Skip to main content

Advertisement

Log in

Physostigmine Restores Impaired Autophagy in the Rat Hippocampus after Surgery Stress and LPS Treatment

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Tissue damage and pathogen invasion during surgical trauma have been identified as contributing factors leading to neuroinflammation in the hippocampus, which can be protected by stimulation of the cholinergic anti-inflammatory pathway using the acetylcholinesterase inhibitor physostigmine. Macroautophagy, an intracellular degradation pathway used to recycle and eliminate damaged proteins and organelles by lysosomal digestion, seems to be important for cell survival under stress conditions. This study aimed to examine the role of autophagy in physostigmine-mediated hippocampal cell protection in a rat model of surgery stress. In the presence or absence of physostigmine, adult Wistar rats underwent surgery in combination with lipopolysaccharide (LPS). Activated microglia, apoptosis-, autophagy-, and anti-inflammatory-related genes and -proteins in the hippocampus were determined by Real-Time PCR, Western blot and fluorescence microscopy after 1 h, 24 h and 3 d. Surgery combined with LPS-treatment led to microglia activation after 1 h and 24 h which was accompanied by apoptotic cell death after 24 h in the hippocampus. Furthermore, it led to a decreased expression of ATG-3 after 24 h and an increased expression of p62/ SQSTM1 after 1 h and 24 h. Administration of physostigmine significantly increased autophagy related markers and restored the autophagic flux after surgery stress, detected by increased degradation of p62/ SQSTM1 in the hippocampus after 1 h and 24 h. Furthermore, physostigmine reduced activated microglia and apoptosis relevant proteins and elevated the increased expression of TGF-beta1 and MFG-E8 after surgery stress. In conclusion, activation of autophagy may be essential in physostigmine-induced neuroprotection against surgery stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Physostigmine reduced microglia activation after surgery stress in the hippocampus.
Fig. 2: Physostigmine reversed the enhanced ratio of Bax/Bcl-2, cytochrome c release and cleaved Caspase-3 and PARP after surgery stress in the hippocampus.
Fig. 3: Physostigmine reduced apoptotic cell death after surgery stress in the hippocampus.
Fig. 4: Physostigmine in combination with surgery stress increased the gene and protein expression of ATG-3 and Beclin-1 in the hippocampus.
Fig. 5: Physostigmine enhanced the protein expression of LC3-II in the hippocampus.
Fig. 6: Physostigmine reversed the accumulation of p62/SQSTM1 after surgery stress in the hippocampus.
Fig. 7: Physostigmine in combination with surgery stress enhanced expression of TGF-beta1 and MFG-E8 after surgery stress in the hippocampus.

Similar content being viewed by others

References

  • Aziz M, Jacob A, Matsuda A, Wu R, Zhou M, Dong W, Yang WL, Wang P (2011) Pre-treatment of recombinant mouse MFG-E8 downregulates LPS-induced TNF-alpha production in macrophages via STAT3-mediated SOCS3 activation. PLoS One 6:e27685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barrientos RM, Higgins EA, Sprunger DB, Watkins LR, Rudy JW, Maier SF (2002) Memory for context is impaired by a post context exposure injection of interleukin-1 beta into dorsal hippocampus. Behav Brain Res 134:291–298

    Article  PubMed  CAS  Google Scholar 

  • Bendix I, Schulze C, Haefen C, Gellhaus A, Endesfelder S, Heumann R, Felderhoff-Mueser U, Sifringer M (2012) Erythropoietin modulates autophagy signaling in the developing rat brain in an in vivo model of oxygen-toxicity. Int J Mol Sci 13:12939–12951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025–1040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brionne TC, Tesseur I, Masliah E, Wyss-Coray T (2003) Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 40:1133–1145

    Article  PubMed  CAS  Google Scholar 

  • Buttner S, Broeskamp F, Sommer C, Markaki M, Habernig L, Alavian-Ghavanini A, Carmona-Gutierrez D, Eisenberg T, Michael E, Kroemer G, Tavernarakis N, Sigrist SJ, Madeo F (2014) Spermidine protects against alpha-synuclein neurotoxicity. Cell Cycle 13:3903–3908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caballero B, Coto-Montes A (2012) An insight into the role of autophagy in cell responses in the aging and neurodegenerative brain. Histol Histopathol 27:263–275

    PubMed  CAS  Google Scholar 

  • Caraci F, Gulisano W, Guida CA, Impellizzeri AA, Drago F, Puzzo D, Palmeri A (2015) A key role for TGF-beta1 in hippocampal synaptic plasticity and memory. Sci Rep 5:11252

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheyuo C, Jacob A, Wu R, Zhou M, Qi L, Dong W, Ji Y, Chaung WW, Wang H, Nicastro J, Coppa GF, Wang P (2012) Recombinant human MFG-E8 attenuates cerebral ischemic injury: its role in anti-inflammation and anti-apoptosis. Neuropharmacology 62:890–900

    Article  PubMed  CAS  Google Scholar 

  • Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, Takata M, Lever IJ, Nanchahal J, Fanselow MS, Maze M (2010) Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol 68:360–368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dehay B, Bove J, Rodriguez-Muela N, Perier C, Recasens A, Boya P, Vila M (2010) Pathogenic lysosomal depletion in Parkinson's disease. J Neurosci 30:12535–12544

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Deroide N, Li X, Lerouet D, Van Vre E, Baker L, Harrison J, Poittevin M, Masters L, Nih L, Margaill I, Iwakura Y, Ryffel B, Pocard M, Tedgui A, Kubis N, Mallat Z (2013) MFGE8 inhibits inflammasome-induced IL-1beta production and limits postischemic cerebral injury. J Clin Invest 123:1176–1181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dobolyi A, Vincze C, Pal G, Lovas G (2012) The neuroprotective functions of transforming growth factor beta proteins. Int J Mol Sci 13:8219–8258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eskelinen EL, Saftig P (2009) Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta 1793:664–673

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24:24–41

    Article  PubMed  CAS  Google Scholar 

  • Feng X, Valdearcos M, Uchida Y, Lutrin D, Maze M, Koliwad SK (2017) Microglia mediate postoperative hippocampal inflammation and cognitive decline in mice. JCI Insight 2:e91229

    Article  PubMed  PubMed Central  Google Scholar 

  • Fidalgo AR, Cibelli M, White JP, Nagy I, Maze M, Ma D (2011) Systemic inflammation enhances surgery-induced cognitive dysfunction in mice. Neurosci Lett 498:63–66

    Article  PubMed  CAS  Google Scholar 

  • Francois A, Terro F, Quellard N, Fernandez B, Chassaing D, Janet T, Rioux Bilan A, Paccalin M, Page G (2014) Impairment of autophagy in the central nervous system during lipopolysaccharide-induced inflammatory stress in mice. Mol Brain 7:56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta VK, Scheunemann L, Eisenberg T, Mertel S, Bhukel A, Koemans TS, Kramer JM, Liu KS, Schroeder S, Stunnenberg HG, Sinner F, Magnes C, Pieber TR, Dipt S, Fiala A, Schenck A, Schwaerzel M, Madeo F, Sigrist SJ (2013) Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat Neurosci 16:1453–1460

    Article  PubMed  CAS  Google Scholar 

  • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article  PubMed  CAS  Google Scholar 

  • Harris H, Rubinsztein DC (2012) Control of autophagy as a therapy for neurodegenerative disease. Nat Rev Neurol 8:108–117

    Article  CAS  Google Scholar 

  • Jiang H, Zhang XJ (2008) Acetylcholinesterase and apoptosis. A novel perspective for an old enzyme. FEBS J 275:612–617

    Article  PubMed  CAS  Google Scholar 

  • Kalb A, von Haefen C, Sifringer M, Tegethoff A, Paeschke N, Kostova M, Feldheiser A, Spies CD (2013) Acetylcholinesterase inhibitors reduce neuroinflammation and -degeneration in the cortex and hippocampus of a surgery stress rat model. PLoS One 8:e62679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klionsky DJ (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Klionsky DJ, Codogno P (2013) The mechanism and physiological function of macroautophagy. J Innate Immun 5:427–433

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Komatsu M, Ichimura Y (2010) Physiological significance of selective degradation of p62 by autophagy. FEBS Lett 584:1374–1378

    Article  PubMed  CAS  Google Scholar 

  • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  PubMed  CAS  Google Scholar 

  • Lauber K, Keppeler H, Munoz LE, Koppe U, Schroder K, Yamaguchi H, Kronke G, Uderhardt S, Wesselborg S, Belka C, Nagata S, Herrmann M (2013) Milk fat globule-EGF factor 8 mediates the enhancement of apoptotic cell clearance by glucocorticoids. Cell Death Differ 20:1230–1240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu K, Zhao E, Ilyas G, Lalazar G, Lin Y, Haseeb M, Tanaka KE, Czaja MJ (2015) Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy 11:271–284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Vicente M, Cuervo AM (2007) Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol 6:352–361

    Article  PubMed  CAS  Google Scholar 

  • Matsuda A, Wu R, Jacob A, Komura H, Zhou M, Wang Z, Aziz MM, Wang P (2011) Protective effect of milk fat globule-epidermal growth factor-factor VIII after renal ischemia-reperfusion injury in mice. Crit Care Med 39:2039–2047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moreau K, Luo S, Rubinsztein DC (2010) Cytoprotective roles for autophagy. Curr Opin Cell Biol 22:206–211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nixon RA, Yang DS (2011) Autophagy failure in Alzheimer's disease--locating the primary defect. Neurobiol Dis 43:38–45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pena-Altamira E, Petralla S, Massenzio F, Virgili M, Bolognesi ML, Monti B (2017) Nutritional and pharmacological strategies to regulate microglial polarization in cognitive aging and Alzheimer's disease. Front Aging Neurosci 9:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravikumar B, Berger Z, Vacher C, O'Kane CJ, Rubinsztein DC (2006) Rapamycin pre-treatment protects against apoptosis. Hum Mol Genet 15:1209–1216

    Article  PubMed  CAS  Google Scholar 

  • Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443:780–786

    Article  PubMed  CAS  Google Scholar 

  • Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695

    Article  PubMed  CAS  Google Scholar 

  • Rubio-Perez JM, Morillas-Ruiz JM (2012) A review: inflammatory process in Alzheimer's disease, role of cytokines. ScientificWorldJournal 2012:756357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden AI, Lipinski MM (2014) Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy 10:2208–2222

    Article  PubMed  CAS  Google Scholar 

  • Shao BZ, Ke P, Xu ZQ, Wei W, Cheng MH, Han BZ, Chen XW, Su DF, Liu C (2017) Autophagy plays an important role in anti-inflammatory mechanisms stimulated by Alpha7 nicotinic acetylcholine receptor. Front Immunol 8:553

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen WX, Chen JH, Lu JH, Peng YP, Qiu YH (2014) TGF-beta1 protection against Abeta1-42-induced neuroinflammation and neurodegeneration in rats. Int J Mol Sci 15:22092–22108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, Richardson A, Strong R, Galvan V (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer's disease. PLoS One 5:e9979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spittau B, Rilka J, Steinfath E, Zoller T, Krieglstein K (2015) TGFbeta1 increases microglia-mediated engulfment of apoptotic cells via upregulation of the milk fat globule-EGF factor 8. Glia 63:142–153

    Article  PubMed  Google Scholar 

  • Su P, Zhang J, Wang D, Zhao F, Cao Z, Aschner M, Luo W (2016) The role of autophagy in modulation of neuroinflammation in microglia. Neuroscience 319:155–167

    Article  PubMed  CAS  Google Scholar 

  • Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT (2012) PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 249:158–175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Velloso NA, Dalmolin GD, Gomes GM, Rubin MA, Canas PM, Cunha RA, Mello CF (2009) Spermine improves recognition memory deficit in a rodent model of Huntington's disease. Neurobiol Learn Mem 92:574–580

    Article  PubMed  CAS  Google Scholar 

  • Wang IF, Guo BS, Liu YC, Wu CC, Yang CH, Tsai KJ, Shen CK (2012) Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc Natl Acad Sci U S A 109:15024–15029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wong E, Cuervo AM (2010) Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 13:805–811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang L, He HY, Zhang XJ (2002) Increased expression of intranuclear AChE involved in apoptosis of SK-N-SH cells. Neurosci Res 42:261–268

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Zhu B, Shen J, Hu T, Li Z, Hong T (2013) Rapamycin and mTOR inhibitors probably have therapeutic effects for post-operative cognitive dysfunction. Med Hypotheses 81:487–488

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Chu X, Yin M, Liu X, Yuan H, Niu Y, Fu L (2014) mTOR and autophagy in normal brain aging and caloric restriction ameliorating age-related cognition deficits. Behav Brain Res 264:82–90

    Article  PubMed  CAS  Google Scholar 

  • Ye J, Jiang Z, Chen X, Liu M, Li J, Liu N (2017) The role of autophagy in pro-inflammatory responses of microglia activation via mitochondrial reactive oxygen species in vitro. J Neurochem 142:215–230

    Article  PubMed  CAS  Google Scholar 

  • Zhang XJ, Yang L, Zhao Q, Caen JP, He HY, Jin QH, Guo LH, Alemany M, Zhang LY, Shi YF (2002) Induction of acetylcholinesterase expression during apoptosis in various cell types. Cell Death Differ 9:790–800

    Article  PubMed  CAS  Google Scholar 

  • Zhao M, Sun L, Yu XJ, Miao Y, Liu JJ, Wang H, Ren J, Zang WJ (2013) Acetylcholine mediates AMPK-dependent autophagic cytoprotection in H9c2 cells during hypoxia/reoxygenation injury. Cell Physiol Biochem 32:601–613

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Ahlemeyer B, Bauerbach E, Krieglstein J (2001) TGF-beta1 inhibits caspase-3 activation and neuronal apoptosis in rat hippocampal cultures. Neurochem Int 38:227–235

    Article  PubMed  Google Scholar 

  • Zhu Y, Yang GY, Ahlemeyer B, Pang L, Che XM, Culmsee C, Klumpp S, Krieglstein J (2002) Transforming growth factor-beta 1 increases bad phosphorylation and protects neurons against damage. J Neurosci 22:3898–3909

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Marie-Christin Gaerz and Rosalie Schmidt for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarissa von Haefen.

Ethics declarations

Conflicts of Interest

All authors have read the journal’s policy on disclosure of potential conflicts of interest and have none to declare.

Ethical Approval

All animal experiments were approved and performed in accordance with the guidelines of the Charité-Universitätsmedizin Berlin, Germany and the national ethic principles (registration no. G 0253/09).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Haefen, C., Sifringer, M., Endesfelder, S. et al. Physostigmine Restores Impaired Autophagy in the Rat Hippocampus after Surgery Stress and LPS Treatment. J Neuroimmune Pharmacol 13, 383–395 (2018). https://doi.org/10.1007/s11481-018-9790-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-018-9790-9

Keywords

Navigation