Skip to main content
Log in

Chain Extender-induced Hydrogen Bonding Organization Determines the Morphology and Properties of Thermoplastic Polycarbonate Polyurethane

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Thermoplastic polycarbonate polyurethanes (PCUs) are multiblock copolymers that have been applied for medical devices for long time. Aliphatic diols are common chain extenders (CE) involved in the composition of the hard segments of PCU. However, limited knowledge was discovered about how the chemical structure of CE affects the hydrogen bonding organization within PCUs and their mechanical properties. To investigate this problem, a group of PCUs were synthesized respectively by extending the polymer chain with 1,4-butanediol (BDO), aminoethanol (MEA), ethanediol (EO) as three kinds of chain extenders. Tiny differences in the CE chemical structure results in remarkable variations in phase separation, condensed morphologies, thermal and mechanical properties, which are characterized by Fourier transform infrared spectrometer, atomic force microscopy, small-angle X-ray scattering, differential scanning calorimetry, and tensile tests. The microstructural evolution during unilateral deformation and the different mechanism induced by the different CEs was probed and unveil by in situ wide- and small-angle X-ray diffraction. Symmetry of CE can improve the organization of the hydrogen bonding. The coherence strength of the urethane/urea group also plays a key role by comparing the two PCUs with ethanediol and aminoethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berezkin, Y.; Urick, M. In modern polyurethanes: overview of structure property relationship. ACS Symp. Ser., ACS Publications, 2013, p. 65–81.

  2. Yilgor, I.; Yilgor, E.; Wilkes, G. L. Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: a comprehensive review. Polymer 2015, 58, A1–A36.

    Article  CAS  Google Scholar 

  3. Cheng, B. X.; Gao, W. C.; Ren, X. M.; Ouyang, X. Y.; Zhao, Y.; Zhao, H.; Wu, W.; Huang, C. X.; Liu, Y.; Liu, X. Y.; Li, H. N; Robert, K. Y. L. A review of microphase separation of polyurethane: characterization and applications. Polym. Test. 2022, 107, 107489.

    Article  CAS  Google Scholar 

  4. Simmonsa, A.; Hyvarinena, J.; Odella, R. A.; Martinc, D. J.; Gunatillakeb, P. A.; Noblea, K. R.; Poole-Warren, L. A. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers. Biomaterials 2004, 25, 4887–4900.

    Article  Google Scholar 

  5. Jenney, C.; Millson, P.; Grainger, D. W.; Grubbs, R.; Gunatillake, P.; McCarthy, S. J.; Runt, J.; Beith, J. Assessment of a siloxane poly(urethane-urea) elastomer designed for implantable heart valve leaflets. Adv. Nano Biomed. Res. 2021, 1, 2000032.

    Article  CAS  Google Scholar 

  6. Kojio, K.; Furukawa, M.; Nonaka, Y.; Nakamura, S. Control of mechanical properties of thermoplastic polyurethane elastomers by restriction of crystallization of soft segment. Materials 2010, 3, 5097–5110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bonab, V. S.; Manas-Zloczower, I. Revisiting thermoplastic polyurethane, from composition to morphology and properties. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 1553–1564.

    Article  Google Scholar 

  8. Ginzburg, V. V.; Bicerano, J.; Christenson, C. P.; Schrock, A. K.; Patashinski, A. Z. Theoretical modeling of the relationship between Young’s modulus and formulation variables for segmented polyurethanes. J. Polym. Sci., Part B: Polym. Phys. 2009, 47, 2198–2205.

    Google Scholar 

  9. Xu, W.; Zhang, R. Y.; Liu, W.; Zhu, J.; Dong, X.; Guo, H. X.; Hu, G. H. A Multiscale investigation on the mechanism of shape recovery for IPDI to PPDI hard segment substitution in polyurethane. Macromolecules 2016, 49, 5931–5944.

    Article  CAS  Google Scholar 

  10. Zhang, Z. Y.; Liu, L.; Xu, D. H.; Zhang, R. Y.; Shia, H. C.; Luana, S.; Yina, J. Research progress in preparation and biomedical application of functional medical polyurethane elastomers. Acta Chim. Sinica 2022, 80, 1436–1447.

    Article  CAS  Google Scholar 

  11. Zdrahala, R. J.; Zdrahala, I. J. Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. J. Biomater. Appl. 1999, 14, 67–90.

    Article  PubMed  CAS  Google Scholar 

  12. Hiob, M. A.; She, S.; Muiznieks, L. D.; Weiss, A. S. Biomaterials and modifications in the development of small-diameter vascular grafts. ACS Biomater. Sci. Eng. 2017, 3, 712–723.

    Article  PubMed  CAS  Google Scholar 

  13. Osman, A. F.; Edwards, G. A.; Schiller, T. L.; Andriani, Y.; Jack, K. S.; Morrow, I. C.; Halley, P. J.; Martin, D. J. Structure-property relationships in biomedical thermoplastic polyurethane nanocomposites. Macromolecules 2012, 45, 198–210.

    Article  CAS  Google Scholar 

  14. Fatima, J. K.; Pakkanen, T. T. Incorporation of polydimethylsiloxane into polyurethanes and characterization of copolymers. Eur. Polym. J. 2011, 47, 1694–1708.

    Article  Google Scholar 

  15. Hong, Y.; Guan, J. J.; Fujimoto, K. L.; Hashizume, R.; Pelinescu, A. L.; Wagner, W. R. Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds. Biomaterials 2010, 31, 4249–4258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wang, Q; McGoron, A. J.; Bianco, R.; Kato, Y.; Pinchuk, L.; Schoephoerster, R. T. In-vivo assessment of a novel polymer (SIBS) trileaflet heart valve. J. Heart Valve Dis 2010, 19, 499–505.

    PubMed  Google Scholar 

  17. Kidane, A. G.; Burriesci, G.; Edirisinghe, M.; Ghanbari, H.; Bonhoeffer, P.; Seifalian, A. M. A novel nanocomposite polymer for development of synthetic heart valve leaflets. Acta Biomater. 2009, 5, 2409–2417.

    Article  PubMed  CAS  Google Scholar 

  18. Dandeniyage, L. S.; Gunatillake, P. A.; Adhikari, R.; Bown, M.; Shanks, R.; Adhikari, B. Development of high strength siloxane poly(urethane-urea) elastomers based on linked macrodiols for heart valve application. J. Biomed. Mater. Res. B Appl. Biomater. 2018, 106, 1712–1720.

    Article  PubMed  CAS  Google Scholar 

  19. Cooper, S. L.; Guan, J. J. Advances in polyurethane biomaterials. Woodhead Publishing, 2016.

  20. Xie, F. W.; Zhang, T. L.; Bryant, P.; Kurusingal, V.; Colwell, J. M.; Laycock, B. Degradation and stabilization of polyurethane elastomers. Prog. Polym. Sci. 2019, 90, 211–268.

    Article  CAS  Google Scholar 

  21. Lai, Y.; Kuang, X.; Zhu, P.; Huang, M. M.; Dong, X.; Wang, D. J. Colorless, transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design. Adv. Mater. 2018, 30, 1802556.

    Article  Google Scholar 

  22. Song, Y.; Liu, Y.; Qi, T.; Li, G. L. Towards dynamic, but supertough healable polymers via biomimetic hierarchical hydrogen bonding interaction. Angew. Chem. Int. Ed. 2018, 57, 13838–13842.

    Article  CAS  Google Scholar 

  23. Hornat, C. C.; Urban, M. W. Shape memory effects in self-healing polymers. Prog. Polym. Sci. 2020, 102, 101208.

    Article  CAS  Google Scholar 

  24. Kojio, K.; Nozaki, S.; Takahara, A.; Yamasaki, S. Influence of chemical structure of hard segments on physical properties of polyurethane elastomers: a review. J. Polym. Res. 2020, 27, 140.

    Article  CAS  Google Scholar 

  25. Wiggins, M. J.; MacEwan, M.; Anderson, J. M.; Hiltner, A. Effect of soft-segment chemistry on polyurethane biostability during in vitro fatigue loading. J. Biomed. Mater. Res. A 2004, 68, 668–683.

    Article  PubMed  Google Scholar 

  26. Castagna, A. M.; Pangon, A.; Choi, T.; Dillon, G. P.; Runt, J. The role of soft segment molecular weight on microphase separation and dynamics of bulk polymerized polyureas. Macromolecules 2012, 45, 8438–8444.

    Article  CAS  Google Scholar 

  27. Yilgor, I.; Yilgor, E.; Guler, I. G.; Ward, T. C.; Wilkes, G. L. FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes. Polymer 2006, 47, 4105–4114.

    Article  CAS  Google Scholar 

  28. Liu, X.; Ding, S. S.; Wang, F.; Shi, Y. L.; Wang, X. H.; Wang, Z. G. Controlling energy dissipation during deformation by selection of the hard-segment component for thermoplastic polyurethanes. Ind. Eng. Chem. Res. 2022, 61, 8821–8831.

    Article  CAS  Google Scholar 

  29. Nozaki, S.; Masuda, S.; Kamitani, K.; Ken, K.; Takahara, A.; Kuwamura, G.; Hasegawa, D.; Moorthi, K.; Mita, K.; Yamasaki, A. Superior properties of polyurethane elastomers synthesized with aliphatic diisocyanate bearing a symmetric structure. Macromolecules 2017, 50, 1008–1015.

    Article  CAS  Google Scholar 

  30. Crago, M.; Lee, A.; Farajikhah, S.; Oveissi, F.; Fletcher, D. F.; Dehghani, F.; Winlaw, D. S.; Naficy, S. The evolution of polyurethane heart valve replacements: how chemistry translates to the clinic. Mater. Today Commun. 2022, 33, 104916.

    Article  CAS  Google Scholar 

  31. Hu, S. K.; Shou, T.; Zhao, X. Y.; Wang, Z.; Zhang, S. J.; Qin, X.; Guo, M. M.; Zhang, L. Q. Rational design of a novel NDI-based thermoplastic polyurethane elastomer with superior heat resistance. Polymer 2020, 205, 122764.

    Article  CAS  Google Scholar 

  32. Zhao, Q.; Jesus, C. B.; Urbanski, P.; Stokes, K. Glass wool-H2O2/CoCl2 test system for in vitro evaluation of biodegradative stress cracking in polyurethane elastomers. J. Biomed. Mater. Res. 1995, 29, 467–475.

    Article  PubMed  CAS  Google Scholar 

  33. Tanzi, M. C.; Mantovani, D.; Petrini, P.; Guidoin, R.; Laroche, G. Chemical stability of polyether urethanes versus polycarbonate urethanes. J. Biomed. Mater. Res. 1997, 36, 550–559.

    Article  PubMed  CAS  Google Scholar 

  34. Eceiza, A.; Larranaga, M.; de la Caba, K.; Kortaberria, G.; Marieta, C.; Corcuera, M. A.; Mondragon, I. Structure–property relationships of thermoplastic polyurethane elastomers based on polycarbonate diols. J. Appl. Polym. Sci. 2008, 108, 3092–3103.

    Article  CAS  Google Scholar 

  35. Kojio, K.; Furukawa, M.; Motokucho, S.; Shimada, M.; Sakai, M. Structure-mechanical property relationships for poly(carbonate urethane) elastomers with novel soft segments. Macromolecules 2009, 42, 8322–8327.

    Article  CAS  Google Scholar 

  36. Kultys, A.; Rogulska, M. New thermoplastic poly(carbonate-urethane) elastomers. Polish J. Chem. Technol. 2011, 13, 23–30.

    Article  Google Scholar 

  37. Liu, Y.; Peng, L.; Lin, J. L.; Zhou, Y.; Wang, D. J.; Han, C.; Huang, X. B.; Dong, X. The crystallization behaviour regulating nature of hydrogen bonds interaction on polyamide 6,6 by poly(vinyl pyrrolidone). Chinese J. Polym. Sci. 2023, 41, 394–404.

    Article  CAS  Google Scholar 

  38. Zhu, P.; Zhou, C. X.; Wang, Y.; Sauer, B.; Hu, W. B.; Dong, X.; Wang, D. J. The reversible-irreversible transition of strain-induced crystallization in segmented copolymers: The critical strain and the chain conformation. ACS Appl. Polym. Mater. 2021, 3, 3576–3585.

    Article  CAS  Google Scholar 

  39. Scetta, G.; Euchler, E.; Ju, J. Z.; Selles, N.; Heuillet, P.; Ciccotti, M.; Creton, C. Self-organization at the crack tip of fatigue-resistant thermoplastic polyurethane elastomers. Macromolecules. 2021, 54, 8726–8737.

    Article  CAS  Google Scholar 

  40. Li, X. K.; Wang, H.; Xiong, B. J.; Pöselt, E.; Eling, B.; Men, Y. F. Destruction and reorganization of physically cross-linked network of thermoplastic polyurethane depending on its glass transition temperature. ACS Appl. Polym. Mater. 2019, 1, 3074–3083.

    Article  CAS  Google Scholar 

  41. Rogulska, M.; Maciejewska, M.; Olszewska, E. New thermoplastic poly(carbonate-urethane)s based on diphenylethane derivative chain extender. J. Therm. Anal. Calorim. 2020, 139, 1049–1068.

    Article  CAS  Google Scholar 

  42. Kong, Z. Y.; Tian, Q.; Zhang R. Y.; Yin, J. B.; Shi, L.; Ying, W. B.; Hu, H.; Yao C. K.; Wang, K.; Zhu, J. Reexamination of the microphase separation in MDI and PTMG based polyurethane: fast and continuous association/dissociation processes of hydrogen bonding. Polymer 2019, 185, 121943.

    Article  CAS  Google Scholar 

  43. Xu, Z. C.; Wang, X. Y.; Huang, H. Thermoplastic polyurethane-urea elastomers with superior mechanical and thermal properties prepared from alicyclic diisocyanate and diamine. J. Appl. Polym. Sci. 2020, 137, e49575.

    Article  Google Scholar 

  44. He, Y.; Xie, D. L.; Zhang, X. Y. The structure, microphase-separated morphology, and property of polyurethanes and polyureas. J. Mater. Sci. 2014, 49, 7339–7352.

    Article  CAS  Google Scholar 

  45. Eceiza, A.; Martin, M. D.; de la Caba, K.; Kortaberria, G.; Gabilondo, N.; Corcuera, M. A.; Mondragon, I. Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: mechanical and thermal properties. Polym. Eng. Sci. 2008, 48, 297–306.

    Article  CAS  Google Scholar 

  46. Kojio, K.; Matsuo, K.; Motokucho, S.; Yoshinaga, K.; Shimodaira, Y.; Kimura, K. Simultaneous small-angle X-ray scattering/wide-angle X-ray diffraction study of the microdomain structure of polyurethane elastomers during mechanical deformation. Polym. J. 2011, 43, 692–699.

    Article  CAS  Google Scholar 

  47. Zhu, P.; Brückner, A.; Neumeyer, T.; Standau, T.; Ruckdäschel, H.; Altstädt, V.; Dong, X.; Wang, D. J. Fatigue characteristics of poly(ether-b-amide) elastomers during cyclic dynamic tests and the underlying microstructural evolution. Ind. Eng. Chem. Res. 2022, 61, 14760–14771.

    Article  CAS  Google Scholar 

  48. Hu, S. K.; He, S. Y.; Wang, Y. M.; Wu, Y. W.; Shou, T.; Yin, D. X.; Mu, G. Y.; Zhao, X. Y.; Gao, Y. Y.; Liu, J.; Li, F. Z.; Guo, M. M.; Zhang, L. Q. Self-repairable, recyclable and heat-resistant polyurethane for high-performance automobile tires. Nano Energy 2022, 55, 107012.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21774135). Beijing Synchrotron Radiation Facility (BSRF) is acknowledged for kindly providing beam time and assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen-Xi Ouyang or Xia Dong.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2023_3010_MOESM1_ESM.pdf

Chain Extender-induced Hydrogen Bonding Organization Determine the Morphology and Properties of Thermoplastic Polycarbonate Polyurethane

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, YL., Zhu, P., Ouyang, CX. et al. Chain Extender-induced Hydrogen Bonding Organization Determines the Morphology and Properties of Thermoplastic Polycarbonate Polyurethane. Chin J Polym Sci 42, 87–96 (2024). https://doi.org/10.1007/s10118-023-3010-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3010-7

Keywords

Navigation