Skip to main content

Advertisement

Log in

3D Bioprinting Strategies for Articular Cartilage Tissue Engineering

  • S.I. : Bioengineering and Enabling Technologies II
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Articular cartilage is the avascular and aneural tissue which is the primary connective tissue covering the surface of articulating bone. Traumatic damage or degenerative diseases can cause articular cartilage injuries that are common in the population. As a result, the demand for new therapeutic options is continually increasing for older people and traumatic young patients. Many attempts have been made to address these clinical needs to treat articular cartilage injuries, including osteoarthritis (OA); however, regenerating highly qualified cartilage tissue remains a significant obstacle. 3D bioprinting technology combined with tissue engineering principles has been developed to create biological tissue constructs that recapitulate the anatomical, structural, and functional properties of native tissues. In addition, this cutting-edge technology can precisely place multiple cell types in a 3D tissue architecture. Thus, 3D bioprinting has rapidly become the most innovative tool for manufacturing clinically applicable bioengineered tissue constructs. This has led to increased interest in 3D bioprinting in articular cartilage tissue engineering applications. Here, we reviewed current advances in bioprinting for articular cartilage tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xue, W., B. V. Krishna, A. Bandyopadhyay, and S. Bose. Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater. 3:1007–1018, 2007.

    Article  CAS  PubMed  Google Scholar 

  2. Kim, J. H., J. J. Yoo, and S. J. Lee. Three-dimensional cell-based bioprinting for soft tissue regeneration. Tissue Eng. Regen. Med. 13:647–662, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Derby, B. Printing and prototyping of tissues and scaffolds. Science. 338:921–926, 2012.

    Article  CAS  PubMed  Google Scholar 

  4. Hockaday, L. A., K. H. Kang, N. W. Colangelo, P. Y. Cheung, B. Duan, et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication.4:035005, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ozbolat, I. T., and M. Hospodiuk. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 76:321–343, 2016.

    Article  CAS  PubMed  Google Scholar 

  6. Kang, H. W., S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, and A. Atala. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34:312–319, 2016.

    Article  CAS  PubMed  Google Scholar 

  7. Moroni, L., J. A. Burdick, C. Highley, S. J. Lee, Y. Morimoto, et al. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat. Rev. Mater. 3:21–37, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32:773–785, 2014.

    Article  CAS  PubMed  Google Scholar 

  9. Lee, M., B. M. Wu, and J. C. Dunn. Effect of scaffold architecture and pore size on smooth muscle cell growth. J. Biomed. Mater. Res. A. 87:1010–1016, 2008.

    Article  PubMed  Google Scholar 

  10. Tsang, V. L., and S. N. Bhatia. Three-dimensional tissue fabrication. Adv. Drug Deliv. Rev. 56:1635–1647, 2004.

    Article  PubMed  Google Scholar 

  11. Makris, E. A., A. H. Gomoll, K. N. Malizos, J. C. Hu, and K. A. Athanasiou. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol. 11:21–34, 2015.

    Article  CAS  PubMed  Google Scholar 

  12. Tatman, P. D., W. Gerull, S. Sweeney-Easter, J. I. Davis, A. O. Gee, and D. H. Kim. Multiscale biofabrication of articular cartilage: bioinspired and biomimetic approaches. Tissue Eng. Part B. 21:543–559, 2015.

    Article  Google Scholar 

  13. Di Bella, C., A. Fosang, D. M. Donati, G. G. Wallace, and P. F. Choong. 3D bioprinting of cartilage for orthopedic surgeons: reading between the lines. Front Surg. 2:39, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hjelle, K., E. Solheim, T. Strand, R. Muri, and M. Brittberg. Articular cartilage defects in 1000 knee arthroscopies. Arthroscopy. 18:730–734, 2002.

    Article  PubMed  Google Scholar 

  15. Curl, W. W., J. Krome, E. S. Gordon, J. Rushing, B. P. Smith, and G. G. Poehling. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy. 13:456–460, 1997.

    Article  CAS  PubMed  Google Scholar 

  16. Cibere, J., E. Sayre, A. Guermazi, S. Nicolaou, J. Kopec, et al. Natural history of cartilage damage and osteoarthritis progression on magnetic resonance imaging in a population-based cohort with knee pain. Osteoarthr. Cartil. 19:683–688, 2011.

    Article  CAS  Google Scholar 

  17. Shelbourne, K. D., S. Jari, and T. Gray. Outcome of untreated traumatic articular cartilage defects of the knee: a natural history study. JBJS. 85:8–16, 2003.

    Article  Google Scholar 

  18. Lawrence, R. C., D. T. Felson, C. G. Helmick, L. M. Arnold, H. Choi, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States Part II. Arthritis Rheum. 58:26–35, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  19. March, L. M., and C. J. Bachmeier. Economics of osteoarthritis: a global perspective. Baillieres Clin. Rheumatol. 11:817–834, 1997.

    Article  CAS  PubMed  Google Scholar 

  20. Hunziker, E. B., K. Lippuner, M. J. Keel, and N. Shintani. An educational review of cartilage repair: precepts & practice–myths & misconceptions–progress & prospects. Osteoarthr. Cartil. 23:334–350, 2015.

    Article  CAS  Google Scholar 

  21. Van Blitterswijk, C., and J. De Boer. Tissue Engineering. Cambridge: Academic Press, 2014.

    Google Scholar 

  22. Niethammer, T. R., A. Loitzsch, A. Horng, A. Baur-Melnyk, M. Bendiks, et al. Graft hypertrophy after third-generation autologous chondrocyte implantation has no correlation with reduced cartilage quality: matched-pair analysis using T2-weighted mapping. Am. J. Sports Med. 46:2414–2421, 2018.

    Article  PubMed  Google Scholar 

  23. Martín, A. R., J. M. Patel, H. M. Zlotnick, J. L. Carey, and R. L. Mauck. Emerging therapies for cartilage regeneration in currently excluded “red knee” populations. NPJ Regen. Med. 4:12, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jeznach, O., D. Kołbuk, and P. Sajkiewicz. Injectable hydrogels and nanocomposite hydrogels for cartilage regeneration. J. Biomed Mater. Res. A. 106:2762–2776, 2018.

    Article  CAS  PubMed  Google Scholar 

  25. Gadjanski, I. Recent advances on gradient hydrogels in biomimetic cartilage tissue engineering. F1000Res. 6:18, 2017.

    Article  Google Scholar 

  26. Marjorie, D., S. Lilian, M. Marie, S. Matthieu, P. G. Emeline, S. Gilles, J. Christian, and Danièlenoël. 3D bioprinting of articular cartilage: recent advances and perspectives. Bioprinting. 28:15, 2022.

    Google Scholar 

  27. Pattappa, G., B. Johnstone, J. Zellner, D. Docheva, and P. Angele. The Importance of physioxia in mesenchymal stem cell chondrogenesis and the mechanisms controlling its response. Int. J. Mol. Sci. 20:18, 2019.

    Article  Google Scholar 

  28. Ansari, S., S. Khorshidi, and A. Karkhaneh. Engineering of gradient osteochondral tissue: from nature to lab. Acta Biomater. 87:41–54, 2019.

    Article  CAS  PubMed  Google Scholar 

  29. Medvedeva, E. V., E. A. Grebenik, S. N. Gornostaeva, V. I. Telpuhov, A. V. Lychagin, et al. Repair of damaged articular cartilage: current approaches and future directions. Int J Mol Sci. 19:16, 2018.

    Article  Google Scholar 

  30. Klein, T. J., J. Malda, R. L. Sah, and D. W. Hutmacher. Tissue engineering of articular cartilage with biomimetic zones. Tissue Eng. Part B. 15:143–157, 2009.

    Article  CAS  Google Scholar 

  31. Armstrong, C., and V. C. Mow. Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J. Bone Joint Surgery Am. 64:88–94, 1982.

    Article  CAS  Google Scholar 

  32. Bhattarai, A., J. T. A. Mäkelä, B. Pouran, H. Kröger, H. Weinans, et al. Effects of human articular cartilage constituents on simultaneous diffusion of cationic and nonionic contrast agents. J. Orthop. Res. 39:771–779, 2021.

    Article  CAS  PubMed  Google Scholar 

  33. Alcaide-Ruggiero, L., V. Molina-Hernández, M. M. Granados, and J. M. Domínguez. Main and minor types of collagens in the articular cartilage: the role of collagens in repair tissue evaluation in chondral defects. Int. J. Mol. Sci. 22:26, 2021.

    Article  Google Scholar 

  34. Kadler, K. E., C. Baldock, J. Bella, and R. P. Boot-Handford. Collagens at a glance. J. Cell Sci. 120:1955–1958, 2007.

    Article  CAS  PubMed  Google Scholar 

  35. Chung, C., and J. A. Burdick. Engineering cartilage tissue. Adv. Drug Deliv. Rev. 60:243–262, 2008.

    Article  CAS  PubMed  Google Scholar 

  36. Posey, K. L., F. Coustry, and J. T. Hecht. Cartilage oligomeric matrix protein: COMPopathies and beyond. Matrix Biol. 71–72:161–173, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Knudson, C. B., and W. Knudson. Cartilage proteoglycans. Semin Cell. Dev. Biol. 12:69–78, 2001.

    Article  CAS  PubMed  Google Scholar 

  38. Fulcher, G. R., D. W. Hukins, and D. E. Shepherd. Viscoelastic properties of bovine articular cartilage attached to subchondral bone at high frequencies. BMC Musculoskelet. Disord. 10:1–7, 2009.

    Article  Google Scholar 

  39. Jakob, M., O. Démarteau, R. Suetterlin, M. Heberer, and I. Martin. Chondrogenesis of expanded adult human articular chondrocytes is enhanced by specific prostaglandins. Rheumatology (Oxford). 43:852–857, 2004.

    Article  CAS  PubMed  Google Scholar 

  40. Walker, P. S., and J. V. Hajek. The load-bearing area in the knee joint. J. Biomech. 5:581–589, 1972.

    Article  CAS  PubMed  Google Scholar 

  41. Qian, Y., D. Hanhua, S. Jin, H. Jianhua, S. Bo, W. Qingsong, and S. Yusheng. A Review of 3D printing technology for medical applications. Engineering. 4:729–742, 2018.

    Article  Google Scholar 

  42. Daniela, F. D. C., A. P. Midhun, G. Stefanie, M. Christoph, Y. L. Ying, S. Jan, B. Andreas, T. Benjamin, F. Horst, and B. Marcel. Synchronized dual bioprinting of bioinks and biomaterials inks as a translational strategy for cartilage tissue engineering. Print. Addit. Manuf. 6:63, 2019.

    Google Scholar 

  43. Aisenbrey, E. A., A. Tomaschke, E. Kleinjan, A. Muralidharan, C. Pascual-Garrido, et al. A stereolithography-based 3D printed hybrid scaffold for in situ cartilage defect repair. Macromol. Biosci. 18:29, 2018.

    Article  Google Scholar 

  44. Liang, Q., Y. Ma, X. Yao, and W. Wei. Advanced 3D-printing bioinks for articular cartilage repair. Int. J. Bioprint. 8:511, 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sears, N. A., D. R. Seshadri, P. S. Dhavalikar, and E. Cosgriff-Hernandez. A review of three-dimensional printing in tissue engineering. Tissue Eng. Part B. 22:298–310, 2016.

    Article  CAS  Google Scholar 

  46. Cui, X., T. Boland, D. D. D’Lima, and M. K. Lotz. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv. Formul. 6:149–155, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, X., X. Jiang, and C. Sun. Micro-stereolithography of polymeric and ceramic microstructures. Sens. Actuators A. 77:149–156, 1999.

    Article  CAS  Google Scholar 

  48. Kim, S. H., Y. K. Yeon, J. M. Lee, J. R. Chao, Y. J. Lee, et al. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat. Commun. 9:1620, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chan, V., P. Zorlutuna, J. H. Jeong, H. Kong, and R. Bashir. Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab. Chip. 10:2062–2070, 2010.

    Article  CAS  PubMed  Google Scholar 

  50. Mauck, R., X. Yuan, and R. S. Tuan. Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthr. Cartil. 14:179–189, 2006.

    Article  CAS  Google Scholar 

  51. da Silva, M. L., A. M. Fontes, D. T. Covas, and A. I. Caplan. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 20:419–427, 2009.

    Article  Google Scholar 

  52. Caplan, A. I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell. Physiol. 213:341–347, 2007.

    Article  CAS  PubMed  Google Scholar 

  53. Gibson, J. D., M. B. O’Sullivan, F. Alaee, D. N. Paglia, R. Yoshida, et al. Regeneration of articular cartilage by human ESC-derived mesenchymal progenitors treated sequentially with BMP-2 and Wnt5a. Stem Cells Transl. Med. 6:40–50, 2017.

    Article  CAS  PubMed  Google Scholar 

  54. Nguyen, D., D. A. Hägg, A. Forsman, J. Ekholm, P. Nimkingratana, et al. Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci Rep. 7:658, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yi, Y., K. B. Choi, C.-L. Lim, J.-P. Hyun, H.-Y. Lee, et al. Irradiated human chondrocytes expressing bone morphogenetic protein 2 promote healing of osteoporotic bone fracture in rats. Tissue Eng. Part A. 15:2853–2863, 2009.

    Article  CAS  PubMed  Google Scholar 

  56. Hwang, N. S., S. Varghese, and J. Elisseeff. Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration. PLoS ONE.3:e2498, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Qu, C., K. A. Puttonen, H. Lindeberg, M. Ruponen, O. Hovatta, et al. Chondrogenic differentiation of human pluripotent stem cells in chondrocyte co-culture. Int. J. Biochem. Cell Biol. 45:1802–1812, 2013.

    Article  CAS  PubMed  Google Scholar 

  58. Chen, J., C. Wang, S. Lü, J. Wu, X. Guo, et al. In vivo chondrogenesis of adult bone-marrow-derived autologous mesenchymal stem cells. Cell Tissue Res. 319:429–438, 2005.

    Article  PubMed  Google Scholar 

  59. Boeuf, S., and W. Richter. Chondrogenesis of mesenchymal stem cells: role of tissue source and inducing factors. Stem Cell Res. Ther. 1:31, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pleumeekers, M. M., L. Nimeskern, J. L. M. Koevoet, M. Karperien, K. S. Stok, and G. J. V. M. van Osch. Trophic effects of adipose-tissue-derived and bone-marrow-derived mesenchymal stem cells enhance cartilage generation by chondrocytes in co-culture. PLoS ONE.13:e0190744, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mahmoudifar, N., and P. M. Doran. Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions. Biomaterials. 31:3858–3867, 2010.

    Article  CAS  PubMed  Google Scholar 

  62. Chang, C. H., C. C. Chen, C. H. Liao, F. H. Lin, Y. M. Hsu, and H. W. Fang. Human acellular cartilage matrix powders as a biological scaffold for cartilage tissue engineering with synovium-derived mesenchymal stem cells. J. Biomed. Mater. Res. Part A. 102:2248–2257, 2014.

    Article  Google Scholar 

  63. Baksh, D., R. Yao, and R. S. Tuan. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. 25:1384–1392, 2007.

    Article  CAS  PubMed  Google Scholar 

  64. Nejadnik, H., J. H. Hui, E. P. Feng Choong, B. C. Tai, and E. H. Lee. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am. J. Sports Med. 38:1110–1116, 2010.

    Article  PubMed  Google Scholar 

  65. De Bari, C., F. Dell’Accio, P. Tylzanowski, and F. P. Luyten. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheumatism. 44:1928–1942, 2001.

    Article  PubMed  Google Scholar 

  66. De Bari, C., and A. J. Roelofs. Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis. Curr. Opin. Pharmacol. 40:74–80, 2018.

    Article  PubMed  Google Scholar 

  67. Park, Y., C. Ha, J. Kim, W. Han, J. Rhim, et al. Single-stage cell-based cartilage repair in a rabbit model: cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel composite. Osteoarthr. Cartil. 25:570–580, 2017.

    Article  CAS  Google Scholar 

  68. Somoza, R. A., J. F. Welter, D. Correa, and A. I. Caplan. Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Eng. Part B. 20:596–608, 2014.

    Article  Google Scholar 

  69. Chen, W., C. Li, M. Peng, B. Xie, L. Zhang, and X. Tang. Autologous nasal chondrocytes delivered by injectable hydrogel for in vivo articular cartilage regeneration. Cell Tissue Bank. 19:35–46, 2018.

    Article  PubMed  Google Scholar 

  70. Vinatier, C., O. Gauthier, M. Masson, O. Malard, A. Moreau, et al. Nasal chondrocytes and fibrin sealant for cartilage tissue engineering. J. Biomed. Mater. Re.s A. 89:176–185, 2009.

    CAS  Google Scholar 

  71. Mumme, M., A. Barbero, S. Miot, A. Wixmerten, S. Feliciano, et al. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial. Lancet. 388:1985–1994, 2016.

    Article  CAS  PubMed  Google Scholar 

  72. Raul Sanchez-Sanchez, J.M.R.-R., Antoni Macias-Garcia, Laura Mendoza-Cerezo, and Antonio Diaz-Parralejo. Relationship between shear-thinning rheological properties of bioinks and bioprinting parameters. Int. J. Bioprint. 9:422, 2023.

    Google Scholar 

  73. Habib, M. A., and B. Khoda. Rheological analysis of bio-ink for 3D bio-printing processes. J. Manuf. Process. 76:708–718, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lee, V., G. Singh, J. P. Trasatti, C. Bjornsson, X. Xu, et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng. Part C. 20:473–484, 2014.

    Article  CAS  Google Scholar 

  75. Song, S. J., J. Choi, Y. D. Park, J. J. Lee, S. Y. Hong, and K. Sun. A three-dimensional bioprinting system for use with a hydrogel-based biomaterial and printing parameter characterization. Artif. Organs. 34:1044–1048, 2010.

    Article  PubMed  Google Scholar 

  76. Almeida, C. R., T. Serra, M. I. Oliveira, J. A. Planell, M. A. Barbosa, and M. Navarro. Impact of 3-D printed PLA-and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation. Acta Biomater. 10:613–622, 2014.

    Article  CAS  PubMed  Google Scholar 

  77. Khalil, S., and W. Sun. Bioprinting endothelial cells with alginate for 3D tissue constructs. J. Biomech. Eng. 131:15, 2009.

    Article  Google Scholar 

  78. Daly, A. C., S. E. Critchley, E. M. Rencsok, and D. J. Kelly. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication.8:045002, 2016.

    Article  PubMed  Google Scholar 

  79. Kundu, J., J. H. Shim, J. Jang, S. W. Kim, and D. W. Cho. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J. Tissue Eng. Regen. Med. 9:1286–1297, 2015.

    Article  CAS  PubMed  Google Scholar 

  80. Visser, J., F. P. Melchels, J. E. Jeon, E. M. Van Bussel, L. S. Kimpton, et al. Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat. Commun. 6:1–10, 2015.

    Article  Google Scholar 

  81. Xu, T., K. W. Binder, M. Z. Albanna, D. Dice, W. Zhao, et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication.5:015001, 2013.

    Article  CAS  PubMed  Google Scholar 

  82. Müller, M., E. Öztürk, Ø. Arlov, P. Gatenholm, and M. Zenobi-Wong. Alginate sulfate-nanocellulose bioinks for cartilage bioprinting applications. Ann. Biomed. Eng. 45:210–223, 2017.

    Article  PubMed  Google Scholar 

  83. Skardal, A., M. Devarasetty, H. W. Kang, I. Mead, C. Bishop, et al. A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Acta Biomater. 25:24–34, 2015.

    Article  CAS  PubMed  Google Scholar 

  84. Roseti, L., C. Cavallo, G. Desando, V. Parisi, M. Petretta, et al. Three-dimensional bioprinting of cartilage by the use of stem cells: a strategy to improve regeneration. Materials (Basel). 11:25, 2018.

    Article  Google Scholar 

  85. Pati, F., J. Jang, D. H. Ha, S. Won Kim, J. W. Rhie, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5:3935, 2014.

    Article  CAS  PubMed  Google Scholar 

  86. Yang, S. S., W. H. Choi, B. R. Song, H. Jin, S. J. Lee, et al. Fabrication of an osteochondral graft with using a solid freeform fabrication system. Tissue Eng. Regenerat. Med. 12:239–248, 2015.

    Article  CAS  Google Scholar 

  87. Ali, M., A. K. Pr, J. J. Yoo, F. Zahran, A. Atala, and S. J. Lee. A photo-crosslinkable kidney ECM-derived bioink accelerates renal tissue formation. Adv. Healthc. Mater.8:e1800992, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Visscher, D. O., H. Lee, P. P. M. van Zuijlen, M. N. Helder, A. Atala, et al. A photo-crosslinkable cartilage-derived extracellular matrix bioink for auricular cartilage tissue engineering. Acta Biomater. 121:193–203, 2021.

    Article  CAS  PubMed  Google Scholar 

  89. Lee, H., W. Kim, J. Lee, K. S. Park, J. J. Yoo, et al. Self-aligned myofibers in 3D bioprinted extracellular matrix-based construct accelerate skeletal muscle function restoration. Appl. Phys. Rev.8:021405, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Song, B. R., S. S. Yang, H. Jin, S. H. Lee, D. Y. Park, et al. Three dimensional plotted extracellular matrix scaffolds using a rapid prototyping for tissue engineering application. Tissue Eng. Regenerat. Med. 12:172–180, 2015.

    Article  CAS  Google Scholar 

  91. Jung, C. S., B. K. Kim, J. Lee, B.-H. Min, and S.-H. Park. Development of printable natural cartilage matrix bioink for 3D printing of irregular tissue shape. Tissue Eng. Regenerat. Med. 15:155–162, 2018.

    Article  CAS  Google Scholar 

  92. Zhang, X., Y. Liu, C. Luo, C. Zhai, Z. Li, et al. Crosslinker-free silk/decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering. Mater. Sci. Eng. C.118:111388, 2021.

    Article  CAS  Google Scholar 

  93. Mwale, F., D. Stachura, P. Roughley, and J. Antoniou. Limitations of using aggrecan and type X collagen as markers of chondrogenesis in mesenchymal stem cell differentiation. J. Orthop. Res. 24:1791–1798, 2006.

    Article  CAS  PubMed  Google Scholar 

  94. Yoon, B. S., and K. M. Lyons. Multiple functions of BMPs in chondrogenesis. J. Cell Biochem. 93:93–103, 2004.

    Article  CAS  PubMed  Google Scholar 

  95. Goldring, M. B., K. Tsuchimochi, and K. Ijiri. The control of chondrogenesis. J. Cell Biochem. 97:33–44, 2006.

    Article  CAS  PubMed  Google Scholar 

  96. Bouffi, C., O. Thomas, C. Bony, A. Giteau, M. C. Venier-Julienne, et al. The role of pharmacologically active microcarriers releasing TGF-beta3 in cartilage formation in vivo by mesenchymal stem cells. Biomaterials. 31:6485–6493, 2010.

    Article  CAS  PubMed  Google Scholar 

  97. Lee, C. H., S. A. Rodeo, L. A. Fortier, C. Lu, C. Erisken, and J. J. Mao. Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci. Transl. Med. 6:266ra171, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  98. van der Kraan, P. M., J. de Lange, E. L. Vitters, H. M. van Beuningen, G. J. van Osch, et al. Analysis of changes in proteoglycan content in murine articular cartilage using image analysis. Osteoarthr. Cartil. 2:207–214, 1994.

    Article  Google Scholar 

  99. Li KW, Klein TJ, Chawla K, Nugent GE, Bae WC, Sah RL. 2004. In vitro physical stimulation of tissue-engineered and native cartilage. In Cartilage and osteoarthritis:325–51: Springer. Number of 325–51 pp.

  100. Lima, E. G., R. L. Mauck, S. H. Han, S. Park, K. W. Ng, et al. Functional tissue engineering of chondral and osteochondral constructs. Biorheology. 41:577–590, 2004.

    PubMed  Google Scholar 

  101. Grad, S., D. Eglin, M. Alini, and M. J. Stoddart. Physical stimulation of chondrogenic cells in vitro: a review. Clin. Orthop. Relat. Res. 469:2764–2772, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Fu, L., P. Li, H. Li, C. Gao, Z. Yang, et al. The application of bioreactors for cartilage tissue engineering: advances, limitations, and future perspectives. Stem Cells Int. 2021:6621806, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Kengla, C., E. Renteria, C. Wivell, A. Atala, J. J. Yoo, and S. J. Lee. Clinical relevant bioprinting workflow and imaging process for tissue construct design and validation. 3D Printing Manufac. 4:239–247, 2017.

    Article  Google Scholar 

  104. Cui, X., K. Breitenkamp, M. Finn, M. Lotz, and D. D. D’Lima. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng. Part A. 18:1304–1312, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ma, K., T. Zhao, L. Yang, P. Wang, J. Jin, et al. Application of robotic-assisted in situ 3D printing in cartilage regeneration with HAMA hydrogel: an in vivo study. J. Adv. Res. 23:123–132, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li, L., F. Yu, J. Shi, S. Shen, H. Teng, et al. In situ repair of bone and cartilage defects using 3D scanning and 3D printing. Sci. Rep. 7:9416, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Samandari, M., A. Mostafavi, J. Quint, A. Memic, and A. Tamayol. In situ bioprinting: intraoperative implementation of regenerative medicine. Trends Biotechnol. 40:1229–1247, 2022.

    Article  CAS  PubMed  Google Scholar 

  108. Behan, K., A. Dufour, O. Garcia, and D. Kelly. Methacrylated cartilage ecm-based hydrogels as injectables and bioinks for cartilage tissue engineering. Biomolecules. 12:15, 2022.

    Article  Google Scholar 

  109. Zhu, S., P. Chen, Y. Chen, M. Li, C. Chen, and H. Lu. 3D-Printed Extracellular matrix/polyethylene glycol diacrylate hydrogel incorporating the anti-inflammatory phytomolecule honokiol for regeneration of osteochondral defects. Am. J. Sports Med. 48:2808–2818, 2020.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This review was supported by the National Institutes of Health (1P41EB023833-01), the National Science Foundation (2100739), and the National Research Foundation of Korea (NRF-2022R1A2C1091873).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Jin Lee.

Ethics declarations

Conflict of interest

The authors declare that any no conflict of interest

Additional information

Associate Editor Emmanuel Opara oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, D.Y., Kim, SH., Park, SH. et al. 3D Bioprinting Strategies for Articular Cartilage Tissue Engineering. Ann Biomed Eng (2023). https://doi.org/10.1007/s10439-023-03236-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10439-023-03236-8

Keywords

Navigation