Skip to main content
Log in

Three-dimensional cell-based bioprinting for soft tissue regeneration

  • Special Issue–Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Three-dimensional (3D) bioprinting technologies have been developed to offer construction of biological tissue constructs that mimic the anatomical and functional features of native tissues or organs. These cutting-edge technologies could make it possible to precisely place multiple cell types and biomaterials in a single 3D tissue construct. Hence, 3D bioprinting is one of the most attractive and powerful tools to provide more anatomical and functional similarity of human tissues or organs in tissue engineering and regenerative medicine. In recent years, this 3D bioprinting continually shows promise for building complex soft tissue constructs through placement of cell-laden hydrogel-based bioinks in a layer-by-layer fashion. This review will discuss bioprinting technologies and their applications in soft tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atala A, Kasper FK, Mikos AG. Engineering complex tissues. Sci Transl Med 2012;4:160rv12.

    Article  Google Scholar 

  2. Withers GS. New ways to print living cells promise breakthroughs for engineering complex tissues in vitro. Biochem J 2006;394(Pt 2):e1–e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 2016;34:312–319.

    Article  CAS  PubMed  Google Scholar 

  4. Michael S, Sorg H, Peck CT, Koch L, Deiwick A, Chichkov B, et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One 2013;8:e57741.

    Article  Google Scholar 

  5. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 2014;26:3124–3130.

    Article  CAS  PubMed  Google Scholar 

  6. Malda J, Visser J, Melchels FP, Jüngst T, Hennink WE, Dhert WJ, et al. 25th anniversary article: Engineering hydrogels for biofabrication. Adv Mater 2013;25:5011–5028.

    Article  CAS  PubMed  Google Scholar 

  7. Klebe RJ. Cytoscribing: a method for micropositioning cells and the construction of two-and three-dimensional synthetic tissues. Exp Cell Res 1988;179:362–373.

    Article  CAS  PubMed  Google Scholar 

  8. Melchels FP, Domingos MA, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW. Additive manufacturing of tissues and organs. Prog Polym Sci 2012;37:1079–1104.

    Article  CAS  Google Scholar 

  9. Nakamura M, Iwanaga S, Henmi C, Arai K, Nishiyama Y. Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication 2010;2:014110.

    Article  CAS  PubMed  Google Scholar 

  10. Xu T, Baicu C, Aho M, Zile M, Boland T. Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication 2009;1:035001.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Guillotin B, Guillemot F. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol 2011;29:183–190.

    Article  CAS  PubMed  Google Scholar 

  12. Jin R, Dijkstra PJ. Hydrogels for tissue engineering applications. In: Ottenbrite RM, Park K, Okano T, editors. Biomedical Applications of Hydrogels Handbook. New York: Springer; 2010. p. 203–221.

    Chapter  Google Scholar 

  13. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Pro Polym Sci 2007;32:762–798.

    Article  CAS  Google Scholar 

  14. Koch L, Kuhn S, Sorg H, Gruene M, Schlie S, Gaebel R, et al. Laser printing of skin cells and human stem cells. Tissue Eng Part C Methods 2010;16:847–854.

    Article  CAS  PubMed  Google Scholar 

  15. Ovsianikov A, Gruene M, Pflaum M, Koch L, Maiorana F, Wilhelmi M, et al. Laser printing of cells into 3D scaffolds. Biofabrication 2010;2:014104.

    Article  CAS  PubMed  Google Scholar 

  16. Skardal A, Zhang J, Prestwich GD. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 2010;31:6173–6181.

    Article  CAS  PubMed  Google Scholar 

  17. Roth EA, Xu T, Das M, Gregory C, Hickman JJ, Boland T. Inkjet printing for high-throughput cell patterning. Biomaterials 2004;25:3707–3715.

    Article  CAS  PubMed  Google Scholar 

  18. Smith CM, Stone AL, Parkhill RL, Stewart RL, Simpkins MW, Kachurin AM, et al. Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng 2004;10:1566–1576.

    Article  CAS  PubMed  Google Scholar 

  19. Lee W, Debasitis JC, Lee VK, Lee JH, Fischer K, Edminster K, et al. Multilayered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 2009;30:1587–1595.

    Article  CAS  PubMed  Google Scholar 

  20. Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods 2014;20:473–484.

    Article  CAS  PubMed  Google Scholar 

  21. Raof NA, Schiele NR, Xie Y, Chrisey DB, Corr DT. The maintenance of pluripotency following laser direct-write of mouse embryonic stem cells. Biomaterials 2011;32:1802–1808.

    Article  CAS  PubMed  Google Scholar 

  22. Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 2009;30:6221–6227.

    Article  CAS  PubMed  Google Scholar 

  23. Gruene M, Pflaum M, Hess C, Diamantouros S, Schlie S, Deiwick A, et al. Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions. Tissue Eng Part C Methods 2011;17:973–982.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Badylak SF. The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol 2002;13:377–383.

    Article  CAS  PubMed  Google Scholar 

  25. Pati F, Jang J, Ha DH, Kim SW, Rhie JW, Shim JH, et al. Printing threedimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 2014;5:3935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kleinman HK, McGarvey ML, Liotta LA, Robey PG, Tryggvason K, Martin GR. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 1982;21:6188–6193.

    Article  CAS  PubMed  Google Scholar 

  27. Hughes CS, Postovit LM, Lajoie GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 2010;10:1886–1890.

    Article  CAS  PubMed  Google Scholar 

  28. Wu PK, Ringeisen BR. Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). Biofabrication 2010;2:014111.

    Article  CAS  PubMed  Google Scholar 

  29. Pirlo RK, Wu P, Liu J, Ringeisen B. PLGA/hydrogel biopapers as a stackable substrate for printing HUVEC networks via BioLP. Biotechnol Bioeng 2012;109:262–273.

    Article  CAS  PubMed  Google Scholar 

  30. Bouwstra JA, Honeywell-Nguyen PL, Gooris GS, Ponec M. Structure of the skin barrier and its modulation by vesicular formulations. Prog Lipid Res 2003;42:1–36.

    Article  CAS  PubMed  Google Scholar 

  31. Yoon H, Lee JS, Yim H, Kim G, Chun W. Development of cell-laden 3D scaffolds for efficient engineered skin substitutes by collagen gelation. Rsc Adv 2016;6:21439–21447.

    Article  CAS  Google Scholar 

  32. Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, et al. Skin tissue generation by laser cell printing. Biotechnol Bioeng 2012;109:1855–1863.

    Article  CAS  PubMed  Google Scholar 

  33. Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 2012;1:792–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pati F, Ha DH, Jang J, Han HH, Rhie JW, Cho DW. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials 2015;62:164–175.

    Article  CAS  PubMed  Google Scholar 

  35. Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 2015;96:183–195.

    Article  CAS  PubMed  Google Scholar 

  36. Ostrovidov S, Hosseini V, Ahadian S, Fujie T, Parthiban SP, Ramalingam M, et al. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications. Tissue Eng Part B Rev 2014;20:403–436.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Goh JC, Ouyang HW, Toh SL, Lee EH. Tissue engineering techniques in tendon and ligament replacement. Med J Malaysia 2004;59 Suppl B:47-48.

    PubMed  Google Scholar 

  38. Wu Y, Wang Z, Ying Hsi Fuh J, San Wong Y, Wang W, San Thian E. Direct E-jet printing of three-dimensional fibrous scaffold for tendon tissue engineering. J Biomed Mater Res B Appl Biomater 2015 Dec 16 [Epub ahead of print].

    Google Scholar 

  39. Merceron TK, Burt M, Seol YJ, Kang HW, Lee SJ, Yoo JJ, et al. A 3D bioprinted complex structure for engineering the muscle-tendon unit. Biofabrication 2015;7:035003.

    Article  PubMed  Google Scholar 

  40. Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 2011;63:300–311.

    Article  CAS  PubMed  Google Scholar 

  41. Jain RK, Au P, Tam J, Duda DG, Fukumura D. Engineering vascularized tissue. Nat Biotechnol 2005;23:821–823.

    Article  CAS  PubMed  Google Scholar 

  42. Marga F, Jakab K, Khatiwala C, Shepherd B, Dorfman S, Hubbard B, et al. Toward engineering functional organ modules by additive manufacturing. Biofabrication 2012;4:022001.

    Article  PubMed  Google Scholar 

  43. Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 2009;30:5910–5917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Itoh M, Nakayama K, Noguchi R, Kamohara K, Furukawa K, Uchihashi K, et al. Scaffold-free tubular tissues created by a Bio-3D printer undergo remodeling and endothelialization when implanted in rat aortae. PLoS One 2015;10:e0136681.

    Google Scholar 

  45. Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci U S A 2016;113:3179–3184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gaebel R, Ma N, Liu J, Guan J, Koch L, Klopsch C, et al. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 2011;32:9218–9230.

    Article  CAS  PubMed  Google Scholar 

  47. Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue HJ, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv 2015;1:e1500758.

    Article  Google Scholar 

  48. Jana S, Lerman A. Bioprinting a cardiac valve. Biotechnol Adv 2015;33:1503–1521.

    Article  PubMed  Google Scholar 

  49. Duan B, Hockaday LA, Kang KH, Butcher JT. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 2013;101:1255–1264.

    Article  PubMed  Google Scholar 

  50. Duan B, Kapetanovic E, Hockaday LA, Butcher JT. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 2014;10:1836–1846.

    Article  CAS  PubMed  Google Scholar 

  51. Hockaday LA, Kang KH, Colangelo NW, Cheung PY, Duan B, Malone E, et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 2012;4:035005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bernal W, Wendon J. Acute liver failure. N Engl J Med 2013;369:2525–2534.

    Article  CAS  PubMed  Google Scholar 

  53. Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol 2014;32:760–772.

    Article  CAS  PubMed  Google Scholar 

  54. Pati F, Gantelius J, Svahn HA. 3D bioprinting of tissue/organ models. Angew Chem Int Ed Engl 2016;55:4650–4665.

    Article  CAS  PubMed  Google Scholar 

  55. Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv 2016;34:422–434.

    Article  CAS  PubMed  Google Scholar 

  56. Ozbolat IT, Peng W, Ozbolat V. Application areas of 3D bioprinting. Drug Discov Today 2016;21:1257–1271.

    Article  CAS  PubMed  Google Scholar 

  57. Arslan-Yildiz A, El Assal R, Chen P, Guven S, Inci F, Demirci U. Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication 2016;8:014103.

    Article  PubMed  Google Scholar 

  58. Chang R, Nam J, Sun W. Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng Part C Methods 2008;14:157–166.

    Article  CAS  PubMed  Google Scholar 

  59. Chang R, Emami K, Wu H, Sun W. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication 2010;2:045004.

    Article  PubMed  Google Scholar 

  60. Snyder JE, Hamid Q, Wang C, Chang R, Emami K, Wu H, et al. Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabrication 2011;3:034112.

    Article  CAS  PubMed  Google Scholar 

  61. Faulkner-Jones A, Fyfe C, Cornelissen DJ, Gardner J, King J, Courtney A, et al. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication 2015;7:044102.

    Article  PubMed  Google Scholar 

  62. Horváth L, Umehara Y, Jud C, Blank F, Petri-Fink A, Rothen-Rutishauser B. Engineering an in vitro air-blood barrier by 3D bioprinting. Sci Rep 2015;5:7974.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Marchioli G, van Gurp L, van Krieken PP, Stamatialis D, Engelse M, van Blitterswijk CA, et al. Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation. Biofabrication 2015;7:025009.

    Article  CAS  PubMed  Google Scholar 

  64. Weiswald LB, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia 2015;17:1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Friedrich J, Ebner R, Kunz-Schughart LA. Experimental anti-tumor therapy in 3-D: spheroids—old hat or new challenge? Int J Radiat Biol 2007;83:849–871.

    Article  CAS  PubMed  Google Scholar 

  66. Xu F, Celli J, Rizvi I, Moon S, Hasan T, Demirci U. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol J 2011;6:204–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. King SM, Presnell SC, Nguyen DG. Development of 3D bioprinted human breast cancer for in vitro drug screening. Cancer Res. 2014;74 (19 suppl):Astract nr 2034.

    Google Scholar 

  68. Yanez M, Rincon J, Dones A, De Maria C, Gonzales R, Boland T. In vivo assessment of printed microvasculature in a bilayer skin graft to treat full-thickness wounds. Tissue Eng Part A 2015;21:224–233.

    Article  CAS  PubMed  Google Scholar 

  69. Cvetkovic C, Raman R, Chan V, Williams BJ, Tolish M, Bajaj P, et al. Three-dimensionally printed biological machines powered by skeletal muscle. Proc Natl Acad Sci U S A 2014;111:10125–10130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ker ED, Nain AS, Weiss LE, Wang J, Suhan J, Amon CH, et al. Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials 2011;32:8097–8107.

    Article  CAS  PubMed  Google Scholar 

  71. Owens CM, Marga F, Forgacs G, Heesch CM. Biofabrication and testing of a fully cellular nerve graft. Biofabrication 2013;5:045007.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB, et al. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 2006;27:3580–3588.

    CAS  PubMed  Google Scholar 

  73. Lee YB, Polio S, Lee W, Dai G, Menon L, Carroll RS, et al. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp Neurol 2010;223:645–652.

    Article  CAS  PubMed  Google Scholar 

  74. Johnson BN, Lancaster KZ, Zhen G, He J, Gupta MK, Kong YL, et al. 3D printed anatomical nerve regeneration pathways. Adv Funct Mater 2015;25:6205–6217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pateman CJ, Harding AJ, Glen A, Taylor CS, Christmas CR, Robinson PP, et al. Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair. Biomaterials 2015;49:77–89.

    Article  CAS  PubMed  Google Scholar 

  76. Lee VK, Kim DY, Ngo H, Lee Y, Seo L, Yoo SS, et al. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 2014;35:8092–8102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DH, Cohen DM, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 2012;11:768–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang Y, Yu Y, Ozbolat IT. Direct bioprinting of vessel-like tubular microfluidic channels. J Nanotechnol Eng Med 2013;4:0210011–0210017.

    Article  PubMed Central  Google Scholar 

  79. Luo Y, Lode A, Gelinsky M. Direct plotting of three-dimensional hollow fiber scaffolds based on concentrated alginate pastes for tissue engineering. Adv Healthc Mater 2013;2:777–783.

    Article  CAS  PubMed  Google Scholar 

  80. Gaetani R, Doevendans PA, Metz CH, Alblas J, Messina E, Giacomello A, et al. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 2012;33:1782–1790.

    Article  CAS  PubMed  Google Scholar 

  81. Nguyen DG, Funk J, Robbins JB, Crogan-Grundy C, Presnell SC, Singer T, et al. Bioprinted 3D primary liver tissues allow assessment of organlevel response to clinical drug induced toxicity in vitro. PLoS One 2016;11:e0158674.

    Google Scholar 

  82. Li SJ, Xiong Z, Wang XH, Yan YN, Liu HX, Zhang RJ. Direct fabrication of a hybrid cell/hydrogel construct by a double-nozzle assembling technology. J Bioact Compat Pol 2009;24:249–265.

    Article  Google Scholar 

  83. Lee JW, Choi YJ, Yong WJ, Pati F, Shim JH, Kang KS, et al. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering. Biofabrication 2016;8:015007.

    Article  PubMed  Google Scholar 

  84. Lozano R, Stevens L, Thompson BC, Gilmore KJ, Gorkin R 3rd, Stewart EM, et al. 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials 2015;67:264–273.

    Article  CAS  PubMed  Google Scholar 

  85. Zhao Y, Yao R, Ouyang L, Ding H, Zhang T, Zhang K, et al. Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 2014;6:035001.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Jin Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Yoo, J.J. & Lee, S.J. Three-dimensional cell-based bioprinting for soft tissue regeneration. Tissue Eng Regen Med 13, 647–662 (2016). https://doi.org/10.1007/s13770-016-0133-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-016-0133-8

Key Words

Navigation