy in vivo. Nucleic Acid Therapeutics, 24(2), 160–170.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Jalalian, S. H., Ramezani, M., Abnous, K., & Taghdisi, S. M. (2018). Targeted co-delivery of epirubicin and NAS-24 aptamer to cancer cells using selenium nanoparticles for enhancing tumor response in vitro and in vivo. Cancer Letters, 416, 87–93.

    CAS  PubMed  Google Scholar 

  122. Bahreyni, A., Yazdian-Robati, R., Hashemitabar, S., Ramezani, M., Ramezani, P., Abnous, K., et al. (2017). A new chemotherapy agent-free theranostic system composed of graphene oxide nano-complex and aptamers for treatment of cancer cells. International Journal of Pharmaceutics, 526(1–2), 391–399.

    PubMed  Google Scholar 

Download references

Funding

The authors appreciate the financial support of the Vice-presidency for Research of Isfahan University of Medical Sciences, Isfahan (Grant No. 3400778 and 199438).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: A.Z. and M.M.; investigation: A.T., B.N., A.F., A.H.; resources: A.K. and M.M.; writing—original draft preparation: A.T., B.N., A.F., A.H.; writing—review and editing, A.K., A.Z., M.M.; supervision: M.M. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Ali Zarrabi or Mina Mirian.

Ethics declarations

Ethical approval

N/A.

Informed consent

N/A

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabatabaee, A., Nafari, B., Farhang, A. et al. Targeting vimentin: a multifaceted approach to combatting cancer metastasis and drug resistance. Cancer Metastasis Rev 43, 363–377 (2024). https://doi.org/10.1007/s10555-023-10154-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-023-10154-7

Keywords

Navigation