Skip to main content

Advertisement

Log in

NLRP3 inflammasomes are involved in the progression of postoperative cognitive dysfunction: from mechanism to treatment

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Postoperative cognitive dysfunction (POCD) involves patient memory and learning decline after surgery. POCD not only presents challenges for postoperative nursing and recovery but may also cause permanent brain damage for patients, including children and the aged, with vulnerable central nervous systems. Its occurrence is mainly influenced by surgical trauma, anesthetics, and the health condition of the patient. There is a lack of imaging and experimental diagnosis; therefore, patients can only be diagnosed by clinical observation, which may underestimate the morbidity, resulting in decreased treatment efficacy. Except for symptomatic support therapy, there is a relative lack of effective drugs specific for the treatment of POCD, because the precise mechanism of POCD remains to be determined. One current hypothesis is that postoperative inflammation promotes the progression of POCD. Accumulating research has indicated that overactivation of NOD-, LRR- and pyrin domain–containing protein 3 (NLRP3) inflammasomes contribute to the POCD progression, suggesting that targeting NLRP3 inflammasomes may be an effective therapy to treat POCD. In this review, we summarize recent studies and systematically describe the pathogenesis, treatment progression, and potential treatment options of targeting NLRP3 inflammasomes in POCD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Deiner S, Silverstein JH (2009) Postoperative delirium and cognitive dysfunction. Br J Anaesth 103(Suppl 1):i41–i46

    Article  PubMed  PubMed Central  Google Scholar 

  2. Evered LA, Silbert BS (2018) Postoperative cognitive dysfunction and noncardiac surgery. Anesth Analg 127(2):496–505

    Article  PubMed  Google Scholar 

  3. Steinmetz J, Christensen KB, Lund T, Lohse N, Rasmussen LS, Group I (2009) Long-term consequences of postoperative cognitive dysfunction. Anesthesiology. 110(3):548–555

    Article  PubMed  Google Scholar 

  4. Deiner S, Liu X, Lin HM et al (2020) Does postoperative cognitive decline result in new disability after surgery? Ann Surg. https://doi.org/10.1097/SLA.0000000000003764

  5. Fodale V, Santamaria LB, Schifilliti D, Mandal PK (2010) Anaesthetics and postoperative cognitive dysfunction: a pathological mechanism mimicking Alzheimer’s disease. Anaesthesia. 65(4):388–395

    Article  CAS  PubMed  Google Scholar 

  6. Tachibana H, Hiraoka A, Saito K, Naito Y, Chikazawa G, Tamura K, Totsugawa T, Yoshitaka H, Sakaguchi T (2019) Incidence and impact of silent brain lesions after coronary artery bypass grafting. J Thorac Cardiovasc Surg. https://doi.org/10.1016/j.jtcvs.2019.09.162

  7. Wang Z, Meng S, Cao L, Chen Y, Zuo Z, Peng S (2018) Critical role of NLRP3-caspase-1 pathway in age-dependent isoflurane-induced microglial inflammatory response and cognitive impairment. J Neuroinflammation 15(1):109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Wei P, Yang F, Zheng Q, Tang W, Li J (2019) The potential role of the NLRP3 inflammasome activation as a link between mitochondria ROS generation and neuroinflammation in postoperative cognitive dysfunction. Front Cell Neurosci 13:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shao A, Fei J, Feng S, Weng J (2020) Chikusetsu saponin IVa alleviated sevoflurane-induced neuroinflammation and cognitive impairment by blocking NLRP3/caspase-1 pathway. Pharmacol Rep 72:833–845

    Article  CAS  PubMed  Google Scholar 

  10. De Nardo D, De Nardo CM, Latz E (2014) New insights into mechanisms controlling the NLRP3 inflammasome and its role in lung disease. Am J Pathol 184(1):42–54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kelley N, Jeltema D, Duan Y, He Y (2019) The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 20(13):20, 3328

  12. He Y, Hara H, Nunez G (2016) Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 41(12):1012–1021

    Article  CAS  PubMed  Google Scholar 

  13. Franchi L, Nunez G (2012) Immunology. Orchestrating inflammasomes. Science 337(6100):1299–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bauernfeind F, Ablasser A, Bartok E, Kim S, Schmid-Burgk J, Cavlar T, Hornung V (2011) Inflammasomes: current understanding and open questions. Cell Mol Life Sci 68(5):765–783

    Article  CAS  PubMed  Google Scholar 

  15. Zhong L, Li H, Li Z, Shi B, Wang PS, Wang CG, Fan J, Sun H, Wang P, Qin X, Peng Z (2016) C7 genotype of the donor may predict early bacterial infection after liver transplantation. Sci Rep 6:24121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cowie AM, Menzel AD, O’Hara C, Lawlor MW, Stucky CL (2019) NOD-like receptor protein 3 inflammasome drives postoperative mechanical pain in a sex-dependent manner. Pain. 160(8):1794–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Houtman J, Freitag K, Gimber N, Schmoranzer J, Heppner FL, Jendrach M (2019) Beclin1-driven autophagy modulates the inflammatory response of microglia via NLRP3. EMBO J 38(4):e99430

  18. Alcocer-Gomez E, Cordero MD (2017) NLRP3 inflammasome: common nexus between depression and cardiovascular diseases. Nat Rev Cardiol 14(2):124

    Article  CAS  PubMed  Google Scholar 

  19. Xu Y, Sheng H, Bao Q, Wang Y, Lu J, Ni X (2016) NLRP3 inflammasome activation mediates estrogen deficiency-induced depression- and anxiety-like behavior and hippocampal inflammation in mice. Brain Behav Immun 56:175–186

    Article  CAS  PubMed  Google Scholar 

  20. Amarante-Mendes GP, Adjemian S, Branco LM, Zanetti LC, Weinlich R, Bortoluci KR (2018) Pattern recognition receptors and the host cell death molecular machinery. Front Immunol 9:2379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22(2):240–273 Table of Contents

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13

    Article  CAS  PubMed  Google Scholar 

  23. Beg AA (2002) Endogenous ligands of Toll-like receptors: implications for regulating inflammatory and immune responses. Trends Immunol 23(11):509–512

    Article  CAS  PubMed  Google Scholar 

  24. Matzinger P (2002) The danger model: a renewed sense of self. Science. 296(5566):301–305

    Article  CAS  PubMed  Google Scholar 

  25. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4(7):499–511

    Article  CAS  PubMed  Google Scholar 

  26. Park BS, Lee JO (2013) Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med 45:e66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Jo EK, Kim JK, Shin DM, Sasakawa C (2016) Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol 13(2):148–159

    Article  CAS  PubMed  Google Scholar 

  28. Kanneganti TD, Ozoren N, Body-Malapel M et al (2006) Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature. 440(7081):233–236

    Article  CAS  PubMed  Google Scholar 

  29. Zhong Z, Liang S, Sanchez-Lopez E, He F, Shalapour S, Lin XJ, Wong J, Ding S, Seki E, Schnabl B, Hevener AL, Greenberg HB, Kisseleva T, Karin M (2018) New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature. 560(7717):198–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Amores-Iniesta J, Barbera-Cremades M, Martinez CM et al (2017) Extracellular ATP activates the NLRP3 inflammasome and is an early danger signal of skin allograft rejection. Cell Rep 21(12):3414–3426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Terrando N, Eriksson LI, Ryu JK et al (2011) Resolving postoperative neuroinflammation and cognitive decline. Ann Neurol 70(6):986–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hovens IB, Schoemaker RG, van der Zee EA, Absalom AR, Heineman E, van Leeuwen BL (2014) Postoperative cognitive dysfunction: involvement of neuroinflammation and neuronal functioning. Brain Behav Immun 38:202–210

    Article  CAS  PubMed  Google Scholar 

  33. Riazi K, Galic MA, Kentner AC, Reid AY, Sharkey KA, Pittman QJ (2015) Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation. J Neurosci 35(12):4942–4952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yirmiya R, Goshen I (2011) Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 25(2):181–213

    Article  CAS  PubMed  Google Scholar 

  35. Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, Takata M, Lever IJ, Nanchahal J, Fanselow MS, Maze M (2010) Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol 68(3):360–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McColl BW, Rothwell NJ, Allan SM (2008) Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J Neurosci 28(38):9451–9462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang S, Gu C, Mandeville ET, Dong Y, Esposito E, Zhang Y, Yang G, Shen Y, Fu X, Lo EH, Xie Z (2017) Anesthesia and surgery impair blood-brain barrier and cognitive function in mice. Front Immunol 8:902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Pugh CR, Kumagawa K, Fleshner M, Watkins LR, Maier SF, Rudy JW (1998) Selective effects of peripheral lipopolysaccharide administration on contextual and auditory-cue fear conditioning. Brain Behav Immun 12(3):212–229

    Article  CAS  PubMed  Google Scholar 

  39. Chan JK, Roth J, Oppenheim JJ, Tracey KJ, Vogl T, Feldmann M, Horwood N, Nanchahal J (2012) Alarmins: awaiting a clinical response. J Clin Invest 122(8):2711–2719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Koizumi S, Ohsawa K, Inoue K, Kohsaka S (2013) Purinergic receptors in microglia: functional modal shifts of microglia mediated by P2 and P1 receptors. Glia. 61(1):47–54

    Article  PubMed  Google Scholar 

  41. Pickering M, Cumiskey D, O’Connor JJ (2005) Actions of TNF-alpha on glutamatergic synaptic transmission in the central nervous system. Exp Physiol 90(5):663–670

    Article  CAS  PubMed  Google Scholar 

  42. Gustin A, Kirchmeyer M, Koncina E, Felten P, Losciuto S, Heurtaux T, Tardivel A, Heuschling P, Dostert C (2015) NLRP3 inflammasome is expressed and functional in mouse brain microglia but not in astrocytes. PLoS One 10(6):e0130624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Rubartelli A (2014) DAMP-mediated activation of NLRP3-inflammasome in brain sterile inflammation: the fine line between healing and neurodegeneration. Front Immunol 5:99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Taepavarapruk P, Song C (2010) Reductions of acetylcholine release and nerve growth factor expression are correlated with memory impairment induced by interleukin-1beta administrations: effects of omega-3 fatty acid EPA treatment. J Neurochem 112(4):1054–1064

    Article  CAS  PubMed  Google Scholar 

  45. Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH (2005) Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 25(40):9275–9284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tanaka S, Ide M, Shibutani T, Ohtaki H, Numazawa S, Shioda S, Yoshida T (2006) Lipopolysaccharide-induced microglial activation induces learning and memory deficits without neuronal cell death in rats. J Neurosci Res 83(4):557–566

    Article  CAS  PubMed  Google Scholar 

  47. Lee YH, Su SB, Huang CC, Sheu HM, Tsai JC, Lin CH, Wang YJ, Wang BJ (2014) N-acetylcysteine attenuates hexavalent chromium-induced hypersensitivity through inhibition of cell death, ROS-related signaling and cytokine expression. PLoS One 9(9):e108317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hudetz JA, Iqbal Z, Gandhi SD, Patterson KM, Hyde TF, Reddy DM, Hudetz AG, Warltier DC (2007) Postoperative cognitive dysfunction in older patients with a history of alcohol abuse. Anesthesiology. 106(3):423–430

    Article  PubMed  Google Scholar 

  49. Newfield P (2009) Postoperative cognitive dysfunction. F1000 Med Rep 1:14

  50. Monk TG, Weldon BC, Garvan CW, Dede DE, van der Aa MT, Heilman KM, Gravenstein JS (2008) Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology. 108(1):18–30

    Article  PubMed  Google Scholar 

  51. Wang Y, Sands LP, Vaurio L, Mullen EA, Leung JM (2007) The effects of postoperative pain and its management on postoperative cognitive dysfunction. Am J Geriatr Psychiatry 15(1):50–59

    Article  CAS  PubMed  Google Scholar 

  52. Hovens IB, van Leeuwen BL, Nyakas C, Heineman E, van der Zee EA, Schoemaker RG (2015) Prior infection exacerbates postoperative cognitive dysfunction in aged rats. Am J Physiol Regul Integr Comp Physiol 309(2):R148–R159

    Article  CAS  PubMed  Google Scholar 

  53. Newman S, Stygall J, Hirani S, Shaefi S, Maze M (2007) Postoperative cognitive dysfunction after noncardiac surgery: a systematic review. Anesthesiology. 106(3):572–590

    Article  PubMed  Google Scholar 

  54. Scott JE, Mathias JL, Kneebone AC (2014) Postoperative cognitive dysfunction after total joint arthroplasty in the elderly: a meta-analysis. J Arthroplast 29(2):261–267 e261

    Article  Google Scholar 

  55. Zhang Y, Bao HG, Lv YL, Si YN, Han L, Wang HY, Gao YJ, Jiang WQ, Zhang C (2019) Risk factors for early postoperative cognitive dysfunction after colorectal surgery. BMC Anesthesiol 19(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  56. Youm YH, Grant RW, McCabe LR et al (2013) Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab 18(4):519–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pereira CF, Santos AE, Moreira PI, Pereira AC, Sousa FJ, Cardoso SM, Cruz MT (2019) Is Alzheimer’s disease an inflammasomopathy? Ageing Res Rev 56:100966

    Article  CAS  PubMed  Google Scholar 

  58. Alcocer-Gomez E, Cordero MD (2014) NLRP3 inflammasome: a new target in major depressive disorder. CNS Neurosci Ther 20(3):294–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Feng X, Zhao Y, Yang T, Song M, Wang C, Yao Y, Fan H (2019) Glucocorticoid-driven NLRP3 inflammasome activation in hippocampal microglia mediates chronic stress-induced depressive-like behaviors. Front Mol Neurosci 12:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Alcocer-Gomez E, de Miguel M, Casas-Barquero N et al (2014) NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain Behav Immun 36:111–117

    Article  CAS  PubMed  Google Scholar 

  61. Patron E, Messerotti Benvenuti S, Zanatta P, Polesel E, Palomba D (2013) Preexisting depressive symptoms are associated with long-term cognitive decline in patients after cardiac surgery. Gen Hosp Psychiatry 35(5):472–479

    Article  PubMed  Google Scholar 

  62. Steinmetz J, Siersma V, Kessing LV, Rasmussen LS, Group I (2013) Is postoperative cognitive dysfunction a risk factor for dementia? A cohort follow-up study. Br J Anaesth 110(Suppl 1):i92–i97

    Article  PubMed  Google Scholar 

  63. Hogan KJ (2013) Hereditary vulnerabilities to post-operative cognitive dysfunction and dementia. Prog Neuro-Psychopharmacol Biol Psychiatry 47:128–134

    Article  Google Scholar 

  64. Evered L, Silbert B, Scott DA, Ames D, Maruff P, Blennow K (2016) Cerebrospinal fluid biomarker for Alzheimer disease predicts postoperative cognitive dysfunction. Anesthesiology. 124(2):353–361

    Article  CAS  PubMed  Google Scholar 

  65. Ebrahimi T, Rust M, Kaiser SN et al (2018) alpha1-antitrypsin mitigates NLRP3-inflammasome activation in amyloid beta1-42-stimulated murine astrocytes. J Neuroinflammation 15(1):282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Furukawa K, Barger SW, Blalock EM, Mattson MP (1996) Activation of K+ channels and suppression of neuronal activity by secreted beta-amyloid-precursor protein. Nature. 379(6560):74–78

    Article  CAS  PubMed  Google Scholar 

  67. Colom LV, Diaz ME, Beers DR, Neely A, Xie WJ, Appel SH (1998) Role of potassium channels in amyloid-induced cell death. J Neurochem 70(5):1925–1934

    Article  CAS  PubMed  Google Scholar 

  68. Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, Nunez G (2013) K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 38(6):1142–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. de Rivero Vaccari JP, Lotocki G, Marcillo AE, Dietrich WD, Keane RW (2008) A molecular platform in neurons regulates inflammation after spinal cord injury. J Neurosci 28(13):3404–3414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Yu SP, Farhangrazi ZS, Ying HS, Yeh CH, Choi DW (1998) Enhancement of outward potassium current may participate in beta-amyloid peptide-induced cortical neuronal death. Neurobiol Dis 5(2):81–88

    Article  CAS  PubMed  Google Scholar 

  71. Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, Shaw LM, Vemuri P, Wiste HJ, Weigand SD, Lesnick TG, Pankratz VS, Donohue MC, Trojanowski JQ (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12(2):207–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sutinen EM, Pirttila T, Anderson G, Salminen A, Ojala JO (2012) Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-beta production in human neuron-like cells. J Neuroinflammation 9:199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ozturk C, Ozge A, Yalin OO et al (2007) The diagnostic role of serum inflammatory and soluble proteins on dementia subtypes: correlation with cognitive and functional decline. Behav Neurol 18(4):207–215

    Article  PubMed  Google Scholar 

  74. Malaguarnera L, Motta M, Di Rosa M, Anzaldi M, Malaguarnera M (2006) Interleukin-18 and transforming growth factor-beta 1 plasma levels in Alzheimer’s disease and vascular dementia. Neuropathology. 26(4):307–312

    Article  PubMed  Google Scholar 

  75. Motta M, Imbesi R, Di Rosa M, Stivala F, Malaguarnera L (2007) Altered plasma cytokine levels in Alzheimer’s disease: correlation with the disease progression. Immunol Lett 114(1):46–51

    Article  CAS  PubMed  Google Scholar 

  76. Tzeng TC, Hasegawa Y, Iguchi R, Cheung A, Caffrey DR, Thatcher EJ, Mao W, Germain G, Tamburro NDP, Okabe S, Heneka MT, Latz E, Futai K, Golenbock DT (2018) Inflammasome-derived cytokine IL18 suppresses amyloid-induced seizures in Alzheimer-prone mice. Proc Natl Acad Sci U S A 115(36):9002–9007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Onyango IG, Dennis J, Khan SM (2016) Mitochondrial dysfunction in Alzheimer’s disease and the rationale for bioenergetics based therapies. Aging Dis 7(2):201–214

    Article  PubMed  PubMed Central  Google Scholar 

  78. Nissanka N, Moraes CT (2018) Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett 592(5):728–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nurmi K, Kareinen I, Virkanen J, Rajamäki K, Kouri VP, Vaali K, Levonen AL, Fyhrquist N, Matikainen S, Kovanen PT, Eklund KK (2017) Hemin and cobalt protoporphyrin inhibit NLRP3 inflammasome activation by enhancing autophagy: a novel mechanism of inflammasome regulation. J Innate Immun 9(1):65–82

    Article  CAS  PubMed  Google Scholar 

  80. Spalinger MR, Lang S, Gottier C, Dai X, Rawlings DJ, Chan AC, Rogler G, Scharl M (2017) PTPN22 regulates NLRP3-mediated IL1B secretion in an autophagy-dependent manner. Autophagy. 13(9):1590–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Spalinger MR, Kasper S, Gottier C, Lang S, Atrott K, Vavricka SR, Scharl S, Raselli T, Frey-Wagner I, Gutte PM, Grütter MG, Beer HD, Contassot E, Chan AC, Dai X, Rawlings DJ, Mair F, Becher B, Falk W, Fried M, Rogler G, Scharl M (2016) NLRP3 tyrosine phosphorylation is controlled by protein tyrosine phosphatase PTPN22. J Clin Invest 126(5):1783–1800

    Article  PubMed  PubMed Central  Google Scholar 

  82. Razani B, Feng C, Coleman T, Emanuel R, Wen H, Hwang S, Ting JP, Virgin HW, Kastan MB, Semenkovich CF (2012) Autophagy links inflammasomes to atherosclerotic progression. Cell Metab 15(4):534–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. De Luca C, Colangelo AM, Alberghina L, Papa M (2018) Neuro-immune hemostasis: homeostasis and diseases in the central nervous system. Front Cell Neurosci 12:459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. von Haefen C, Sifringer M, Endesfelder S, Kalb A, González-López A, Tegethoff A, Paeschke N, Spies CD (2018) Physostigmine restores impaired autophagy in the rat hippocampus after surgery stress and LPS treatment. J NeuroImmune Pharmacol 13(3):383–395

    Article  Google Scholar 

  85. Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D, Deretic V (2011) Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J 30(23):4701–4711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cao Z, Wang Y, Long Z, He G (2019) Interaction between autophagy and the NLRP3 inflammasome. Acta Biochim Biophys Sin Shanghai 51(11):1087–1095

    Article  CAS  PubMed  Google Scholar 

  87. Lai M, Yao H, Shah SZA, Wu W, Wang D, Zhao Y, Wang L, Zhou X, Zhao D, Yang L (2018) The NLRP3-caspase 1 inflammasome negatively regulates autophagy via TLR4-TRIF in prion peptide-infected microglia. Front Aging Neurosci 10:116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Terrando N, Monaco C, Feldmann M, Maze M (2010) Unraveling the interactions between postoperative infection, surgery, and inflammation in post-operative cognitive dysfunction: BAPCPC1–4. European Journal of Anaesthesiology (EJA) 27(47):1–2

    Google Scholar 

  89. Land WG (2015) The role of damage-associated molecular patterns (DAMPs) in human diseases: part II: DAMPs as diagnostics, prognostics and therapeutics in clinical medicine. Sultan Qaboos Univ Med J 15(2):e157–e170

    PubMed  PubMed Central  Google Scholar 

  90. Dela Cruz CS, Kang MJ (2018) Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion. 41:37–44

    Article  CAS  Google Scholar 

  91. Zhang Y, Chen X, Gueydan C, Han J (2018) Plasma membrane changes during programmed cell deaths. Cell Res 28(1):9–21

    Article  CAS  PubMed  Google Scholar 

  92. Rubartelli A, Lotze MT (2007) Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol 28(10):429–436

    Article  CAS  PubMed  Google Scholar 

  93. Mazeraud A, Righy C, Bouchereau E, Benghanem S, Bozza FA, Sharshar T (2020) Septic-associated encephalopathy: a comprehensive review. Neurotherapeutics. 17(2):392–403

    Article  PubMed  PubMed Central  Google Scholar 

  94. Qian G, Wang Y (2020) Serum metabolomics of early postoperative cognitive dysfunction in elderly patients using liquid chromatography and Q-TOF mass spectrometry. Oxidative Med Cell Longev 2020:8957541

    Google Scholar 

  95. Chen J, Shen N, Duan X, Guo Y (2018) An investigation of the mechanism of dexmedetomidine in improving postoperative cognitive dysfunction from the perspectives of alleviating neuronal mitochondrial membrane oxidative stress and electrophysiological dysfunction. Exp Ther Med. 15(2):2037–2043

    CAS  PubMed  Google Scholar 

  96. Kim MJ, Yoon JH, Ryu JH (2016) Mitophagy: a balance regulator of NLRP3 inflammasome activation. BMB Rep 49(10):529–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chien WS, Chen YH, Chiang PC, Hsiao HW, Chuang SM, Lue SI, Hsu C (2011) Suppression of autophagy in rat liver at late stage of polymicrobial sepsis. Shock. 35(5):506–511

    Article  CAS  PubMed  Google Scholar 

  98. Cohendy R, Brougere A, Cuvillon P (2005) Anaesthesia in the older patient. Curr Opin Clin Nutr Metab Care 8(1):17–21

    Article  CAS  PubMed  Google Scholar 

  99. Kristek G, Rados I, Kristek D et al (2019) Influence of postoperative analgesia on systemic inflammatory response and postoperative cognitive dysfunction after femoral fractures surgery: a randomized controlled trial. Reg Anesth Pain Med 44(1):59–68

    Article  PubMed  Google Scholar 

  100. Grace PM, Galer EL, Strand KA, Corrigan K, Berkelhammer D, Maier SF, Watkins LR (2019) Repeated morphine prolongs postoperative pain in male rats. Anesth Analg 128(1):161–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yoshida S, Hagiwara Y, Tsuchiya M et al (2018) Involvement of neutrophils and interleukin-18 in nociception in a mouse model of muscle pain. Mol Pain 14:1744806918757286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cheng C, Wu H, Wang M et al (2019) Estrogen ameliorates allergic airway inflammation by regulating activation of NLRP3 in mice. Biosci Rep 39(1):BSR20181117

  103. Keselman A, Fang X, White PB, Heller NM (2017) Estrogen signaling contributes to sex differences in macrophage polarization during asthma. J Immunol 199(5):1573–1583

    Article  CAS  PubMed  Google Scholar 

  104. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13

    Article  PubMed  PubMed Central  Google Scholar 

  105. Zendedel A, Monnink F, Hassanzadeh G et al (2018) Estrogen attenuates local inflammasome expression and activation after spinal cord injury. Mol Neurobiol 55(2):1364–1375

    Article  CAS  PubMed  Google Scholar 

  106. Jaillon S, Berthenet K, Garlanda C (2019) Sexual dimorphism in innate immunity. Clin Rev Allergy Immunol 56(3):308–321

    Article  CAS  PubMed  Google Scholar 

  107. Yang CA, Huang ST, Chiang BL (2015) Sex-dependent differential activation of NLRP3 and AIM2 inflammasomes in SLE macrophages. Rheumatology (Oxford) 54(2):324–331

    Article  CAS  Google Scholar 

  108. Gees M, Colsoul B, Nilius B (2010) The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol 2(10):a003962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Moore C, Gupta R, Jordt SE, Chen Y, Liedtke WB (2018) Regulation of pain and itch by TRP channels. Neurosci Bull 34(1):120–142

    Article  CAS  PubMed  Google Scholar 

  110. Clapham DE (2003) TRP channels as cellular sensors. Nature. 426(6966):517–524

    Article  CAS  PubMed  Google Scholar 

  111. Rajamaki K, Nordstrom T, Nurmi K et al (2013) Extracellular acidosis is a novel danger signal alerting innate immunity via the NLRP3 inflammasome. J Biol Chem 288(19):13410–13419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Malsch P, Andratsch M, Vogl C, Link AS, Alzheimer C, Brierley SM, Hughes PA, Kress M (2014) Deletion of interleukin-6 signal transducer gp130 in small sensory neurons attenuates mechanonociception and down-regulates TRPA1 expression. J Neurosci 34(30):9845–9856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Hatano N, Itoh Y, Suzuki H, Muraki Y, Hayashi H, Onozaki K, Wood IC, Beech DJ, Muraki K (2012) Hypoxia-inducible factor-1alpha (HIF1alpha) switches on transient receptor potential ankyrin repeat 1 (TRPA1) gene expression via a hypoxia response element-like motif to modulate cytokine release. J Biol Chem 287(38):31962–31972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wei H, Karimaa M, Korjamo T, Koivisto A, Pertovaara A (2012) Transient receptor potential ankyrin 1 ion channel contributes to guarding pain and mechanical hypersensitivity in a rat model of postoperative pain. Anesthesiology. 117(1):137–148

    Article  CAS  PubMed  Google Scholar 

  115. Urata K, Shinoda M, Honda K, Lee J, Maruno M, Ito R, Gionhaku N, Iwata K (2015) Involvement of TRPV1 and TRPA1 in incisional intraoral and extraoral pain. J Dent Res 94(3):446–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yin J, Wang Y, Hu H, Li X, Xue M, Cheng W, Wang Y, Li X, Yang N, Shi Y, Yan S (2017) P2X7 receptor inhibition attenuated sympathetic nerve sprouting after myocardial infarction via the NLRP3/IL-1beta pathway. J Cell Mol Med 21(11):2695–2710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang ML, Kang YM, Li XG, Su Q, Li HB, Liu KL, Fu LY, Saahene RO, Li Y, Tan H, Yu XJ (2018) Central blockade of NLRP3 reduces blood pressure via regulating inflammation microenvironment and neurohormonal excitation in salt-induced prehypertensive rats. J Neuroinflammation 15(1):95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Schlereth T, Birklein F (2008) The sympathetic nervous system and pain. NeuroMolecular Med 10(3):141–147

    Article  CAS  PubMed  Google Scholar 

  119. Lehmann LJ, Warfield CA, Bajwa ZH (1996) Migraine headache following stellate ganglion block for reflex sympathetic dystrophy. Headache. 36(5):335–337

    Article  CAS  PubMed  Google Scholar 

  120. Liu MH, Tian J, Su YP, Wang T, Xiang Q, Wen L (2013) Cervical sympathetic block regulates early systemic inflammatory response in severe trauma patients. Med Sci Monit 19:194–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wortmann M, Skorubskaya E, Peters AS, Hakimi M, Bockler D, Dihlmann S (2019) Necrotic cell debris induces a NF-kappaB-driven inflammasome response in vascular smooth muscle cells derived from abdominal aortic aneurysms (AAA-SMC). Biochem Biophys Res Commun 511(2):343–349

    Article  CAS  PubMed  Google Scholar 

  122. Perkins RM, Aboudara MC, Abbott KC, Holcomb JB (2007) Resuscitative hyperkalemia in noncrush trauma: a prospective, observational study. Clin J Am Soc Nephrol 2(2):313–319

    Article  PubMed  Google Scholar 

  123. Song L, Pei L, Yao S, Wu Y, Shang Y (2017) NLRP3 Inflammasome in neurological diseases, from functions to therapies. Front Cell Neurosci 11:63

    PubMed  PubMed Central  Google Scholar 

  124. Netto MB, de Oliveira Junior AN, Goldim M, Mathias K, Fileti ME, da Rosa N, Laurentino AO, de Farias BX, Costa AB, Rezin GT, Fortunato JJ, Giustina AD, Barichello T, Dal-Pizzol F, Petronilho F (2018) Oxidative stress and mitochondrial dysfunction contributes to postoperative cognitive dysfunction in elderly rats. Brain Behav Immun 73:661–669

    Article  CAS  PubMed  Google Scholar 

  125. Abdul-Ghani MA, Muller FL, Liu Y, Chavez AO, Balas B, Zuo P, Chang Z, Tripathy D, Jani R, Molina-Carrion M, Monroy A, Folli F, van Remmen H, DeFronzo RA (2008) Deleterious action of FA metabolites on ATP synthesis: possible link between lipotoxicity, mitochondrial dysfunction, and insulin resistance. Am J Physiol Endocrinol Metab 295(3):E678–E685

    Article  CAS  PubMed  Google Scholar 

  126. Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM, Rentsendorj A, Vargas M, Guerrero C, Wang Y, Fitzgerald KA, Underhill DM, Town T, Arditi M (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 36(3):401–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kowaltowski AJ, Castilho RF, Vercesi AE (2001) Mitochondrial permeability transition and oxidative stress. FEBS Lett 495(1–2):12–15

    Article  CAS  PubMed  Google Scholar 

  128. Patrushev M, Kasymov V, Patrusheva V, Ushakova T, Gogvadze V, Gaziev A (2004) Mitochondrial permeability transition triggers the release of mtDNA fragments. Cell Mol Life Sci 61(24):3100–3103

    Article  CAS  PubMed  Google Scholar 

  129. Li J, Zhu X, Yang S, Xu H, Guo M, Yao Y, Huang Z, Lin D (2019) Lidocaine attenuates cognitive impairment after isoflurane anesthesia by reducing mitochondrial damage. Neurochem Res 44(7):1703–1714

    Article  CAS  PubMed  Google Scholar 

  130. Yang N, Li L, Li Z, Ni C, Cao Y, Liu T, Tian M, Chui D, Guo X (2017) Protective effect of dapsone on cognitive impairment induced by propofol involves hippocampal autophagy. Neurosci Lett 649:85–92

    Article  CAS  PubMed  Google Scholar 

  131. RA HDSRSZNJACFKNNWJFKCCPMJMFEM (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 460(7253):392–395

    Article  CAS  Google Scholar 

  132. Kim MJ, Bae SH, Ryu JC, Kwon Y, Oh JH, Kwon J, Moon JS, Kim K, Miyawaki A, Lee MG, Shin J, Kim YS, Kim CH, Ryter SW, Choi AMK, Rhee SG, Ryu JH, Yoon JH (2016) SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy. 12(8):1272–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lu SM, Yu CJ, Liu YH, Dong HQ, Zhang X, Zhang SS, Hu LQ, Zhang F, Qian YN, Gui B (2015) S100A8 contributes to postoperative cognitive dysfunction in mice undergoing tibial fracture surgery by activating the TLR4/MyD88 pathway. Brain Behav Immun 44:221–234

    Article  CAS  PubMed  Google Scholar 

  134. Wang Y, He H, Li D et al (2013) The role of the TLR4 signaling pathway in cognitive deficits following surgery in aged rats. Mol Med Rep 7(4):1137–1142

    Article  CAS  PubMed  Google Scholar 

  135. Li N, Zhang X, Dong H, Zhang S, Sun J, Qian Y (2016) Lithium ameliorates LPS-induced astrocytes activation partly via inhibition of toll-like receptor 4 expression. Cell Physiol Biochem 38(2):714–725

    Article  CAS  PubMed  Google Scholar 

  136. Li Z, Ni C, Xia C, Jaw J, Wang Y, Cao Y, Xu M, Guo X (2017) Calcineurin/nuclear factor-kappaB signaling mediates isoflurane-induced hippocampal neuroinflammation and subsequent cognitive impairment in aged rats. Mol Med Rep 15(1):201–209

    Article  CAS  PubMed  Google Scholar 

  137. Barrientos RM, Hein AM, Frank MG, Watkins LR, Maier SF (2012) Intracisternal interleukin-1 receptor antagonist prevents postoperative cognitive decline and neuroinflammatory response in aged rats. J Neurosci 32(42):14641–14648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Coll RC, Robertson AA, Chae JJ et al (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21(3):248–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Court M, Malier M, Millet A (2019) 3D type I collagen environment leads up to a reassessment of the classification of human macrophage polarizations. Biomaterials. 208:98–109

    Article  CAS  PubMed  Google Scholar 

  140. Tran TAT, Grievink HW, Lipinska K, Kluft C, Burggraaf J, Moerland M, Tasev D, Malone KE (2019) Whole blood assay as a model for in vitro evaluation of inflammasome activation and subsequent caspase-mediated interleukin-1 beta release. PLoS One 14(4):e0214999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhu Y, Yao R, Li Y, Wu C, Heng L, Zhou M, Yan L, Deng Y, Zhang Z, Ping L, Wu Y, Wang S, Wang L (2018) Protective effect of celecoxib on early postoperative cognitive dysfunction in geriatric patients. Front Neurol 9:633

    Article  PubMed  PubMed Central  Google Scholar 

  142. Zhu YZ, Yao R, Zhang Z, Xu H, Wang LW (2016) Parecoxib prevents early postoperative cognitive dysfunction in elderly patients undergoing total knee arthroplasty: a double-blind, randomized clinical consort study. Medicine (Baltimore) 95(28):e4082

    Article  CAS  Google Scholar 

  143. Li Y, He R, Chen S, Qu Y (2015) Effect of dexmedetomidine on early postoperative cognitive dysfunction and peri-operative inflammation in elderly patients undergoing laparoscopic cholecystectomy. Exp Ther Med 10(5):1635–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mauck MC, Linnstaedt SD, Bortsov A, Kurz M, Hendry PL, Lewandowski C, Velilla MA, Datner E, Pearson C, Domeier R, Fillingim RB, Beaudoin FL, Ting JP, McLean S (2020) Vitamin D insufficiency increases risk of chronic pain among African Americans experiencing motor vehicle collision. Pain. 161(2):274–280

    Article  PubMed  Google Scholar 

  145. Wang T, Zhu H, Hou Y, Gu W, Wu H, Luan Y, Xiao C, Zhou C (2019) Galantamine reversed early postoperative cognitive deficit via alleviating inflammation and enhancing synaptic transmission in mouse hippocampus. Eur J Pharmacol 846:63–72

    Article  CAS  PubMed  Google Scholar 

  146. Zuo Z (2013) Postoperative cognitive effects in newborns: the role of inflammatory processes. Anesthesiology. 118(3):481–483

    Article  PubMed  Google Scholar 

  147. Zhang Z, Li X, Li F, An L (2016) Berberine alleviates postoperative cognitive dysfunction by suppressing neuroinflammation in aged mice. Int Immunopharmacol 38:426–433

    Article  CAS  PubMed  Google Scholar 

  148. Hovens IB, van Leeuwen BL, Nyakas C, Heineman E, van der Zee EA, Schoemaker RG (2015) Postoperative cognitive dysfunction and microglial activation in associated brain regions in old rats. Neurobiol Learn Mem 118:74–79

    Article  CAS  PubMed  Google Scholar 

  149. Valentin LS, Pereira VF, Pietrobon RS et al (2016) Effects of single low dose of dexamethasone before noncardiac and nonneurologic surgery and general anesthesia on postoperative cognitive dysfunction-a phase III double blind, Randomized Clinical Trial. PLoS One 11(5):e0152308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Fang Q, Qian X, An J, Wen H, Cope DK, Williams JP (2014) Higher dose dexamethasone increases early postoperative cognitive dysfunction. J Neurosurg Anesthesiol 26(3):220–225

    Article  PubMed  Google Scholar 

  151. Glumac S, Kardum G, Sodic L, Supe-Domic D, Karanovic N (2017) Effects of dexamethasone on early cognitive decline after cardiac surgery: a randomised controlled trial. Eur J Anaesthesiol 34(11):776–784

    Article  CAS  PubMed  Google Scholar 

  152. Nehme A, Edelman J (2008) Dexamethasone inhibits high glucose-, TNF-alpha-, and IL-1beta-induced secretion of inflammatory and angiogenic mediators from retinal microvascular pericytes. Invest Ophthalmol Vis Sci 49(5):2030–2038

    Article  PubMed  Google Scholar 

  153. Hudetz JA, Iqbal Z, Gandhi SD et al (2009) Ketamine attenuates post-operative cognitive dysfunction after cardiac surgery. Acta Anaesthesiol Scand 53(7):864–872

    Article  CAS  PubMed  Google Scholar 

  154. Kaufmann FN, Costa AP, Ghisleni G, Diaz AP, Rodrigues ALS, Peluffo H, Kaster MP (2017) NLRP3 inflammasome-driven pathways in depression: clinical and preclinical findings. Brain Behav Immun 64:367–383

    Article  CAS  PubMed  Google Scholar 

  155. Pan Y, Chen XY, Zhang QY, Kong LD (2014) Microglial NLRP3 inflammasome activation mediates IL-1beta-related inflammation in prefrontal cortex of depressive rats. Brain Behav Immun 41:90–100

    Article  CAS  PubMed  Google Scholar 

  156. Iwata M, Ota KT, Li XY, Sakaue F, Li N, Dutheil S, Banasr M, Duric V, Yamanashi T, Kaneko K, Rasmussen K, Glasebrook A, Koester A, Song D, Jones KA, Zorn S, Smagin G, Duman RS (2016) Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2X7 receptor. Biol Psychiatry 80(1):12–22

    Article  CAS  PubMed  Google Scholar 

  157. Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S (2017) The P2X7 receptor in infection and inflammation. Immunity. 47(1):15–31

    Article  PubMed  CAS  Google Scholar 

  158. Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E, di Virgilio F (2006) The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 176(7):3877–3883

    Article  CAS  PubMed  Google Scholar 

  159. Idzko M, Ferrari D, Eltzschig HK (2014) Nucleotide signalling during inflammation. Nature. 509(7500):310–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tian XY, Ma S, Tse G, Wong WT, Huang Y (2018) Uncoupling protein 2 in cardiovascular health and disease. Front Physiol 9:1060

    Article  PubMed  PubMed Central  Google Scholar 

  161. Du RH, Wu FF, Lu M et al (2016) Uncoupling protein 2 modulation of the NLRP3 inflammasome in astrocytes and its implications in depression. Redox Biol 9:178–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Dang R, Zhou X, Tang M, Xu P, Gong X, Liu Y, Jiao H, Jiang P (2018) Fish oil supplementation attenuates neuroinflammation and alleviates depressive-like behavior in rats submitted to repeated lipopolysaccharide. Eur J Nutr 57(3):893–906

    Article  CAS  PubMed  Google Scholar 

  163. Zhang Y, Liu L, Liu YZ et al (2015) NLRP3 inflammasome mediates chronic mild stress-induced depression in mice via neuroinflammation. Int J Neuropsychopharmacol 18(8). https://doi.org/10.1093/ijnp/pyv006

  164. Liu B, Xu C, Wu X, Liu F, du Y, Sun J, Tao J, Dong J (2015) Icariin exerts an antidepressant effect in an unpredictable chronic mild stress model of depression in rats and is associated with the regulation of hippocampal neuroinflammation. Neuroscience. 294:193–205

    Article  CAS  PubMed  Google Scholar 

  165. Wang W, Wang Y, Wu H, Lei L, Xu S, Shen X, Guo X, Shen R, Xia X, Liu Y, Wang F (2014) Postoperative cognitive dysfunction: current developments in mechanism and prevention. Med Sci Monit 20:1908–1912

    Article  PubMed  PubMed Central  Google Scholar 

  166. Qiu Y, Huang X, Huang L, Tang L, Jiang J, Chen L, Li S (2016) 5-HT(1A) receptor antagonist improves behavior performance of delirium rats through inhibiting PI3K/Akt/mTOR activation-induced NLRP3 activity. IUBMB Life 68(4):311–319

    Article  CAS  PubMed  Google Scholar 

  167. Qiu Y, Chen D, Huang X, Huang L, Tang L, Jiang J, Chen L, Li S (2016) Neuroprotective effects of HTR1A antagonist WAY-100635 on scopolamine-induced delirium in rats and underlying molecular mechanisms. BMC Neurosci 17(1):66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Silbert B, Evered L, Scott DA, McMahon S, Choong P, Ames D, Maruff P, Jamrozik K (2015) Preexisting cognitive impairment is associated with postoperative cognitive dysfunction after hip joint replacement surgery. Anesthesiology. 122(6):1224–1234

    Article  PubMed  Google Scholar 

  169. Evered LA, Silbert BS, Scott DA, Maruff P, Ames D (2016) Prevalence of dementia 7.5 years after coronary artery bypass graft surgery. Anesthesiology. 125(1):62–71

    Article  PubMed  Google Scholar 

  170. Van Opdenbosch N, Gurung P, Vande Walle L, Fossoul A, Kanneganti TD, Lamkanfi M (2014) Activation of the NLRP1b inflammasome independently of ASC-mediated caspase-1 autoproteolysis and speck formation. Nat Commun 5:3209

    Article  PubMed  CAS  Google Scholar 

  171. Kesavardhana S, Kanneganti TD (2017) Mechanisms governing inflammasome activation, assembly and pyroptosis induction. Int Immunol 29(5):201–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Tan MS, Tan L, Jiang T, Zhu XC, Wang HF, Jia CD, Yu JT (2014) Amyloid-beta induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell Death Dis 5:e1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Li Q, Tian Y, Wang ZF, Liu SB, Mi WL, Ma HJ, Wu GC, Wang J, Yu J, Wang YQ (2013) Involvement of the spinal NALP1 inflammasome in neuropathic pain and aspirin-triggered-15-epi-lipoxin A4 induced analgesia. Neuroscience. 254:230–240

    Article  CAS  PubMed  Google Scholar 

  174. Lopes AH, Talbot J, Silva RL, Lima JB, França RO, Verri WA Jr, Mascarenhas DP, Ryffel B, Cunha FQ, Zamboni DS, Cunha TM (2015) Peripheral NLCR4 inflammasome participates in the genesis of acute inflammatory pain. Pain. 156(3):451–459

    Article  CAS  PubMed  Google Scholar 

  175. Saadi M, Karkhah A, Pourabdolhossein F, Ataie A, Monif M, Nouri HR (2020) Involvement of NLRC4 inflammasome through caspase-1 and IL-1beta augments neuroinflammation and contributes to memory impairment in an experimental model of Alzheimer’s like disease. Brain Res Bull 154:81–90

    Article  CAS  PubMed  Google Scholar 

  176. Zhang H, Li F, Li WW, Stary C, Clark JD, Xu S, Xiong X (2016) The inflammasome as a target for pain therapy. Br J Anaesth 117(6):693–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Bradburn S, Sarginson J, Murgatroyd CA (2017) Association of peripheral Interleukin-6 with global cognitive decline in non-demented adults: a meta-analysis of prospective studies. Front Aging Neurosci 9:438

    Article  PubMed  CAS  Google Scholar 

  178. Bauernfeind F, Niepmann S, Knolle PA, Hornung V (2016) Aging-associated TNF production primes inflammasome activation and NLRP3-related metabolic disturbances. J Immunol 197(7):2900–2908

    Article  CAS  PubMed  Google Scholar 

  179. McGeough MD, Wree A, Inzaugarat ME et al (2017) TNF regulates transcription of NLRP3 inflammasome components and inflammatory molecules in cryopyrinopathies. J Clin Invest 127(12):4488–4497

    Article  PubMed  PubMed Central  Google Scholar 

  180. Paolisso G, Rizzo MR, Mazziotti G et al (1998) Advancing age and insulin resistance: role of plasma tumor necrosis factor-alpha. Am J Phys 275(2):E294–E299

    CAS  Google Scholar 

  181. Bruunsgaard H, Andersen-Ranberg K, Jeune B, Pedersen AN, Skinhoj P, Pedersen BK (1999) A high plasma concentration of TNF-alpha is associated with dementia in centenarians. J Gerontol A Biol Sci Med Sci 54(7):M357–M364

    Article  CAS  PubMed  Google Scholar 

  182. Franchi L, Eigenbrod T, Nunez G (2009) Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol 183(2):792–796

    Article  CAS  PubMed  Google Scholar 

  183. Androsova G, Krause R, Winterer G, Schneider R (2015) Biomarkers of postoperative delirium and cognitive dysfunction. Front Aging Neurosci 7:112

    Article  PubMed  PubMed Central  Google Scholar 

  184. Zhou M, Lyu Y, Zhu Y, Jiang T, Wu C, Yang J, Wang L (2019) Effect of ulinastatin combined with dexmedetomidine on postoperative cognitive dysfunction in patients who underwent cardiac surgery. Front Neurol 10:1293

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Zhang or Qiliang Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not essential.

Informed consent

Not essential.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Shuai Zhao and Fan Chenare equal first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Chen, F., Wang, D. et al. NLRP3 inflammasomes are involved in the progression of postoperative cognitive dysfunction: from mechanism to treatment. Neurosurg Rev 44, 1815–1831 (2021). https://doi.org/10.1007/s10143-020-01387-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-020-01387-z

Keywords

Navigation