Skip to main content

Advertisement

Log in

Deubiquitinating enzyme OTUD4 stabilizes RBM47 to induce ATF3 transcription: a novel mechanism underlying the restrained malignant properties of ccRCC cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Dysregulation of deubiquitination contributes to various diseases, including cancer, and aberrant expression of deubiquitinating enzymes is involved in carcinoma progression. As a member of the ovarian tumor (OTU) deubiquitinases, OTUD4 is considered a tumor suppressor in many kinds of malignancies. The biological characteristics and mechanisms of OTUD4 in clear cell renal cell carcinoma (ccRCC) remain unclear. The downregulation of OTUD4 in ccRCC was confirmed based on the TCGA database and a validation cohort of 30-paired ccRCC and para-carcinoma samples. Moreover, OTUD4 expression was detected by immunohistochemistry in 50 cases of ccRCC tissues, and patients with lower levels of OTUD4 showed larger tumor size (p = 0.015). TCGA data revealed that patients with high expression of OTUD4 had a longer overall survival rate. In vitro and in vivo studies revealed that downregulation of OTUD4 was essential for tumor cell growth and metastasis in ccRCC, and OTUD4 overexpression inhibited these malignant phenotypes. We further found that OTUD4 sensitized ccRCC cells to Erastin-induced ferroptosis, and ferrostain-1 inhibited OTUD4-induced ferroptotic cell death. Mechanistic studies indicated that OTUD4 functioned as an anti-proliferative and anti-metastasic factor through the regulation of RNA-binding protein 47 (RBM47)-mediated activating transcription factor 3 (ATF3). OTUD4 directly interacted with RBM47 and promoted its stability via deubiquitination events. RBM47 was critical in ccRCC progression by regulating ATF3 mRNA stability, thereby promoting ATF3-mediated ferroptosis. RBM47 interference abolished the suppressive role of OTUD4 overexpression in ccRCC. Our findings provide mechanistic insight into OTUD4 of ccRCC progression and indicate a novel critical pathway OTUD4/RBM47/ATF3 may serve as a potential therapeutic pathway for ccRCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets used during the current study are available from the corresponding author on reasonable request.

References

  1. Siegel RL, Miller KD (2016) Jemal A (2016) Cancer statistics. CA Cancer J Clin 66(1):7–30

    Article  PubMed  Google Scholar 

  2. Rini BI, Campbell SC, Escudier B (2009) Renal cell carcinoma. Lancet 373(9669):1119–1132

    Article  CAS  PubMed  Google Scholar 

  3. Hsieh JJ, Purdue MP, Signoretti S et al (2017) Renal cell carcinoma. Nat Rev Dis Primers 3:17009

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xu J, Latif S, Wei S (2012) Metastatic renal cell carcinoma presenting as gastric polyps: A case report and review of the literature. Int J Surg Case Rep 3(12):601–604

    Article  PubMed  PubMed Central  Google Scholar 

  5. Martinez-Salamanca JI, Huang WC, Millan I et al (2011) Prognostic impact of the 2009 UICC/AJCC TNM staging system for renal cell carcinoma with venous extension. Eur Urol 59(1):120–127

    Article  PubMed  Google Scholar 

  6. Nijman SM, Luna-Vargas MP, Velds A et al (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123(5):773–786

    Article  CAS  PubMed  Google Scholar 

  7. Mevissen TET, Komander D (2017) Mechanisms of Deubiquitinase Specificity and Regulation. Annu Rev Biochem 86:159–192

    Article  CAS  PubMed  Google Scholar 

  8. Di M, Miao J, Pan Q et al (2022) OTUD4-mediated GSDME deubiquitination enhances radiosensitivity in nasopharyngeal carcinoma by inducing pyroptosis. J Exp Clin Cancer Res 41(1):328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu Z, Qiu M, Guo Y et al (2019) OTU deubiquitinase 4 is silenced and radiosensitizes non-small cell lung cancer cells via inhibiting DNA repair. Cancer Cell Int 19:99

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhao X, Su X, Cao L et al (2020) OTUD4: A Potential Prognosis Biomarker for Multiple Human Cancers. Cancer Management Res 12:1503–1512

    Article  CAS  Google Scholar 

  11. Tang Z, Li C, Kang B et al (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45(W1):W98–W102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qin H, Ni H, Liu Y et al (2020) RNA-binding proteins in tumor progression. J Hematol Oncol 13(1):90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shen DJ, Jiang YH, Li JQ, Xu LW, Tao KY (2020) The RNA-binding protein RBM47 inhibits non-small cell lung carcinoma metastasis through modulation of AXIN1 mRNA stability and Wnt/beta-catentin signaling. Surg Oncol 34:31–39

    Article  PubMed  Google Scholar 

  14. Rokavec M, Kaller M, Horst D, Hermeking H (2017) Pan-cancer EMT-signature identifies RBM47 down-regulation during colorectal cancer progression. Sci Rep 7(1):4687

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vanharanta S, Marney CB, Shu W et al (2014) Loss of the multifunctional RNA-binding protein RBM47 as a source of selectable metastatic traits in breast cancer. eLife 3:e02734

  16. Radine C, Peters D, Reese A et al (2020) The RNA-binding protein RBM47 is a novel regulator of cell fate decisions by transcriptionally controlling the p53–p21-axis. Cell Death Differ 27(4):1274–1285

    Article  CAS  PubMed  Google Scholar 

  17. Li JH, Liu S, Zhou H, Qu LH, Yang JH (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92-7

    Article  CAS  PubMed  Google Scholar 

  18. Gao S, Gao L, Wang S et al (2021) ATF3 Suppresses Growth and Metastasis of Clear Cell Renal Cell Carcinoma by Deactivating EGFR/AKT/GSK3beta/beta-Catenin Signaling Pathway. Frontiers Cell Develop Biol 9:618987

    Article  Google Scholar 

  19. Tong X, Tang R, Xiao M et al (2022) Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol 15(1):174

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cao X, Yan Z, Chen Z et al (2023) The Emerging Role of Deubiquitinases in Radiosensitivity. Int J Radiat Oncol Biol Phys 118(5):1347–1370

    Article  PubMed  Google Scholar 

  21. Liu T, Jiang L, Tavana O, Gu W (2019) The Deubiquitylase OTUB1 Mediates Ferroptosis via Stabilization of SLC7A11. Cancer Res 79(8):1913–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mou Y, Wang J, Wu J et al (2019) Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol 12(1):34

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhao L, Zhou X, Xie F et al (2022) Ferroptosis in cancer and cancer immunotherapy. Cancer Commun (Lond) 42(2):88–116

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tang R, Xu J, Zhang B et al (2020) Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol 13(1):110

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang C, Liu X, Jin S, Chen Y, Guo R (2022) Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Mol Cancer 21(1):47

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang J, Yin X, He W et al (2021) SUV39H1 deficiency suppresses clear cell renal cell carcinoma growth by inducing ferroptosis. Acta Pharm Sin B 11(2):406–419

    Article  CAS  PubMed  Google Scholar 

  27. Wang L, Liu Y, Du T et al (2020) ATF3 promotes erastin-induced ferroptosis by suppressing system Xc. Cell Death Differ 27(2):662–675

    Article  CAS  PubMed  Google Scholar 

  28. Fu D, Wang C, Yu L, Yu R (2021) Induction of ferroptosis by ATF3 elevation alleviates cisplatin resistance in gastric cancer by restraining Nrf2/Keap1/xCT signaling. Cell Mol Biol Lett 26(1):26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mevissen TET, Hospenthal MK, Geurink PP et al (2013) OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell 154(1):169–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li Z, Xin S, Yu S, Liang J, Zhang X (2022) Prognostic Signatures and Therapeutic Value Based on the Notch Pathway in Renal Clear Cell Carcinoma. Oxid Med Cell Longev 2022:1669664

    PubMed  PubMed Central  Google Scholar 

  31. Fendler A, Bauer D, Busch J et al (2020) Inhibiting WNT and NOTCH in renal cancer stem cells and the implications for human patients. Nat Commun 11(1):929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xue YJ, Chen SN, Chen WG et al (2019) Cripto-1 expression in patients with clear cell renal cell carcinoma is associated with poor disease outcome. J Exp Clin Cancer Res 38(1):378

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lu Y, Qin H, Jiang B et al (2021) KLF2 inhibits cancer cell migration and invasion by regulating ferroptosis through GPX4 in clear cell renal cell carcinoma. Cancer Lett 522:1–13

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Q, Deng T, Zhang H et al (2022) Adipocyte-Derived Exosomal MTTP Suppresses Ferroptosis and Promotes Chemoresistance in Colorectal Cancer. Adv Sci (Weinh) 9(28):e2203357

    Article  PubMed  Google Scholar 

  35. Miotto G, Rossetto M, Di Paolo ML et al (2020) Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol 28:101328

    Article  CAS  PubMed  Google Scholar 

  36. Liu H, Fan J, Zhang W et al (2020) OTUD4 alleviates hepatic ischemia-reperfusion injury by suppressing the K63-linked ubiquitination of TRAF6. Biochem Biophys Res Commun 523(4):924–930

    Article  CAS  PubMed  Google Scholar 

  37. Liuyu T, Yu K, Ye L et al (2019) Induction of OTUD4 by viral infection promotes antiviral responses through deubiquitinating and stabilizing MAVS. Cell Res 29(1):67–79

    Article  CAS  PubMed  Google Scholar 

  38. Zhao Y, Mudge MC, Soll JM et al (2018) OTUD4 Is a Phospho-Activated K63 Deubiquitinase that Regulates MyD88-Dependent Signaling. Mol Cell 69(3):505-516.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen L, Lu H, Peng D et al (2023) Activation of NOTCH signaling via DLL1 is mediated by APE1-redox-dependent NF-κB activation in oesophageal adenocarcinoma. Gut 72(3):421–432

    Article  CAS  PubMed  Google Scholar 

  40. Komander D, Clague MJ, Urbé S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10(8):550–563

    Article  CAS  PubMed  Google Scholar 

  41. Fraile JM, Quesada V, Rodríguez D, Freije JMP, López-Otín C (2012) Deubiquitinases in cancer: new functions and therapeutic options. Oncogene 31(19):2373–2388

    Article  CAS  PubMed  Google Scholar 

  42. Louis M, Hofmann K, Broemer M (2015) Evolutionary Loss of Activity in De-Ubiquitylating Enzymes of the OTU Family. PLoS ONE 10(11):e0143227

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhao X, Su X, Cao L et al (2020) OTUD4: A Potential Prognosis Biomarker for Multiple Human Cancers. Cancer Manag Res 12:1503–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Peired AJ, Campi R, Angelotti ML et al (2021) Sex and Gender Differences in Kidney Cancer: Clinical and Experimental Evidence. Cancers (Basel) 13(18):4588

    Article  CAS  PubMed  Google Scholar 

  45. Fukushima H, Saito K, Yasuda Y et al (2020) Female Gender Predicts Favorable Prognosis in Patients With Non-metastatic Clear Cell Renal Cell Carcinoma Undergoing Curative Surgery: Results From the International Marker Consortium for Renal Cancer (INMARC). Clin Genitourin Cancer 18(2):111-116.e1

    Article  PubMed  Google Scholar 

  46. Liu N, Chen Y, Yang L et al (2022) Both SUMOylation and ubiquitination of TFE3 fusion protein regulated by androgen receptor are the potential target in the therapy of Xp11.2 translocation renal cell carcinoma. Clin Transl Med 12(4):e797

  47. Otto T, Sicinski P (2017) Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer 17(2):93–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shivalingappa PKM, Sharma V, Shiras A, Bapat SA (2021) RNA binding motif 47 (RBM47): emerging roles in vertebrate development, RNA editing and cancer. Mol Cell Biochem 476(12):4493–4505

    Article  CAS  PubMed  Google Scholar 

  49. Qin Y, Sun W, Wang Z et al (2022) RBM47/SNHG5/FOXO3 axis activates autophagy and inhibits cell proliferation in papillary thyroid carcinoma. Cell Death Dis 13(3):270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xiang Y, Zhou S, Hao J et al (2020) Development and validation of a prognostic model for kidney renal clear cell carcinoma based on RNA binding protein expression. Aging (Albany NY) 12(24):25356–25372

    Article  CAS  PubMed  Google Scholar 

  51. Wei Y, Zhang F, Zhang Y et al (2019) Post-transcriptional regulator Rbm47 elevates IL-10 production and promotes the immunosuppression of B cells. Cell Mol Immunol 16(6):580–589

    Article  CAS  PubMed  Google Scholar 

  52. Xu X-C, He S, Zhou Y-Q et al (2021) RNA-binding motif protein RBM47 promotes tumorigenesis in nasopharyngeal carcinoma through multiple pathways. J Genet Genomics 48(7):595–605

    Article  CAS  PubMed  Google Scholar 

  53. Sakurai T, Isogaya K, Sakai S et al (2016) RNA-binding motif protein 47 inhibits Nrf2 activity to suppress tumor growth in lung adenocarcinoma. Oncogene 35(38):5000–5009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guo T, You K, Chen X et al (2022) RBM47 inhibits hepatocellular carcinoma progression by targeting UPF1 as a DNA/RNA regulator. Cell Death Discov 8(1):320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang Y, Quan F, Cao Q et al (2021) Quercetin alleviates acute kidney injury by inhibiting ferroptosis. J Adv Res 28:231–243

    Article  CAS  PubMed  Google Scholar 

  56. Yang WS, Stockwell BR (2016) Ferroptosis: Death by Lipid Peroxidation. Trends Cell Biol 26(3):165–176

    Article  CAS  PubMed  Google Scholar 

  57. Dell’Atti L, Bianchi N, Aguiari G (2022) New therapeutic interventions for kidney carcinoma: looking to the future. Cancers (Basel) 14(15):3616

    Article  CAS  PubMed  Google Scholar 

  58. Lei G, Zhuang L, Gan B (2022) Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer 22(7):381–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mai TT, Hamaï A, Hienzsch A et al (2017) Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat Chem 9(10):1025–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang WS, SriRamaratnam R, Welsch ME et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Miess H, Dankworth B, Gouw AM et al (2018) The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma. Oncogene 37(40):5435–5450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22(4):266–282

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y (2016) Regulators of Iron Homeostasis: New Players in Metabolism, Cell Death, and Disease. Trends Biochem Sci 41(3):274–286

    Article  CAS  PubMed  Google Scholar 

  64. Yan H, Talty R, Jain A et al (2023) Discovery of decreased ferroptosis in male colorectal cancer patients with KRAS mutations. Redox Biol 62:102699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu T, Xu P, Ke S et al (2022) Histone methyltransferase SETDB1 inhibits TGF-β-induced epithelial-mesenchymal transition in pulmonary fibrosis by regulating SNAI1 expression and the ferroptosis signaling pathway. Arch Biochem Biophys 715:109087

    Article  CAS  PubMed  Google Scholar 

  66. Cui X, Shang X, Xie J et al (2023) Cooperation between IRTKS and deubiquitinase OTUD4 enhances the SETDB1-mediated H3K9 trimethylation that promotes tumor metastasis via suppressing E-cadherin expression. Cancer Lett 575:216404

    Article  CAS  PubMed  Google Scholar 

  67. Xiao W, Gao Z, Duan Y, Yuan W, Ke Y (2017) Notch signaling plays a crucial role in cancer stem-like cells maintaining stemness and mediating chemotaxis in renal cell carcinoma. J Exp Clin Cancer Res 36(1):41

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhou B, Lin W, Long Y et al (2022) Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 7(1):95

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhu Q, Wang H, Jiang B et al (2018) Loss of ATF3 exacerbates liver damage through the activation of mTOR/p70S6K/ HIF-1α signaling pathway in liver inflammatory injury. Cell Death Dis 9(9):910

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gerri C, Marass M, Rossi A, Stainier DYR (2018) Hif-1α and Hif-2α regulate hemogenic endothelium and hematopoietic stem cell formation in zebrafish. Blood 131(9):963–973

    Article  PubMed  Google Scholar 

  71. Ciria M, García NA, Ontoria-Oviedo I et al (2017) Mesenchymal Stem Cell Migration and Proliferation Are Mediated by Hypoxia-Inducible Factor-1α Upstream of Notch and SUMO Pathways. Stem cells and development 26(13):973–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

This work was supported by the China Scholarship Council (No. 202007045011).

Author information

Authors and Affiliations

Authors

Contributions

Lin Ye and Siyan Wang designed the experiments. Ziyao Li, Ye Tian, and Huafeng Zong analyzed the data and prepared the manuscript. Material preparation, data collection and analysis were performed by Xuelei Wang, Dongyang Li, Adili Keranmu, Shiyong Xin, Bowen Ye, Rong Bai, Weihua Chen, and Guosheng Yang. Guosheng Yang and Lin Ye provided technical support. All authors read and approved the final paper.

Corresponding authors

Correspondence to Lin Ye or Siyan Wang.

Ethics declarations

Ethics approval and consent to participate

The study was approved by the Ethics Committee of the First Affiliated Hospital of Zhengzhou University. This study was performed in accordance with the ethical standards in the Declaration of Helsinki.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 464 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Tian, Y., Zong, H. et al. Deubiquitinating enzyme OTUD4 stabilizes RBM47 to induce ATF3 transcription: a novel mechanism underlying the restrained malignant properties of ccRCC cells. Apoptosis (2024). https://doi.org/10.1007/s10495-024-01953-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10495-024-01953-6

Keywords

Navigation