Skip to main content
Log in

The histone deacetylase inhibitor vorinostat prevents TNFα-induced necroptosis by regulating multiple signaling pathways

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Histone deacetylase (HDAC) inhibitors are novel anticancer reagents that have recently been reported to have anti-inflammatory and neuroprotective effects; however, the mechanisms underlying their activities are largely undefined. The data from this study show that the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) can protect L929 cells from TNFα-induced necroptosis. This effect involves multiple mechanisms, including the upregulation of cFLIPL expression, the enhanced activation of NFκB and p38 MAPK, and the inactivation of JNK. In addition, SAHA could initiate cell autophagy by inhibiting Akt and mTOR, which also play important roles in protecting cells from necroptosis. Because cell necroptosis is important for inflammation-related deterioration and neurodegenerative disease, our results indicate that preventing cell necrosis may be an important mechanism through which HDAC inhibitor compounds exert their anti-inflammatory or neuroprotective effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dickens LS, Powley IR, Hughes MA, MacFarlane M (2012) The ‘complexities’ of life and death: death receptor signalling platforms. Exp Cell Res 318(11):1269–1277

    Article  PubMed  CAS  Google Scholar 

  2. Christofferson DE, Yuan J (2010) Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol 22(2):263–268

    Article  PubMed  CAS  Google Scholar 

  3. Galluzzi L, Kroemer G (2008) Necroptosis: a specialized pathway of programmed necrosis. Cell 135(7):1161–1163

    Article  PubMed  CAS  Google Scholar 

  4. Vanlangenakker N, Vanden Berghe T, Vandenabeele P (2011) Many stimuli pull the necrotic trigger, an overview. Cell Death Differ 19(1):75–86

    Article  PubMed  Google Scholar 

  5. He S, Wang L, Miao L, Wang T, Du F, Zhao L et al (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137(6):1100–1111

    Article  PubMed  CAS  Google Scholar 

  6. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1(2):112–119

    Article  PubMed  CAS  Google Scholar 

  7. Cho Y, Challa S, Moquin D, Genga R, Ray TD, Guildford M et al (2009) Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137(6):1112–1123

    Article  PubMed  CAS  Google Scholar 

  8. Berghe TV, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N et al (2009) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 17(6):922–930

    Article  Google Scholar 

  9. Declercq W, Vanden Berghe T, Vandenabeele P (2009) RIP kinases at the crossroads of cell death and survival. Cell 138(2):229–232

    Article  PubMed  CAS  Google Scholar 

  10. Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P (2007) RIP1, a kinase on the crossroads of a cell’s decision to live or die. Cell Death Differ 14(3):400–410

    Article  PubMed  CAS  Google Scholar 

  11. Hayden MS, Ghosh S (2008) Shared principles in NF-κB signaling. Cell 132(3):344–362

    Article  PubMed  CAS  Google Scholar 

  12. Mahoney DJ, Cheung HH, Mrad RL, Plenchette S, Simard C, Enwere E et al (2008) Both cIAP1 and cIAP2 regulate TNF-mediated NF-B activation. Proc Natl Acad Sci 105(33):11778–11783

    Article  PubMed  CAS  Google Scholar 

  13. Biton S, Ashkenazi A (2011) NEMO and RIP1 control cell fate in response to extensive DNA damage via TNF-α feedforward signaling. Cell 145(1):92–103

    Article  PubMed  CAS  Google Scholar 

  14. Shembade N, Ma A, Harhaj EW (2010) Inhibition of NF-B signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327(5969):1135–1139

    Article  PubMed  CAS  Google Scholar 

  15. Sun SC (2010) CYLD: a tumor suppressor deubiquitinase regulating NF-kappaB activation and diverse biological processes. Cell Death Differ 17(1):25–34

    Article  PubMed  CAS  Google Scholar 

  16. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325(5938):332–336

    Article  PubMed  CAS  Google Scholar 

  17. Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F et al (2011) The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 43(3):432–448

    Article  PubMed  CAS  Google Scholar 

  18. Imre G, Larisch S, Rajalingam K (2011) Ripoptosome: a novel IAP-regulated cell death-signalling platform. J Mol Cell Biol 3(6):324–326

    Article  PubMed  CAS  Google Scholar 

  19. Weinlich R, Dillon CP, Green DR (2011) Ripped to death. Trends Cell Biol 21(11):630–637

    Article  PubMed  CAS  Google Scholar 

  20. Feoktistova M, Geserick P, Kellert B, Dimitrova Diana P, Langlais C, Hupe M et al (2011) cIAPs block ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 43(3):449–463

    Article  PubMed  CAS  Google Scholar 

  21. Bertrand Mathieu JM, Vandenabeele P (2011) The ripoptosome: death decision in the cytosol. Mol Cell 43(3):323–325

    Article  PubMed  CAS  Google Scholar 

  22. Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J et al (2012) Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci USA 109(14):5322–5327

    Article  PubMed  CAS  Google Scholar 

  23. Wang Z, Jiang H, Chen S, Du F, Wang X (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148(1–2):228–243

    Article  PubMed  CAS  Google Scholar 

  24. Komatsu N, Kawamata N, Takeuchi S, Yin D, Chien W, Miller CW et al (2006) SAHA, a HDAC inhibitor, has profound anti-growth activity against non-small cell lung cancer cells. Oncol Rep 15(1):187–191

    PubMed  CAS  Google Scholar 

  25. Yu X, Guo ZS, Marcu MG, Neckers L, Nguyen DM, Chen GA et al (2002) Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J Natl Cancer Inst 94(7):504–513

    Article  PubMed  CAS  Google Scholar 

  26. Faraco G, Pittelli M, Cavone L, Fossati S, Porcu M, Mascagni P et al (2009) Histone deacetylase (HDAC) inhibitors reduce the glial inflammatory response in vitro and in vivo. Neurobiol Dis 36(2):269–279

    Article  PubMed  CAS  Google Scholar 

  27. Xuan A, Long D, Li J, Ji W, Hong L, Zhang M et al (2012) Neuroprotective effects of valproic acid following transient global ischemia in rats. Life Sci 90(11–12):463–468

    Article  PubMed  CAS  Google Scholar 

  28. Combs C, Dash PK, Orsi SA, Zhang M, Grill RJ, Pati S et al (2010) Valproate administered after traumatic brain injury provides neuroprotection and improves cognitive function in rats. PLoS ONE 5(6):e11383

    Article  Google Scholar 

  29. Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM (2007) Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 321(3):892–901

    Article  PubMed  CAS  Google Scholar 

  30. Li Y, Alam HB (2012) Creating a pro-survival and anti-inflammatory phenotype by modulation of acetylation in models of hemorrhagic and septic shock. Adv Exp Med Biol 710:107–133

    Article  PubMed  CAS  Google Scholar 

  31. Vanlangenakker N, Bertrand MJM, Bogaert P, Vandenabeele P, Vanden Berghe T (2011) TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. Cell Death Dis 2(11):e230

    Article  PubMed  CAS  Google Scholar 

  32. Vercammen D, Vandenabeele P, Beyaert R, Declercq W, Fiers W (1997) Tumour necrosis factor-induced necrosis versus anti-Fas-induced apoptosis in L929 cells. Cytokine 9(11):801–808

    Article  PubMed  CAS  Google Scholar 

  33. Ye Y-C, Yu L, Wang H-J, Tashiro S, Onodera S, Ikejima T (2011) TNFα-induced necroptosis and autophagy via supression of the p38–NF-κB survival pathway in L929 cells. J Pharmacol Sci 117(3):160–169

    Article  PubMed  CAS  Google Scholar 

  34. Vrana JA, Decker RH, Johnson CR, Wang Z, Jarvis WD, Richon VM et al (1999) Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bcl-2/Bcl-XL, c-Jun, and p21CIP1, but independent of p53. Oncogene 18(50):7016–7025

    Article  PubMed  CAS  Google Scholar 

  35. Almenara J, Rosato R, Grant S (2002) Synergistic induction of mitochondrial damage and apoptosis in human leukemia cells by flavopiridol and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Leukemia 16(7):1331–1343

    Article  PubMed  CAS  Google Scholar 

  36. Nimmanapalli R, Fuino L, Stobaugh C, Richon V, Bhalla K (2003) Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Blood 101(8):3236–3239

    Article  PubMed  CAS  Google Scholar 

  37. Emanuele S, Lauricella M, Carlisi D, Vassallo B, D’Anneo A, Di Fazio P et al (2007) SAHA induces apoptosis in hepatoma cells and synergistically interacts with the proteasome inhibitor Bortezomib. Apoptosis 12(7):1327–1338

    Article  PubMed  CAS  Google Scholar 

  38. Yamamoto S, Tanaka K, Sakimura R, Okada T, Nakamura T, Li Y et al (2008) Suberoylanilide hydroxamic acid (SAHA) induces apoptosis or autophagy-associated cell death in chondrosarcoma cell lines. Anticancer Res 28(3A):1585–1591

    PubMed  CAS  Google Scholar 

  39. Sampson ER, Amin V, Schwarz EM, O’Keefe RJ, Rosier RN (2011) The histone deacetylase inhibitor vorinostat selectively sensitizes fibrosarcoma cells to chemotherapy. J Orthop Res 29(4):623–632

    Article  PubMed  CAS  Google Scholar 

  40. LaBonte MJ, Wilson PM, Fazzone W, Groshen S, Lenz HJ, Ladner RD (2009) DNA microarray profiling of genes differentially regulated by the histone deacetylase inhibitors vorinostat and LBH589 in colon cancer cell lines. BMC Med Genomics 2:67

    Article  PubMed  Google Scholar 

  41. Pierce JW, Schoenleber R, Jesmok G, Best J, Moore SA, Collins T et al (1997) Novel inhibitors of cytokine-induced IkappaBalpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J Biol Chem 272(34):21096–21103

    Article  PubMed  CAS  Google Scholar 

  42. Kreuz S, Siegmund D, Rumpf JJ, Samel D, Leverkus M, Janssen O et al (2004) NFkappaB activation by Fas is mediated through FADD, caspase-8, and RIP and is inhibited by FLIP. J Cell Biol 166(3):369–380

    Article  PubMed  CAS  Google Scholar 

  43. Okada Y, Kato M, Minakami H, Inoue Y, Morikawa A, Otsuki K et al (2001) Reduced expression of flice-inhibitory protein (FLIP) and NFkappaB is associated with death receptor-induced cell death in human aortic endothelial cells (HAECs). Cytokine 15(2):66–74

    Article  PubMed  CAS  Google Scholar 

  44. Antosiewicz J, Ziolkowski W, Kaczor JJ, Herman-Antosiewicz A (2007) Tumor necrosis factor-α-induced reactive oxygen species formation is mediated by JNK1-dependent ferritin degradation and elevation of labile iron pool. Free Radical Biol Med 43(2):265–270

    Article  CAS  Google Scholar 

  45. Esposito F (2003) Protein kinase B activation by reactive oxygen species is independent of tyrosine kinase receptor phosphorylation and requires Src activity. J Biol Chem 278(23):20828–20834

    Article  PubMed  CAS  Google Scholar 

  46. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120(5):649–661

    Article  PubMed  CAS  Google Scholar 

  47. Liu YL, Yang PM, Shun CT, Wu MS, Weng JR, Chen CC (2010) Autophagy potentiates the anti-cancer effects of the histone deacetylase inhibitors in hepatocellular carcinoma. Autophagy 6(8):1057–1065

    Article  PubMed  CAS  Google Scholar 

  48. Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W et al (1998) Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 187(9):1477–1485

    Article  PubMed  CAS  Google Scholar 

  49. Sakon S, Xue X, Takekawa M, Sasazuki T, Okazaki T, Kojima Y et al (2003) NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 22(15):3898–3909

    Article  PubMed  CAS  Google Scholar 

  50. Lehmann A, Denkert C, Budczies J, Buckendahl AC, Darb-Esfahani S, Noske A et al (2009) High class I HDAC activity and expression are associated with RelA/p65 activation in pancreatic cancer in vitro and in vivo. BMC Cancer 9:395

    Article  PubMed  Google Scholar 

  51. Nishioka C, Ikezoe T, Yang J, Komatsu N, Bandobashi K, Taniguchi A et al (2008) Histone deacetylase inhibitors induce growth arrest and apoptosis of HTLV-1-infected T-cells via blockade of signaling by nuclear factor kappaB. Leuk Res 32(2):287–296

    Article  PubMed  CAS  Google Scholar 

  52. Faraco G, Pittelli M, Cavone L, Fossati S, Porcu M, Mascagni P et al (2009) Histone deacetylase (HDAC) inhibitors reduce the glial inflammatory response in vitro and in vivo. Neurobiol Dis 36(2):269–279

    Article  PubMed  CAS  Google Scholar 

  53. Chiechio S, Zammataro M, Morales ME, Busceti CL, Drago F, Gereau RWt et al (2009) Epigenetic modulation of mGlu2 receptors by histone deacetylase inhibitors in the treatment of inflammatory pain. Mol Pharmacol 75(5):1014–1020

    Article  PubMed  CAS  Google Scholar 

  54. Chang L, Kamata H, Solinas G, Luo J-L, Maeda S, Venuprasad K et al (2006) The E3 ubiquitin ligase itch couples JNK activation to TNFα-induced cell death by inducing c-FLIPL turnover. Cell 124(3):601–613

    Article  PubMed  CAS  Google Scholar 

  55. Wu C-J, Conze DB, Li T, Srinivasula SM, Ashwell JD (2006) NEMO is a sensor of Lys 63-linked polyubiquitination and functions in NF-κB activation. Nat Cell Biol 8(4):398–406

    Article  PubMed  CAS  Google Scholar 

  56. O’Donnell MA, Legarda-Addison D, Skountzos P, Yeh WC, Ting AT (2007) Ubiquitination of RIP1 regulates an NF-kappaB-independent cell-death switch in TNF signaling. Curr Biol 17(5):418–424

    Article  PubMed  Google Scholar 

  57. Legarda-Addison D, Hase H, O’Donnell MA, Ting AT (2009) NEMO/IKKgamma regulates an early NF-kappaB-independent cell-death checkpoint during TNF signaling. Cell Death Differ 16(9):1279–1288

    Article  PubMed  CAS  Google Scholar 

  58. Wang L, Du F, Wang X (2008) TNF-α induces two distinct caspase-8 activation pathways. Cell 133(4):693–703

    Article  PubMed  CAS  Google Scholar 

  59. Lin Y, Choksi S, Shen HM, Yang QF, Hur GM, Kim YS et al (2004) Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J Biol Chem 279(11):10822–10828

    Article  PubMed  CAS  Google Scholar 

  60. Vanden Berghe W, Plaisance S, Boone E, De Bosscher K, Schmitz ML, Fiers W et al (1998) p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappaB p65 transactivation mediated by tumor necrosis factor. J Biol Chem 273(6):3285–3290

    Article  PubMed  CAS  Google Scholar 

  61. Morgan MJ, Kim Y-S, Liu Z-G (2008) TNFα and reactive oxygen species in necrotic cell death. Cell Res 18(3):343–349

    Article  PubMed  CAS  Google Scholar 

  62. Shen H-M, Z-g Liu (2006) JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radical Biol Med 40(6):928–939

    Article  CAS  Google Scholar 

  63. Wullaert A, Heyninck K, Beyaert R (2006) Mechanisms of crosstalk between TNF-induced NF-κB and JNK activation in hepatocytes. Biochem Pharmacol 72(9):1090–1101

    Article  PubMed  CAS  Google Scholar 

  64. Chen SY, Chiu LY, Maa MC, Wang JS, Chien CL, Lin WW (2011) zVAD-induced autophagic cell death requires c-Src-dependent ERK and JNK activation and reactive oxygen species generation. Autophagy 7(2):217–228

    Article  PubMed  CAS  Google Scholar 

  65. Wu YT, Tan HL, Huang Q, Kim YS, Pan N, Ong WY et al (2008) Autophagy plays a protective role during zVAD-induced necrotic cell death. Autophagy 4(4):457–466

    PubMed  CAS  Google Scholar 

  66. Shen H-M, Codogno P (2012) Autophagy is a survival force via suppression of necrotic cell death. Exp Cell Res 318(11):1304–1308

    Article  PubMed  CAS  Google Scholar 

  67. Dillon Christopher P, Oberst A, Weinlich R, Janke Laura J, Kang T-B, Ben-Moshe T et al (2012) Survival function of the FADD–CASPASE-8-cFLIPL complex. Cell Rep 1(5):401–407

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. Yan Li and Lingling Zhu for kindly providing the L929 and SH-SY5Y cell lines. This work was supported in part by Grant 2012CB518200 from the ‘‘973′’ Program of the Ministry of Science and Technology of China (to X. Yu) and by Grants 81000981 (to X. Zhang) and 31201041 (to G. Chen) from the National Natural Science Foundation of China.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodan Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Zhao, M., Chen, G. et al. The histone deacetylase inhibitor vorinostat prevents TNFα-induced necroptosis by regulating multiple signaling pathways. Apoptosis 18, 1348–1362 (2013). https://doi.org/10.1007/s10495-013-0866-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0866-y

Keywords

Navigation