Skip to main content

Advertisement

Log in

The regulation of necroptosis and perspectives for the development of new drugs preventing ischemic/reperfusion of cardiac injury

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

In the last 10 years, mortality from acute myocardial infarction (AMI) has not significantly decreased. This situation is associated with the absence in clinical practice of highly effective drugs capable of preventing the occurrence of reperfusion injury of the heart. Necroptosis inhibitors may become prototypes for the creation of highly effective drugs that increase cardiac tolerance to ischemic/reperfusion (I/R) and reduce the mortality rate in patients with AMI. Necroptosis is involved in I/R cardiac injury and inhibition of RIPK1 or RIPK3 contributes to an increase in cardiac tolerance to I/R. Necroptosis could also be involved in the development of adverse remodeling of the heart. It is unclear whether pre- and postconditioning could inhibit necroptosis of cardiomyocytes and endothelial cells. The role of necroptosis in coronary microvascular obstruction and the no-reflow phenomenon also needs to be studied. MicroRNAs and LncRNAs can regulate necroptotic cell death. Ca2+ overload and reactive oxygen species could be the triggers of necroptosis. Activation of kinases (p38, JNK1, Akt, and mTOR) could promote necroptotic cell death. The interaction of necroptosis, apoptosis, autophagy, ferroptosis, and pyroptosis is discussed. The water-soluble necroptosis inhibitors may be highly effective drugs for treatment of AMI or stroke. It is possible that microRNAs may become the basis for creating drugs for treatment of diseases triggered by I/R of organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets analysed during the current study are available in the PubMed repository.

References

  1. Fabris E, Kilic S, Schellings DAAM et al (2017) Long-term mortality and prehospital tirofiban treatment in patients with ST elevation myocardial infarction. Heart 103:1515–1520. https://doi.org/10.1136/heartjnl-2017-311181

    Article  CAS  PubMed  Google Scholar 

  2. Hadanny A, Shouval R, Wu J et al (2021) Predicting 30-day mortality after ST elevation myocardial infarction: machine learning- based random forest and its external validation using two independent nationwide datasets. J Cardiol 78:439–446. https://doi.org/10.1016/j.jjcc.2021.06.002

    Article  PubMed  Google Scholar 

  3. Megaly M, Brilakis ES, Sedhom R et al (2021) Outcomes with orbital and rotational atherectomy for inpatient percutaneous coronary intervention. Cardiol Ther 10:229–239. https://doi.org/10.1007/s40119-021-00214-w

    Article  PubMed  PubMed Central  Google Scholar 

  4. Menees DS, Peterson ED, Wang Y et al (2013) Door-to-balloon time and mortality among patients undergoing primary PCI. N Engl J Med 369:901–909. https://doi.org/10.1056/NEJMoa1208200

    Article  CAS  PubMed  Google Scholar 

  5. Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis: an overview of cell death. Am J Pathol 146:3–15

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Virchow R (1971) Cellular pathology as based upon physiological and pathological histology, 2nd edn. Dover Publications, New York, pp 356–382

    Google Scholar 

  7. Proskuryakov SY, Konoplyannikov AG, Gabai VL (2003) Necrosis: a specific form of programmed cell death? Exp Cell Res 283:1–16. https://doi.org/10.1016/s0014-4827(02)00027-7

    Article  CAS  PubMed  Google Scholar 

  8. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257. https://doi.org/10.1038/bjc.1972.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nirmala JG, Lopus M (2020) Cell death mechanisms in eukaryotes. Cell Biol Toxicol 36:145–164. https://doi.org/10.1007/s10565-019-09496-2

    Article  CAS  PubMed  Google Scholar 

  10. Holler N, Zaru R, Micheau O et al (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489–495. https://doi.org/10.1038/82732

    Article  CAS  PubMed  Google Scholar 

  11. Kawahara A, Ohsawa Y, Matsumura H, Uchiyama Y, Nagata S (1998) Caspase-independent cell killing by Fas-associated protein with death domain. J Cell Biol 143:1353–1360. https://doi.org/10.1083/jcb.143.5.1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vercammen D, Brouckaert G, Denecker G et al (1998) Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J Exp Med 188:919–930. https://doi.org/10.1084/jem.188.5.919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vercammen D, Beyaert R, Denecker G et al (1998) Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 187:1477–1485. https://doi.org/10.1084/jem.187.9.1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Degterev A, Huang Z, Boyce M et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119. https://doi.org/10.1038/nchembio711

    Article  CAS  PubMed  Google Scholar 

  15. Teng X, Degterev A, Jagtap P et al (2005) Structure-activity relationship study of novel necroptosis inhibitors. Bioorg Med Chem Lett 15:5039–5044. https://doi.org/10.1016/j.bmcl.2005.07.077

    Article  CAS  PubMed  Google Scholar 

  16. Degterev A, Hitomi J, Germscheid M et al (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321. https://doi.org/10.1038/nchembio.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dong Y, Chen H, Gao J, Liu Y, Li J, Wang J (2019) Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol 136:27–41. https://doi.org/10.1016/j.yjmcc.2019.09.001

    Article  CAS  PubMed  Google Scholar 

  18. Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN (2019) Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev 99:1765–1817. https://doi.org/10.1152/physrev.00022.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lillo-Moya J, Rojas-Solé C, Muñoz-Salamanca D et al (2021) Targeting ferroptosis against ischemia/reperfusion cardiac injury. Antioxidants (Basel) 10:667. https://doi.org/10.3390/antiox10050667

    Article  CAS  Google Scholar 

  20. Zhu F, Zhang W, Yang T, He SD (2019) Complex roles of necroptosis in cancer. J Zhejiang Univ Sci B 20:399–413. https://doi.org/10.1631/jzus.B1900160

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pefanis A, Ierino FL, Murphy JM, Cowan PJ (2019) Regulated necrosis in kidney ischemia-reperfusion injury. Kidney Int 96:291–301. https://doi.org/10.1016/j.kint.2019.02.009

    Article  PubMed  Google Scholar 

  22. Pan P, Cai Z, Zhuang C, Chen X, Chai Y (2019) Methodology of drug screening and target identification for new necroptosis inhibitors. J Pharm Anal 9:71–76. https://doi.org/10.1016/j.jpha.2018.11.002

    Article  PubMed  Google Scholar 

  23. Amin P, Florez M, Najafov A et al (2018) Regulation of a distinct activated RIPK1 intermediate bridging complex I and complex II in TNFα-mediated apoptosis. Proc Natl Acad Sci USA 115:E5944–E5953. https://doi.org/10.1073/pnas.1806973115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Samson AL, Garnish SE, Hildebrand JM, Murphy JM (2021) Location, location, location: A compartmentalized view of TNF-induced necroptotic signaling. Sci Signal 14:eabc6178. https://doi.org/10.1126/scisignal.abc6178

    Article  CAS  PubMed  Google Scholar 

  25. Seo J, Nam YW, Kim S, Oh DB, Song J (2021) Necroptosis molecular mechanisms: Recent findings regarding novel necroptosis regulators. Exp Mol Med 53:1007–1017. https://doi.org/10.1038/s12276-021-00634-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Speir M, Djajawi TM, Conos SA, Tye H, Lawlor KE (2021) Targeting RIP kinases in chronic inflammatory disease. Biomolecules 11:646. https://doi.org/10.3390/biom11050646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen W, Wu J, Li L et al (2015) Ppm1b negatively regulates necroptosis through dephosphorylating Rip3. Nat Cell Biol 17:434–444. https://doi.org/10.1038/ncb3120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dai W, Cheng J, Leng X, Hu X, Ao Y (2021) The potential role of necroptosis in clinical diseases (review). Int J Mol Med 47:89. https://doi.org/10.3892/ijmm.2021.4922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martens S, Bridelance J, Roelandt R, Vandenabeele P, Takahashi N (2021) MLKL in cancer: more than a necroptosis regulator. Cell Death Differ 28:1757–1772. https://doi.org/10.1038/s41418-021-00785-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Feltham R, Jamal K, Tenev T et al (2018) Mind bomb regulates cell death during TNF signaling by suppressing RIPK1’s cytotoxic potential. Cell Rep 23:470–484. https://doi.org/10.1016/j.celrep.2018.03.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lafont E, Draber P, Rieser E et al (2018) TBK1 and IKKε prevent TNF-induced cell death by RIPK1 phosphorylation. Nat Cell Biol 20:1389–1399. https://doi.org/10.1038/s41556-018-0229-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dondelinger Y, Jouan-Lanhouet S, Divert T et al (2015) NF-κB-independent role of IKKα/IKKβ in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. J Mol Cell 60:63–76. https://doi.org/10.1016/j.molcel.2015.07.032

    Article  CAS  Google Scholar 

  33. Seong D, Jeong M, Seo J et al (2020) Identification of MYC as an antinecroptotic protein that stifles RIPK1-RIPK3 complex formation. Proc Natl Acad Sci USA 117:19982–19993. https://doi.org/10.1073/pnas.2000979117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Seo J, Lee EW, Sung H et al (2016) CHIP controls necroptosis through ubiquitylation- and lysosome-dependent degradation of RIPK3. Nat Cell Biol 18:291–302. https://doi.org/10.1038/ncb3314

    Article  CAS  PubMed  Google Scholar 

  35. Wang H, Meng H, Li X et al (2017) PELI1 functions as a dual modulator of necroptosis and apoptosis by regulating ubiquitination of RIPK1 and mRNA levels of c-FLIP. Proc Natl Acad Sci USA 114:11944–11949. https://doi.org/10.1073/pnas.1715742114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li X, Gong W, Wang H et al (2019) O-GlcNAc transferase suppresses inflammation and necroptosis by targeting receptor-interacting serine/threonine-protein kinase 3. Immunity 50:576-590.e6. https://doi.org/10.1016/j.immuni.2019.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hanna-Addams S, Liu S, Liu H, Chen S, Wang Z (2020) CK1α, CK1δ, and CK1ε are necrosome components which phosphorylate serine 227 of human RIPK3 to activate necroptosis. Proc Natl Acad Sci USA 117:1962–1970. https://doi.org/10.1073/pnas.1917112117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen MS, Wang SF, Hsu CY et al (2017) CHAC1 degradation of glutathione enhances cystine-starvation-induced necroptosis and ferroptosis in human triple negative breast cancer cells via the GCN2-eIF2α-ATF4 pathway. Oncotarget 8:114588–114602. https://doi.org/10.18632/oncotarget.23055

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sun W, Yu J, Gao H et al (2019) Inhibition of lung cancer by 2-methoxy-6-acetyl-7-methyljuglone through induction of necroptosis by targeting receptor-interacting protein 1. Antioxid Redox Signal 31:93–108. https://doi.org/10.1089/ars.2017.7376

    Article  CAS  PubMed  Google Scholar 

  40. Enesa K, Zakkar M, Chaudhury H et al (2008) NF-κB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J Biol Chem 283:7036–7045. https://doi.org/10.1074/jbc.M708690200

    Article  CAS  PubMed  Google Scholar 

  41. Lee SB, Kim JJ, Han SA et al (2019) The AMPK-Parkin axis negatively regulates necroptosis and tumorigenesis by inhibiting the necrosome. Nat Cell Biol 21:940–951. https://doi.org/10.1038/s41556-019-0356-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Naryzhnaya NV, Maslov LN, Oeltgen PR (2019) Pharmacology of mitochondrial permeability transition pore inhibitors. Drug Dev Res 80:1013–1030. https://doi.org/10.1002/ddr.21593

    Article  CAS  PubMed  Google Scholar 

  43. Shi CS, Kehrl JH (2019) Bcl-2 regulates pyroptosis and necroptosis by targeting BH3-like domains in GSDMD and MLKL. Cell Death Discov 5:151. https://doi.org/10.1038/s41420-019-0230-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163. https://doi.org/10.1152/physrev.00013.2006

    Article  CAS  PubMed  Google Scholar 

  45. Seo J, Seong D, Nam YW et al (2020) Beclin 1 functions as a negative modulator of MLKL oligomerisation by integrating into the necrosome complex. Cell Death Differ 27:3065–3081. https://doi.org/10.1038/s41418-020-0561-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Petersen SL, Chen TT, Lawrence DA, Marsters SA, Gonzalvez F, Ashkenazi A (2015) TRAF2 is a biologically important necroptosis suppressor. Cell Death Differ 22:1846–1857. https://doi.org/10.1038/cdd.2015.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qu Y, Tang J, Wang H et al (2017) RIPK3 interactions with MLKL and CaMKII mediate oligodendrocytes death in the developing brain. Cell Death Dis 8:e2629. https://doi.org/10.1038/cddis.2017.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang Z, Li C, Wang Y et al (2018) Melatonin attenuates chronic pain related myocardial ischemic susceptibility through inhibiting RIP3-MLKL/CaMKII dependent necroptosis. J Mol Cell Cardiol 125:185–194. https://doi.org/10.1016/j.yjmcc.2018.10.018

    Article  CAS  PubMed  Google Scholar 

  49. Wang W, Wang B, Sun S et al (2021) Inhibition of adenosine kinase attenuates myocardial ischaemia/reperfusion injury. J Cell Mol Med 25:2931–2943. https://doi.org/10.1111/jcmm.16328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhu P, Hu S, Jin Q et al (2018) Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury: a mechanism involving calcium overload/XO/ROS/mPTP pathway. Redox Biol 16:157–168. https://doi.org/10.1016/j.redox.2018.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li D, Xu T, Cao YZ et al (2015) A cytosolic heat shock protein 90 and cochaperone CDC37 complex is required for RIP3 activation during necroptosis. Proc Natl Acad Sci USA 112:5017–5022. https://doi.org/10.1073/pnas.1505244112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stepanova L, Leng X, Parker SB, Harper JW (1996) Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev 10:1491–1502. https://doi.org/10.1101/gad.10.12.1491

    Article  CAS  PubMed  Google Scholar 

  53. Johnston AN, Ma Y, Liu H et al (2020) Necroptosis-blocking compound NBC1 targets heat shock protein 70 to inhibit MLKL polymerization and necroptosis. Proc Natl Acad Sci USA 117:6521–6530. https://doi.org/10.1073/pnas.1916503117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Najafov A, Mookhtiar AK, Luu HS et al (2019) TAM kinases promote necroptosis by regulating oligomerization of MLKL. Mol Cell 75:457-468.e4. https://doi.org/10.1016/j.molcel.2019.05.022

    Article  CAS  PubMed  Google Scholar 

  55. Sharifi M, Nazarinia D, Ramezani F, Azizi Y, Naderi N, Aboutaleb N (2021) Necroptosis and RhoA/ROCK pathways: molecular targets of Nesfatin-1 in cardioprotection against myocardial ischemia/reperfusion injury in a rat model. Mol Biol Rep 48:2507–2518. https://doi.org/10.1007/s11033-021-06289-x

    Article  CAS  PubMed  Google Scholar 

  56. Marunouchi T, Nishiumi C, Iinuma S, Yano E, Tanonaka K (2021) Effects of Hsp90 inhibitor on the RIP1-RIP3-MLKL pathway during the development of heart failure in mice. Eur J Pharmacol 898:173987. https://doi.org/10.1016/j.ejphar.2021.173987

    Article  CAS  PubMed  Google Scholar 

  57. Jang JH, Lee TJ (2021) The role of microRNAs in cell death pathways. Yeungnam Univ J Med 38:107–117. https://doi.org/10.12701/yujm.2020.00836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Climent M, Viggiani G, Chen YW et al (2020) MicroRNA and ROS crosstalk in cardiac and pulmonary diseases. Int J Mol Sci 21:4370. https://doi.org/10.3390/ijms21124370

    Article  CAS  PubMed Central  Google Scholar 

  59. Zheng D, Huo M, Li B et al (2021) The Role of exosomes and exosomal microRNA in cardiovascular disease. Front Cell Dev Biol 8:616161. https://doi.org/10.3389/fcell.2020.616161

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dutka M, Bobiński R, Korbecki J (2019) The relevance of microRNA in post-infarction left ventricular remodelling and heart failure. Heart Fail Rev 24:575–586. https://doi.org/10.1007/s10741-019-09770-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bhattacharya S, Chalk AM, Ng AJ et al (2016) Increased miR-155–5p and reduced miR-148a-3p contribute to the suppression of osteosarcoma cell death. Oncogene 35:5282–5294. https://doi.org/10.1038/onc.2016.68

    Article  CAS  PubMed  Google Scholar 

  62. Qin D, Wang X, Li Y et al (2016) MicroRNA-223–5p and -3p cooperatively suppress necroptosis in ischemic/reperfused hearts. J Biol Chem 291:20247–20259. https://doi.org/10.1074/jbc.M116.732735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang K, Liu F, Liu CY et al (2016) The long noncoding RNA NRF regulates programmed necrosis and myocardial injury during ischemia and reperfusion by targeting miR-873. Cell Death Differ 23:1394–1405. https://doi.org/10.1038/cdd.2016.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Afonso MB, Rodrigues PM (2017) Simão AL et al miRNA-21 ablation protects against liver injury and necroptosis in cholestasis. Cell Death Differ 25:857–872. https://doi.org/10.1038/s41418-017-0019-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang G, Xue J, Sun X, Wang J, Yu LL (2018) Necroptosis in 3-chloro-1, 2-propanediol (3-MCPD)-dipalmitate-induced acute kidney injury in vivo and its repression by miR-223-3p. Toxicology 406–407:33–43. https://doi.org/10.1016/j.tox.2018.05.015

    Article  CAS  PubMed  Google Scholar 

  66. Jiang L, Liu XQ, Ma Q et al (2019) hsa-miR-500a-3P alleviates kidney injury by targeting MLKL-mediated necroptosis in renal epithelial cells. FASEB J 33:3523–3535. https://doi.org/10.1096/fj.201801711R

    Article  CAS  PubMed  Google Scholar 

  67. Shin S, Choi JW, Moon H et al (2019) Simultaneous suppression of multiple programmed cell death pathways by miRNA-105 in cardiac ischemic injury. Mol Ther Nucleic Acids 14:438–449. https://doi.org/10.1016/j.omtn.2018.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Song G, Ma Z, Liu D et al (2019) Bone marrow-derived mesenchymal stem cells attenuate severe acute pancreatitis via regulation of microRNA-9 to inhibit necroptosis in rats. Life Sci 223:9–21. https://doi.org/10.1016/j.lfs.2019.03.019

    Article  CAS  PubMed  Google Scholar 

  69. Ou L, Sun T, Cheng Y et al (2019) MicroRNA-214 contributes to regulation of necroptosis via targeting ATF4 in diabetes-associated periodontitis. J Cell Biochem 120:14791–14803. https://doi.org/10.1002/jcb.28740

    Article  CAS  PubMed  Google Scholar 

  70. Zhang DY, Wang BJ, Ma M, Yu K, Zhang Q, Zhang XW (2019) MicroRNA-325-3p protects the heart after myocardial infarction by inhibiting RIPK3 and programmed necrosis in mice. BMC Mol Biol 20:17. https://doi.org/10.1186/s12867-019-0133-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hu YB, Zhang YF, Wang H et al (2019) miR-425 deficiency promotes necroptosis and dopaminergic neurodegeneration in Parkinson’s disease. Cell Death Dis 10:589. https://doi.org/10.1038/s41419-019-1809-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang Y, Jiao J, Ren P, Wu M (2019) Upregulation of miRNA-223–3p ameliorates RIP3-mediated necroptosis and inflammatory responses via targeting RIP3 after spinal cord injury. J Cell Biochem. https://doi.org/10.1002/jcb.28438

    Article  PubMed  PubMed Central  Google Scholar 

  73. Li X, Wang Y, Wang Y, He X (2020) MiR-141–3p ameliorates RIPK1-mediated necroptosis of intestinal epithelial cells in necrotizing enterocolitis. Aging 12:18073–18083. https://doi.org/10.18632/aging.103608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zaafan MA, Abdelhamid AM (2021) The cardioprotective effect of microRNA-103 inhibitor against isoprenaline-induced myocardial infarction in mice through targeting FADD/RIPK pathway. Eur Rev Med Pharmacol Sci 25:837–844. https://doi.org/10.26355/eurrev20210124648

    Article  CAS  PubMed  Google Scholar 

  75. Harari-Steinfeld R, Gefen M, Simerzin A et al (2021) The lncRNA H19-derived microRNA-675 promotes liver necroptosis by targeting FADD. Cancers 13:411. https://doi.org/10.3390/cancers13030411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wei M, Li C, Yan Z et al (2021) Activated microglia exosomes mediated miR-383–3p promotes neuronal necroptosis through inhibiting ATF4 expression in intracerebral hemorrhage. Neurochem Res 46:1337–1349. https://doi.org/10.1007/s11064-021-03268-3

    Article  CAS  PubMed  Google Scholar 

  77. Zhao Z, Sun W, Guo Z, Liu B, Yu H, Zhang J (2021) Long noncoding RNAs in myocardial ischemia-reperfusion injury. Oxid Med Cell Longev 2021:8889123. https://doi.org/10.1155/2021/8889123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li X, Chen M, Shi Q, Zhang H, Xu S (2020) Hydrogen sulfide exposure induces apoptosis and necroptosis through lncRNA3037/miR-15a/BCL2-A20 signaling in broiler trachea. Sci Total Environ 699:134296. https://doi.org/10.1016/j.scitotenv.2019.134296

    Article  CAS  PubMed  Google Scholar 

  79. Wang W, Shi Q, Wang S, Zhang H, Xu S (2020) Ammonia regulates chicken tracheal cell necroptosis via the LncRNA-107053293/MiR-148a-3p/FAF1 axis. J Hazard Mater 386:121626. https://doi.org/10.1016/j.jhazmat.2019.121626

    Article  CAS  PubMed  Google Scholar 

  80. Min W, Sun L, Li B, Gao X, Zhang S, Zhao Y (2022) lncCRLA enhanced chemoresistance in lung adenocarcinoma that underwent epithelial-mesenchymal transition. Oncol Res 28:857–872. https://doi.org/10.3727/096504021X16203818567367

    Article  PubMed  PubMed Central  Google Scholar 

  81. Nomura M, Ueno A, Saga K, Fukuzawa M, Kaneda Y (2014) Accumulation of cytosolic calcium induces necroptotic cell death in human neuroblastoma. Cancer Res 74:1056–1066. https://doi.org/10.1158/0008-5472.CAN-13-1283

    Article  CAS  PubMed  Google Scholar 

  82. Sun W, Wu X, Gao H et al (2017) Cytosolic calcium mediates RIP1/RIP3 complex-dependent necroptosis through JNK activation and mitochondrial ROS production in human colon cancer cells. Free Radic Biol Med 108:433–444. https://doi.org/10.1016/j.freeradbiomed.2017.04.010

    Article  CAS  PubMed  Google Scholar 

  83. Barati M, Javidi MA, Darvishi B et al (2021) Necroptosis triggered by ROS accumulation and Ca2+ overload, partly explains the inflammatory responses and anti-cancer effects associated with 1Hz, 100 mT ELF-MF in vivo. Free Radic Biol Med 169:84–98. https://doi.org/10.1016/j.freeradbiomed.2021.04.002

    Article  CAS  PubMed  Google Scholar 

  84. Zheng Y, Shi G, Cai J et al (2020) Di-(2-ethyl hexyl) phthalate induces necroptosis in chicken cardiomyocytes by triggering calcium overload. J Hazard Mater 387:121696. https://doi.org/10.1016/j.jhazmat.2019.121696

    Article  CAS  PubMed  Google Scholar 

  85. Li C, Ma Q, Toan S, Wang J, Zhou H, Liang J (2020) SERCA overexpression reduces reperfusion-mediated cardiac microvascular damage through inhibition of the calcium/MCU/mPTP/necroptosis signaling pathways. Redox Biol 36:101659. https://doi.org/10.1016/j.redox.2020.101659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang J, Toan S, Zhou H (2020) New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis 23:299–314. https://doi.org/10.1007/s10456-020-09720-2

    Article  CAS  PubMed  Google Scholar 

  87. Wang J, Toan S, Zhou H (2020) Mitochondrial quality control in cardiac microvascular ischemia-reperfusion injury: new insights into the mechanisms and therapeutic potentials. Pharmacol Res 156:104771. https://doi.org/10.1016/j.phrs.2020.104771

    Article  CAS  PubMed  Google Scholar 

  88. Kim S, Dayani L, Rosenberg PA, Li J (2010) RIP1 kinase mediates arachidonic acid-induced oxidative death of oligodendrocyte precursors. Int J Physiol Pathophysiol Pharmacol 2:137–147

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang D, Zhao M, Chen G et al (2013) The histone deacetylase inhibitor vorinostat prevents TNFα-inducednecroptosis by regulating multiple signaling pathways. Apoptosis 18:1348–1362. https://doi.org/10.1007/s10495-013-0866-y

    Article  CAS  PubMed  Google Scholar 

  90. Sosna J, Voigt S, Mathieu S et al (2014) TNF-induced necroptosis and PARP-1-mediated necrosis represent distinct routes to programmed necrotic cell death. Cell Mol Life Sci 71:331–348. https://doi.org/10.1007/s00018-013-1381-6

    Article  CAS  PubMed  Google Scholar 

  91. Locatelli SL, Cleris L, Stirparo GG et al (2014) BIM upregulation and ROS-dependent necroptosis mediate the antitumor effects of the HDACi Givinostat and Sorafenib in Hodgkin lymphoma cell line xenografts. Leukemia 28:1861–1871. https://doi.org/10.1038/leu.2014.81

    Article  CAS  PubMed  Google Scholar 

  92. Wang X, He Z, Liu H, Yousefi S, Simon HU (2016) Neutrophil necroptosis is triggered by ligation of adhesion molecules following GM-CSF priming. J Immunol 197:4090–4100. https://doi.org/10.4049/jimmunol.1600051

    Article  CAS  PubMed  Google Scholar 

  93. Lu B, Gong X, Wang ZQ et al (2017) Shikonin induces glioma cell necroptosis in vitro by ROS overproduction and promoting RIP1/RIP3 necrosome formation. Acta Pharmacol Sin 38:1543–1553. https://doi.org/10.1038/aps.2017.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ding Y, He C, Lu SP et al (2019) MLKL contributes to shikonin-induced glioma cell necroptosis via promotion of chromatinolysis. Cancer Lett 467:58–71. https://doi.org/10.1016/j.canlet.2019.09.007

    Article  CAS  PubMed  Google Scholar 

  95. Dong W, Li Z, Chen Y et al (2017) NADPH oxidase inhibitor, diphenyleneiodonium prevents necroptosis in HK-2 cells. Biomed Rep 7:226–230. https://doi.org/10.3892/br.2017.948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hussain M, Zimmermann V, van Wijk SJL, Fulda S (2018) Mouse lung fibroblasts are highly susceptible to necroptosis in a reactive oxygen species-dependent manner. Biochem Pharmacol 153:242–247. https://doi.org/10.1016/j.bcp.2018.01.025

    Article  CAS  PubMed  Google Scholar 

  97. Jia Y, Wang F, Guo Q et al (2018) Curcumol induces RIPK1/RIPK3 complex-dependent necroptosis via JNK1/2-ROS signaling in hepatic stellate cells. Redox Biol 19:375–387. https://doi.org/10.1016/j.redox.2018.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liang W, Chen M, Zheng D et al (2017) A novel damage mechanism: Contribution of the interaction between necroptosis and ROS to high glucose-induced injury and inflammation in H9c2 cardiac cells. Int J Mol Med 40:201–208. https://doi.org/10.3892/ijmm.2017.3006

    Article  CAS  PubMed  Google Scholar 

  99. Su X, Wang H, Lin Y, Chen F (2018) RIP1 and RIP3 mediate hemin-induced cell death in HT22 hippocampal neuronal cells. Neuropsychiatr Dis Treat 14:3111–3119. https://doi.org/10.2147/NDT.S181074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Koike A, Hanatani M, Fujimori K (2019) Pan-caspase inhibitors induce necroptosis via ROS-mediated activation of mixed lineage kinase domain-like protein and p38 in classically activated macrophages. Exp Cell Res 380:171–179. https://doi.org/10.1016/j.yexcr.2019.04.027

    Article  CAS  PubMed  Google Scholar 

  101. Keshk WA, Ibrahim MA, Shalaby SM, Zalat ZA, Elseady WS (2020) Redox status, inflammation, necroptosis and inflammasome as indispensable contributors to high fat diet (HFD)-induced neurodegeneration; effect of N-acetylcysteine (NAC). Arch Biochem Biophys 680:108227. https://doi.org/10.1016/j.abb.2019.108227

    Article  CAS  PubMed  Google Scholar 

  102. Tian Q, Qin B, Gu Y et al (2020) ROS-mediated necroptosis is involved in iron overload-induced osteoblastic cell death. Oxid Med Cell Longev 2020:1295382. https://doi.org/10.1155/2020/1295382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yin W, Wang C, Peng Y et al (2020) Dexmedetomidine alleviates H2O2-induced oxidative stress and cell necroptosis through activating of α2-adrenoceptor in H9C2 cells. Mol Biol Rep 47:3629–3639. https://doi.org/10.1007/s11033-020-05456-w

    Article  CAS  PubMed  Google Scholar 

  104. Liu XD, Song CY, Kong CC, Tian X (2021) Bufalin induces programmed necroptosis in triple-negative breast cancer drug-resistant cell lines through RIP1/ROS-mediated pathway. Chin J Integr Med. https://doi.org/10.1007/s11655-021-3458-7

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kim S, Lee H, Lim JW, Kim H (2021) Astaxanthin induces NADPH oxidase activation and receptor-interacting protein kinase 1-mediated necroptosis in gastric cancer AGS cells. Mol Med Rep 24:837. https://doi.org/10.3892/mmr.2021.12477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang JX, Zhang XJ, Li Q et al (2015) MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/reperfusion injury through targeting FADD. Circ Res 117:352–363. https://doi.org/10.1161/CIRCRESAHA.117.305781

    Article  CAS  PubMed  Google Scholar 

  107. Zhao W, Feng H, Sun W, Liu K, Lu JJ, Chen X (2017) Tert-butyl hydroperoxide (t-BHP) induced apoptosis and necroptosis in endothelial cells: roles of NOX4 and mitochondrion. Redox Biol 11:524–534. https://doi.org/10.1016/j.redox.2016.12.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang L, Feng Q, Wang T (2018) Necrostatin-1 protects against paraquat-induced cardiac contractile dysfunction via RIP1-RIP3-MLKL-dependent necroptosis pathway. Cardiovasc Toxicol 18:346–355. https://doi.org/10.1007/s12012-017-9441-z

    Article  CAS  PubMed  Google Scholar 

  109. Zhuo Y, Yuan R, Chen X et al (2021) Tanshinone I exerts cardiovascular protective effects in vivo and in vitro through inhibiting necroptosis via Akt/Nrf2 signaling pathway. Chin Med 16:48. https://doi.org/10.1186/s13020-021-00458-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chi RF, Li L, Wang AL et al (2022) Enhanced oxidative stress mediates pathological autophagy and necroptosis in cardiac myocytes in pressure overload induced heart failure in rats. Clin Exp Pharmacol Physiol 49:60–69. https://doi.org/10.1111/1440-1681.13583

    Article  CAS  PubMed  Google Scholar 

  111. Zhang Y, Su SS, Zhao S et al (2017) RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat Commun 8:14329. https://doi.org/10.1038/ncomms14329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Delanghe T, Huyghe J, Lee S et al (2021) Antioxidant and food additive BHA prevents TNF cytotoxicity by acting as a direct RIPK1 inhibitor. Cell Death Dis 12:699

    Article  CAS  Google Scholar 

  113. Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83:1113–1151. https://doi.org/10.1152/physrev.00009.2003

    Article  CAS  PubMed  Google Scholar 

  114. Deng Q, Yu X, Xiao L et al (2013) Neoalbaconol induces energy depletion and multiple cell death in cancer cells by targeting PDK1-PI3-K/Akt signaling pathway. Cell Death Dis 4:e804. https://doi.org/10.1038/cddis.2013.324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. McNamara CR, Ahuja R, Osafo-Addo AD et al (2013) Akt Regulates TNFα synthesis downstream of RIP1 kinase activation during necroptosis. PLoS ONE 8:e56576. https://doi.org/10.1371/journal.pone.0056576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liu Q, Qiu J, Liang M et al (2014) Akt and mTOR mediate programmed necrosis in neurons. Cell Death Dis 5:e1084. https://doi.org/10.1038/cddis.2014.69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang Y, Zhang Q, Wang B, Li P, Liu P (2017) LiCl Treatment induces programmed cell death of schwannoma cells through AKT- and MTOR-mediated necroptosis. Neurochem Res 42:2363–2371. https://doi.org/10.1007/s11064-017-2256-2

    Article  CAS  PubMed  Google Scholar 

  118. Abe K, Yano T, Tanno M et al (2019) mTORC1 inhibition attenuates necroptosis through RIP1 inhibition-mediated TFEB activation. Biochim Biophys Acta Mol Basis Dis 1865:165552. https://doi.org/10.1016/j.bbadis.2019.165552

    Article  CAS  PubMed  Google Scholar 

  119. Ogasawara M, Yano T, Tanno M et al (2017) Suppression of autophagic flux contributes to cardiomyocyte death by activation of necroptotic pathways. J Mol Cell Cardiol 108:203–213. https://doi.org/10.1016/j.yjmcc.2017.06.008

    Article  CAS  PubMed  Google Scholar 

  120. Wang YS, Yu P, Wang Y et al (2018) AMP-activated protein kinase protects against necroptosis via regulation of Keap1-PGAM5 complex. Int J Cardiol 259:153–162. https://doi.org/10.1016/j.ijcard.2018.01.036

    Article  PubMed  PubMed Central  Google Scholar 

  121. Li C, Mu N, Gu C et al (2020) Metformin mediates cardioprotection against aging-induced ischemic necroptosis. Aging Cell 19:e13096. https://doi.org/10.1111/acel.13096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xie Y, Zhu S, Zhong M et al (2017) Inhibition of aurora kinase A induces necroptosis in pancreatic carcinoma. Gastroenterology 153:1429-1443.e5. https://doi.org/10.1053/j.gastro.2017.07.036

    Article  CAS  PubMed  Google Scholar 

  123. Christofferson DE, Li Y, Hitomi J et al (2012) A novel role for RIP1 kinase in mediating TNFα production. Cell Death Dis 3:e320. https://doi.org/10.1038/cddis.2012.64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Xie X, Zhao Y, Ma CY et al (2015) Dimethyl fumarate induces necroptosis in colon cancer cells through GSH depletion/ROS increase/MAPKs activation pathway. Br J Pharmacol 172:3929–3943. https://doi.org/10.1111/bph.13184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Qin S, Yang C, Huang W et al (2018) Sulforaphane attenuates microglia-mediated neuronal necroptosis through down-regulation of MAPK/NF-κB signaling pathways in LPS-activated BV-2 microglia. Pharmacol Res 133:218–235. https://doi.org/10.1016/j.phrs.2018.01.014

    Article  CAS  PubMed  Google Scholar 

  126. Lusthaus M, Mazkereth N, Donin N, Fishelson Z (2018) Receptor-interacting protein kinases 1 and 3, and mixed lineage kinase domain-like protein are activated by sublytic complement and participate in complement-dependent cytotoxicity. Front Immunol 9:306. https://doi.org/10.3389/fimmu.2018.00306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ning Y, Shi Y, Chen J et al (2018) Necrostatin-1 attenuates cisplatin-induced nephrotoxicity through suppression of apoptosis and oxidative stress and retains Klotho expression. Front Pharmacol 9:384. https://doi.org/10.3389/fphar.2018.00384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Song X, Li T (2019) Ripk3 mediates cardiomyocyte necrosis through targeting mitochondria and the JNK-Bnip3 pathway under hypoxia-reoxygenation injury. J Recept Signal Transduct Res 39:331–340. https://doi.org/10.1080/10799893.2019.1676259

    Article  CAS  PubMed  Google Scholar 

  129. Sun W, Bao J, Lin W et al (2016) 2-Methoxy-6-acetyl-7-methyljuglone (MAM), a natural naphthoquinone, induces NO-dependent apoptosis and necroptosis by H2O2-dependent JNK activation in cancer cells. Free Radic Biol Med 92:61–77. https://doi.org/10.1016/j.freeradbiomed.2016.01.014

    Article  CAS  PubMed  Google Scholar 

  130. Cao M, Chen F, Xie N et al (2018) c-Jun N-terminal kinases differentially regulate TNF- and TLRs-mediated necroptosis through their kinase-dependent and -independent activities. Cell Death Dis 9:1140. https://doi.org/10.1038/s41419-018-1189-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hu W, Wu X, Yu D et al (2020) Regulation of JNK signaling pathway and RIPK3/AIF in necroptosis-mediated global cerebral ischemia/reperfusion injury in rats. Exp Neurol 331:113374. https://doi.org/10.1016/j.expneurol.2020.113374

    Article  CAS  PubMed  Google Scholar 

  132. Grynberg K, Ozols E, Mulley WR et al (2021) JUN amino-terminal kinase 1 signaling in the proximal tubule causes cell death and acute renal failure in rat and mouse models of renal ischemia/reperfusion injury. Am J Pathol 191:817–828. https://doi.org/10.1016/j.ajpath.2021.02.004

    Article  CAS  PubMed  Google Scholar 

  133. Zheng W, Zhou CY, Zhu XQ et al (2018) Oridonin enhances the cytotoxicity of 5-FU in renal carcinoma cells by inducting necroptotic death. Biomed Pharmacother 106:175–182. https://doi.org/10.1016/j.biopha.2018.06.111

    Article  CAS  PubMed  Google Scholar 

  134. Feng T, Chen W, Zhang C et al (2017) The p38/CYLD pathway is involved in necroptosis induced by oxygen-glucose deprivation combined with ZVAD in primary cortical neurons. Neurochem Res 42:2294–2304. https://doi.org/10.1007/s11064-017-2244-6

    Article  CAS  PubMed  Google Scholar 

  135. Huang YC, Tsai MS, Hsieh PC et al (2017) Galangin ameliorates cisplatin-induced nephrotoxicity by attenuating oxidative stress, inflammation and cell death in mice through inhibition of ERK and NF-kappaB signaling. Toxicol Appl Pharmacol 329:128–139. https://doi.org/10.1016/j.taap.2017.05.034

    Article  CAS  PubMed  Google Scholar 

  136. Lin J, Li X, Lin Y, Huang Z, Wu W (2021) Exogenous sodium hydrosulfide protects against high glucose-induced injury and inflammation in human umbilical vein endothelial cells by inhibiting necroptosis via the p38 MAPK signaling pathway. Mol Med Rep 23:67. https://doi.org/10.3892/mmr.2020.11706

    Article  CAS  PubMed  Google Scholar 

  137. Oliveira SR, Dionísio PA, Brito H et al (2018) Phenotypic screening identifies a new oxazolone inhibitor of necroptosis and neuroinflammation. Cell Death Discov 4:10. https://doi.org/10.1038/s41420-018-0067-0

    Article  CAS  PubMed  Google Scholar 

  138. Jaco I, Annibaldi A, Lalaoui N et al (2017) MK2 phosphorylates RIPK1 to prevent TNF-induced cell death. Mol Cell 66:698-710.e5. https://doi.org/10.1016/j.molcel.2017.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Menon MB, Gropengießer J, Fischer J et al (2017) p38MAPK/MK2-dependent phosphorylation controls cytotoxic RIPK1 signalling in inflammation and infection. Nat Cell Biol 19:1248–1259. https://doi.org/10.1038/ncb3614

    Article  CAS  PubMed  Google Scholar 

  140. Rijal D, Ariana A, Wight A et al (2018) Differentiated macrophages acquire a pro-inflammatory and cell death-resistant phenotype due to increasing XIAP and p38-mediated inhibition of RipK1. J Biol Chem 293:11913–11927. https://doi.org/10.1074/jbc.RA118.003614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ye YC, Yu L, Wang HJ, Tashiro S, Onodera S, Ikejima T (2011) TNFα-induced necroptosis and autophagy via supression of the p38-NF-κB survival pathway in L929 cells. J Pharmacol Sci 117:160–169. https://doi.org/10.1254/jphs.11105fp

    Article  CAS  PubMed  Google Scholar 

  142. Escobar SJM, Fong GM, Winnischofer SMB et al (2019) Anti-proliferative and cytotoxic activities of the flavonoid isoliquiritigenin in the human neuroblastoma cell line SH-SY5Y. Chem Biol Interact 299:77–87

    Article  CAS  Google Scholar 

  143. de Miranda DC, de Oliveira FG, Hermidorff MM et al (2021) Pre- and post-conditioning of the heart: an overview of cardioprotective signaling pathways. Curr Vasc Pharmacol 19:499–524. https://doi.org/10.2174/1570161119666201120160619

    Article  CAS  PubMed  Google Scholar 

  144. Bollino D, Balan I, Aurelian L (2015) Valproic acid induces neuronal cell death through a novel calpain-dependent necroptosis pathway. J Neurochem 133:174–186. https://doi.org/10.1111/jnc.13029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Szobi A, Rajtik T, Carnicka S, Ravingerova T, Adameova A (2014) Mitigation of postischemic cardiac contractile dysfunction by CaMKII inhibition: effects on programmed necrotic and apoptotic cell death. Mol Cell Biochem 388:269–276. https://doi.org/10.1007/s11010-013-1918-x

    Article  CAS  PubMed  Google Scholar 

  146. Feng N, Anderson ME (2017) CaMKII is a nodal signal for multiple programmed cell death pathways in heart. J Mol Cell Cardiol 103:102–109. https://doi.org/10.1016/j.yjmcc.2016.12.007

    Article  CAS  PubMed  Google Scholar 

  147. Zhang T, Zhang Y, Cui M et al (2016) CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med 22:175–182. https://doi.org/10.1038/nm.4017

    Article  CAS  PubMed  Google Scholar 

  148. Szobi A, Farkašová-Ledvényiová V, Lichý M et al (2018) Cardioprotection of ischaemic preconditioning is associated with inhibition of translocation of MLKL within the plasma membrane. J Cell Mol Med 22:4183–4196. https://doi.org/10.1111/jcmm.13697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhan L, Lu Z, Zhu X et al (2019) Hypoxic preconditioning attenuates necroptotic neuronal death induced by global cerebral ischemia via Drp1-dependent signaling pathway mediated by CaMKIIα inactivation in adult rats. FASEB J 33:1313–1329. https://doi.org/10.1096/fj.201800111RR

    Article  CAS  PubMed  Google Scholar 

  150. Chang L, Wang Z, Ma F et al (2019) ZYZ-803 mitigates endoplasmic reticulum stress-related necroptosis after acute myocardial infarction through downregulating the RIP3-CaMKII signaling pathway. Oxid Med Cell Longev 2019:6173685. https://doi.org/10.1155/2019/6173685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Reventun P, Sanchez-Esteban S, Cook A et al (2020) Bisphenol a induces coronary endothelial cell necroptosis by activating RIP3/CamKII dependent pathway. Sci Rep 10:4190. https://doi.org/10.1038/s41598-020-61014-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chen Y, Li X, Hua Y, Ding Y, Meng G, Zhang W (2021) RIPK3-mediated necroptosis in diabetic cardiomyopathy requires CaMKII activation. Oxid Med Cell Longev 2021:6617816. https://doi.org/10.1155/2021/6617816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhan Q, Jeon J, Li Y, Huang Y et al (2021) CAMK2/CaMKII activates MLKL in short-term starvation to facilitate autophagic flux. Autophagy 18:726–744. https://doi.org/10.1080/15548627.2021.1954348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhou T, DeRoo E, Yang H et al (2021) MLKL and CaMKII are involved in RIPK3-mediated smooth muscle cell necroptosis. Cells 10:2397. https://doi.org/10.3390/cells10092397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Perkins ND (2007) Integrating cell-signalling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol 8:49–62. https://doi.org/10.1038/nrm2083

    Article  CAS  PubMed  Google Scholar 

  156. Duan PY, Ma Y, Li XN et al (2019) Inhibition of RIPK1-dependent regulated acinar cell necrosis provides protection against acute pancreatitis via the RIPK1/NF-κB/AQP8 pathway. Exp Mol Med 51:1–17. https://doi.org/10.1038/s12276-019-0278-3

    Article  CAS  PubMed  Google Scholar 

  157. Yu S, Yang H, Guo X, Sun Y (2021) Klotho attenuates angiotensin II-induced cardiotoxicity through suppression of necroptosis and oxidative stress. Mol Med Rep 23:66. https://doi.org/10.3892/mmr.2020.11705

    Article  CAS  PubMed  Google Scholar 

  158. Huang Y, Li W, Su ZY, Kong AN (2015) The complexity of the Nrf2 pathway: beyond the antioxidant response. J Nutr Biochem 26:1401–1413. https://doi.org/10.1016/j.jnutbio.2015.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zenkov NK, Kozhin PM, Chechushkov AV, Martinovich GG, Kandalintseva NV, Menshchikova EB (2017) Mazes of Nrf2 regulation. Biochemistry 82:556–564. https://doi.org/10.1134/S0006297917050030

    Article  CAS  PubMed  Google Scholar 

  160. Shen Y, Liu X, Shi J, Wu X (2019) Involvement of Nrf2 in myocardial ischemia and reperfusion injury. Int J Biol Macromol 125:496–502. https://doi.org/10.1016/j.ijbiomac.2018.11.190

    Article  CAS  PubMed  Google Scholar 

  161. Sun J, Yu X, Huangpu H, Yao F (2019) Ginsenoside Rb3 protects cardiomyocytes against hypoxia/reoxygenation injury via activating the antioxidation signaling pathway of PERK/Nrf2/HMOX1. Biomed Pharmacother 109:254–261. https://doi.org/10.1016/j.biopha.2018.09.002

    Article  CAS  PubMed  Google Scholar 

  162. Lu C, Xu W, Zhang F, Shao J, Zheng S (2016) Nrf2 knockdown disrupts the protective effect of curcumin on alcohol-induced hepatocyte necroptosis. Mol Pharm 13:4043–4053. https://doi.org/10.1021/acs.molpharmaceut.6b00562

    Article  CAS  PubMed  Google Scholar 

  163. Zhou Y, Jin H, Wu Y, Chen L, Bao X, Lu C (2019) Gallic acid protects against ethanol-induced hepatocyte necroptosis via an NRF2-dependent mechanism. Toxicol In Vitro 57:226–232. https://doi.org/10.1016/j.tiv.2019.03.008

    Article  CAS  PubMed  Google Scholar 

  164. Zhang H, Zhou L, Zhou Y et al (2021) Intermittent hypoxia aggravates non-alcoholic fatty liver disease via RIPK3-dependent necroptosis-modulated Nrf2/NFκB signaling pathway. Life Sci 285:119963. https://doi.org/10.1016/j.lfs.2021.119963

    Article  CAS  PubMed  Google Scholar 

  165. Morishima M, Tahara S, Wang Y, Ono K (2021) Oxytocin downregulates the Ca(V)1.2 L-Type Ca 2+ channel via Gi/cAMP/PKA/CREB signaling pathway in cardiomyocytes. Membranes 11:234. https://doi.org/10.3390/membranes11040234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Yang C, Li T, Xue H et al (2019) Inhibition of necroptosis rescues SAH-induced synaptic impairments in hippocampus via CREB-BDNF pathway. Front Neurosci 12:990. https://doi.org/10.3389/fnins.2018.00990

    Article  PubMed  PubMed Central  Google Scholar 

  167. Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131-136. https://doi.org/10.1038/ncb0502-e131

    Article  CAS  PubMed  Google Scholar 

  168. Wu YT, Tan HL, Huang Q, Sun XJ, Zhu X, Shen HM (2011) zVAD-induced necroptosis in L929 cells depends on autocrine production of TNFα mediated by the PKC-MAPKs-AP-1 pathway. Cell Death Differ 18:26–37. https://doi.org/10.1038/cdd.2010.72

    Article  CAS  PubMed  Google Scholar 

  169. Xu F, Luo M, He L et al (2018) Necroptosis contributes to urban particulate matter-induced airway epithelial injury. Cell Physiol Biochem 46:699–712. https://doi.org/10.1159/000488726

    Article  CAS  PubMed  Google Scholar 

  170. Guanizo AC, Fernando CD, Garama DJ, Gough DJ (2018) STAT3: a multifaceted oncoprotein. Growth Factors 6:1–14. https://doi.org/10.1080/08977194.2018.1473393

    Article  CAS  Google Scholar 

  171. Malemud CJ (2018) The role of the JAK/STAT signal pathway in rheumatoid arthritis. Ther Adv Musculoskelet Dis 10:117–127. https://doi.org/10.1177/1759720X18776224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lim SY, Davidson SM, Mocanu MM, Yellon DM, Smith CC (2007) The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial transition pore. Cardiovasc Drugs Ther 21:467–469. https://doi.org/10.1007/s10557-007-6067-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Smith CC, Davidson SM, Lim SY, Simpkin JC, Hothersall JS, Yellon DM (2007) Necrostatin: a potentially novel cardioprotective agent? Cardiovasc Drugs Ther 21:227–233. https://doi.org/10.1007/s10557-007-6035-1

    Article  CAS  PubMed  Google Scholar 

  174. Oerlemans MI, Liu J, Arslan F et al (2012) Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Res Cardiol 107:270. https://doi.org/10.1007/s00395-012-0270-8

    Article  CAS  PubMed  Google Scholar 

  175. Koshinuma S, Miyamae M, Kaneda K, Kotani J, Figueredo VM (2014) Combination of necroptosis and apoptosis inhibition enhances cardioprotection against myocardial ischemia-reperfusion injury. J Anesth 28:235–241. https://doi.org/10.1007/s00540-013-1716-3

    Article  PubMed  Google Scholar 

  176. Luedde M, Lutz M, Carter N et al (2014) RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. Cardiovasc Res 103:206–216. https://doi.org/10.1093/cvr/cvu146

    Article  CAS  PubMed  Google Scholar 

  177. Zhou H, Zhu P, Guo J et al (2017) Ripk3 induces mitochondrial apoptosis via inhibition of FUNDC1 mitophagy in cardiac IR injury. Redox Biol 13:498–507. https://doi.org/10.1016/j.redox.2017.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Zhang H, Yin Y, Liu Y et al (2020) Necroptosis mediated by impaired autophagy flux contributes to adverse ventricular remodeling after myocardial infarction. Biochem Pharmacol 175:113915. https://doi.org/10.1016/j.bcp.2020.113915

    Article  CAS  PubMed  Google Scholar 

  179. Chen H, Tang LJ, Tu H et al (2020) Arctiin protects rat heart against ischemia/reperfusion injury via a mechanism involving reduction of necroptosis. Eur J Pharmacol 875:173053. https://doi.org/10.1016/j.ejphar.2020.173053

    Article  CAS  PubMed  Google Scholar 

  180. Horvath C, Young M, Jarabicova I et al (2021) Inhibition of cardiac RIP3 mitigates early reperfusion injury and calcium-induced mitochondrial swelling without altering necroptotic signalling. Int J Mol Sci 22:7983. https://doi.org/10.3390/ijms22157983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Wang C, Hu L, Guo S et al (2021) Phosphocreatine attenuates doxorubicin-induced cardiotoxicity by inhibiting oxidative stress and activating TAK1 to promote myocardial survival in vivo and in vitro. Toxicology 460:152881. https://doi.org/10.1016/j.tox.2021.152881

    Article  CAS  PubMed  Google Scholar 

  182. Yu X, Ruan Y, Huang XT et al (2020) Dexrazoxane ameliorates doxorubicin-induced cardiotoxicity by inhibiting both apoptosis and necroptosis in cardiomyocytes. Biochem Biophys Res Commun 523:140–146. https://doi.org/10.1016/j.bbrc.2019.12.027

    Article  CAS  PubMed  Google Scholar 

  183. Zhou F, Jiang X, Teng L, Yang J, Ding J, He C (2018) Necroptosis may be a novel mechanism for cardiomyocyte death in acute myocarditis. Mol Cell Biochem 442:11–18. https://doi.org/10.1007/s11010-017-3188-5

    Article  CAS  PubMed  Google Scholar 

  184. Ghardashi Afousi A, Gaeini A, Rakhshan K, Naderi N, Darbandi Azar A, Aboutaleb N (2019) Targeting necroptotic cell death pathway by high-intensity interval training (HIIT) decreases development of post-ischemic adverse remodelling after myocardial ischemia / reperfusion injury. J Cell Commun Signal 13:255–267. https://doi.org/10.1007/s12079-018-0481-3

    Article  PubMed  Google Scholar 

  185. Lichy M, Szobi A, Hrdlička J et al (2019) Different signalling in infarcted and non-infarcted areas of rat failing hearts: a role of necroptosis and inflammation. J Cell Mol Med 23:6429–6441. https://doi.org/10.1111/jcmm.14536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Song S, Ding Y, Dai GL et al (2021) Sirtuin 3 deficiency exacerbates diabetic cardiomyopathy via necroptosis enhancement and NLRP3 activation. Acta Pharmacol Sin 42:230–241. https://doi.org/10.1038/s41401-020-0490-7

    Article  CAS  PubMed  Google Scholar 

  187. Apaijai N, Jinawong K, Singhanat K et al (2021) Necrostatin-1 reduces cardiac and mitochondrial dysfunction in prediabetic rats. J Endocrinol 251:27–39. https://doi.org/10.1530/JOE-21-0134

    Article  CAS  PubMed  Google Scholar 

  188. Kloner RA, Ganote CE, Jennings RB (1974) The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54:1496–1508. https://doi.org/10.1172/JCI107898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hänggi K, Vasilikos L, Valls AF et al (2017) RIPK1/RIPK3 promotes vascular permeability to allow tumor cell extravasation independent of its necroptotic function. Cell Death Dis 8:e2588. https://doi.org/10.1038/cddis.2017.20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Luo S, Li S, Zhu L et al (2017) Effect of baicalin on oxygen-glucose deprivation-induced endothelial cell damage. NeuroReport 28:299–306. https://doi.org/10.1097/WNR.0000000000000749

    Article  CAS  PubMed  Google Scholar 

  191. Zhou H, Li D, Zhu P et al (2018) Inhibitory effect of melatonin on necroptosis via repressing the Ripk3-PGAM5-CypD-mPTP pathway attenuates cardiac microvascular ischemia-reperfusion injury. J Pineal Res 65:e12503. https://doi.org/10.1111/jpi.12503

    Article  CAS  PubMed  Google Scholar 

  192. Shi P, Cao Y, Gao J et al (2018) Allicin improves the function of cardiac microvascular endothelial cells by increasing PECAM-1 in rats with cardiac hypertrophy. Phytomedicine 51:241–254. https://doi.org/10.1016/j.phymed.2018.10.021

    Article  CAS  PubMed  Google Scholar 

  193. D’Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43:582–592. https://doi.org/10.1002/cbin.11137

    Article  PubMed  Google Scholar 

  194. Nicotera P, Melino G (2004) Regulation of the apoptosis-necrosis switch. Oncogene 23:2757–2765. https://doi.org/10.1038/sj.onc.1207559

    Article  CAS  PubMed  Google Scholar 

  195. Sauler M, Sauler M, Bazan IS, Lee PJ (2019) Cell death in the lung: the apoptosis-necroptosis axis. Annu Rev Physiol 81:375–402. https://doi.org/10.1146/annurev-physiol-020518-114320

    Article  CAS  PubMed  Google Scholar 

  196. Bertheloot D, Latz E, Franklin BS (2021) Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol 18:1106–1121. https://doi.org/10.1038/s41423-020-00630-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Su Z, Yang Z, Xu Y et al (2015) Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer 14:48. https://doi.org/10.1186/s12943-015-0321-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kajstura J, Cheng W, Reiss K et al (1996) Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74:86–107

    CAS  PubMed  Google Scholar 

  199. Popov SV, Maslov LN, Naryzhnaya NV et al (2021) The role of pyroptosis in ischemic and reperfusion injury of the heart. J Cardiovasc Pharmacol Ther 26:562–574. https://doi.org/10.1177/10742484211027405

    Article  CAS  PubMed  Google Scholar 

  200. Woo Y, Lee HJ, Jung YM, Jung YJ (2020) Regulated necrotic cell death in alternative tumor therapeutic strategies. Cells 9:2709. https://doi.org/10.3390/cells9122709

    Article  CAS  PubMed Central  Google Scholar 

  201. Tu H, Zhou YJ, Tang LJ et al (2021) Combination of ponatinib with deferoxamine synergistically mitigates ischemic heart injury via simultaneous prevention of necroptosis and ferroptosis. Eur J Pharmacol 898:173999. https://doi.org/10.1016/j.ejphar.2021.173999

    Article  CAS  PubMed  Google Scholar 

  202. Yu Y, Yan Y, Niu F et al (2021) Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov 7:193. https://doi.org/10.1038/s41420-021-00579-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Rathkey JK, Zhao J, Liu Z et al (2018) Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Sci Immunol 3:eaat2738. https://doi.org/10.1126/sciimmunol.aat2738

    Article  PubMed  PubMed Central  Google Scholar 

  204. Degenhardt K, Mathew R, Beaudoin B et al (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10:51–64. https://doi.org/10.1016/j.ccr.2006.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Zhu H, Toan S, Mui D, Zhou H (2021) Mitochondrial quality surveillance as a therapeutic target in myocardial infarction. Acta Physiol (Oxf) 23:e13590. https://doi.org/10.1111/apha.13590

    Article  CAS  Google Scholar 

  206. Zhu H, Tan Y, Du W et al (2021) Phosphoglycerate mutase 5 exacerbates cardiac ischemia-reperfusion injury through disrupting mitochondrial quality control. Redox Biol 38:101777. https://doi.org/10.1016/j.redox.2020.101777

    Article  CAS  PubMed  Google Scholar 

  207. Liu X, Zhang C, Zhang C et al (2016) Heat shock protein 70 inhibits cardiomyocyte necroptosis through repressing autophagy in myocardial ischemia/reperfusion injury. In Vitro Cell Dev Biol Anim 52:690–698. https://doi.org/10.1007/s11626-016-0039-8

    Article  CAS  PubMed  Google Scholar 

  208. Wang Y, Yang Z, Zheng G et al (2019) Metformin promotes autophagy in ischemia/reperfusion myocardium via cytoplasmic AMPKα1 and nuclear AMPKα2 pathways. Life Sci 225:64–71. https://doi.org/10.1016/j.lfs.2019.04.002

    Article  CAS  PubMed  Google Scholar 

  209. Qiao S, Zhao WJ, Li HQ et al (2021) Necrostatin-1 analog DIMO exerts cardioprotective effect against ischemia reperfusion injury by suppressing necroptosis via autophagic pathway in rats. Pharmacology 106:189–201. https://doi.org/10.1159/000510864

    Article  CAS  PubMed  Google Scholar 

  210. Takahashi N, Duprez L, Grootjans S et al (2012) Necrostatin-1analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis 3:e437. https://doi.org/10.1038/cddis.2012.176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Degterev A, Maki JL, Yuan J (2013) Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase. Cell Death Differ 20:366. https://doi.org/10.1038/cdd.2012.133

    Article  CAS  PubMed  Google Scholar 

  212. Zhou T, Wang Q, Phan N et al (2019) Identification of a novel class of RIP1/RIP3 dual inhibitors that impede cell death and inflammation in mouse abdominal aortic aneurysm models. Cell Death Dis 10:226. https://doi.org/10.1038/s41419-019-1468-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Sun L, Wang H, Wang Z et al (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148:213–227. https://doi.org/10.1016/j.cell.2011.11.031

    Article  CAS  PubMed  Google Scholar 

  214. Zhou Y, Zhou B, Tu H et al (2017) The degradation of mixed lineage kinase domain-like protein promotes neuroprotection after ischemic brain injury. Oncotarget 8:68393–68401. https://doi.org/10.18632/oncotarget.19416

    Article  PubMed  PubMed Central  Google Scholar 

  215. Wang Y, Wang J, Wang H et al (2018) Necrosulfonamide attenuates spinal cord injury via necroptosis inhibition. World Neurosurg 114:e1186–e1191. https://doi.org/10.1016/j.wneu.2018.03.174

    Article  PubMed  Google Scholar 

  216. Ueda S, Chen-Yoshikawa TF, Tanaka S et al (2022) Protective effect of Necrosulfonamide on rat pulmonary ischemia-reperfusion injury via inhibition of necroptosis. J Thorac Cardiovasc Surg 163:e113–e122. https://doi.org/10.1016/j.jtcvs.2021.01.037

    Article  PubMed  Google Scholar 

Download references

Funding

This article was supported by state assignment (Grant No.122020300042-4).

Author information

Authors and Affiliations

Authors

Contributions

SVP verification of critical intellectual content, article editing. AVM, BKK and IAD searching for published data on the subject of an article, writing and typing of articles, preparation for publishing and preparing figures. AAB, NVN, IK, NRP, NS, AD, EAT and EVS verification of critical intellectual content. LNM devised the project, the main conceptual ideas of the article, final approval of the content for publication of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Leonid N. Maslov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslov, L.N., Popov, S.V., Naryzhnaya, N.V. et al. The regulation of necroptosis and perspectives for the development of new drugs preventing ischemic/reperfusion of cardiac injury. Apoptosis 27, 697–719 (2022). https://doi.org/10.1007/s10495-022-01760-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01760-x

Keywords

Navigation