Skip to main content
Log in

Influence of chemical structure of hard segments on physical properties of polyurethane elastomers: a review

  • REVIEW PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Hard segments of polyurethanes (PUs) are generally formed from diisocyanate and diol. Diol can be replaced with triol and thiol. These chemical structures of hard segments strongly affect not only a microphase separated structure but mechanical properties of resultant PUs. In this review, we focus on the relationship between chemical structure like symmetry and bulkiness of diisocyanate and mechanical properties of PU. Then, influence of hard segment content, incorporation of 1,1,1-trimethylol propane with trifunctional groups, and alkyldithiol was reviewed mainly on trans-1,4-bis(isocyanatomethyl) cyclohexane-poly(oxytetramethylene) glycol-based PU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pigott KA, Frye BF, Allen KR, Steingiser SS, Darr WC, Saunders JH, Hardy EE (1960) Development of cast urethane elastomers for ultimate properties. J Chem Eng Data 5:391–395. https://doi.org/10.1021/je60007a044

    Article  CAS  Google Scholar 

  2. Saunders JH, Frisch KC (1962) Polyurethanes: chemistry and technology, part 1, chemistry. Wiley, New York

    Google Scholar 

  3. Cooper SL, Tobolsky AV (1966) Properties of linear elastomeric polyurethanes. J Appl Polym Sci 10:1837–1844. https://doi.org/10.1002/app.1966.070101204

    Article  CAS  Google Scholar 

  4. Kajiyama T, Macknight WJ (1969) Low-temperature relaxations in Polyurethans. Macromolecules 2:254–261. https://doi.org/10.1021/ma60009a009

    Article  CAS  Google Scholar 

  5. Petrovic ZS, Ferguson J (1991) Polyurethane elastomers. Prog Polym Sci 16:695–836. https://doi.org/10.1016/0079-6700(91)90011-9

    Article  CAS  Google Scholar 

  6. Hepburn C (1992) Polyurethane elastomers, 2nd edn. Elsevier Applied Science, Ltd.

  7. Cooper SL, Tobolsky AV (1966) Viscoelastic behavior of segmented elastomers. Textile Research Journal 36:800. https://doi.org/10.1177/004051756603600905

    Article  CAS  Google Scholar 

  8. Kojio K, Fukumaru T, Furukawa M (2004) Highly softened polyurethane elastomer synthesized with novel 1,2-bis(isocyanate)ethoxyethane. Macromolecules 37:3287–3291. https://doi.org/10.1021/ma0359988

    Article  CAS  Google Scholar 

  9. Kojio K, Nakamura S, Furukawa M (2004) Effect of side methyl groups of polymer glycol on elongation-induced crystallization behavior of polyurethane elastomers. Polymer 45:8147–8152. https://doi.org/10.1016/j.polymer.2004.09.061

    Article  CAS  Google Scholar 

  10. Kojio K, Nakashima S, Furukawa M (2007) Microphase-separated structure and mechanical properties of norbornane diisocyanate-based polyurethanes. Polymer 48:997–1004. https://doi.org/10.1016/j.polymer.2006.12.057

    Article  CAS  Google Scholar 

  11. Kojio K, Uchiba Y, Mitsui Y, Furukawa M, Sasaki S, Matsunaga H, Okuda H (2007) Depression of microphase-separated domain size of polyurethanes in confined geometry. Macromolecules 40:2625–2628. https://doi.org/10.1021/ma0700577

    Article  CAS  Google Scholar 

  12. Yamasaki S, Nishiguchi D, Kojio K, Furukawa M (2007) Effects of aggregation structure on rheological properties of thermoplastic polyurethanes. Polymer 48:4793–4803. https://doi.org/10.1016/j.polymer.2007.06.006

    Article  CAS  Google Scholar 

  13. Barikani M, Hepburn C (1987) The relative thermal stability of polyurethane elastomers: effect of diisocyanate structure. Cell Polym 6:41–54

  14. Yamasaki S, Nishiguchi D, Kojio K, Furukawa M (2007) Effects of polymerization method on structure and properties of thermoplastic polyurethanes. J Polym Sci B Polym Phys 45:800–814. https://doi.org/10.1002/polb.21080

    Article  CAS  Google Scholar 

  15. Casetta C, Girelli D, Greco A (1994) Pitture e Vernici Europe 70:9–16

  16. Kojio K, Nonaka Y, Masubuchi T, Furukawa M (2004) Effect of the composition ratio of copolymerized poly(carbonate) glycol on the microphase-separated structures and mechanical properties of polyurethane elastomers. J Polym Sci B Polym Phys 42:4448–4458. https://doi.org/10.1002/polb.20303

    Article  CAS  Google Scholar 

  17. Kojio K, Furukawa M, Motokucho S, Shimada M, Sakai M (2009) Structure−mechanical property relationships for poly(carbonate urethane) elastomers with novel soft segments. Macromolecules 42:8322–8327. https://doi.org/10.1021/ma901317t

    Article  CAS  Google Scholar 

  18. Kojio K, Furukawa M, Nonaka Y, Nakamura S (2010) Control of mechanical properties of thermoplastic polyurethane elastomers by restriction of crystallization of soft segment. Materials 3:5097–5110. https://doi.org/10.3390/ma3125097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kojio K, Furukawa M, Shimada M, Shimada M, Komatsu T, Nozaki S, Motokucho S, Yoshinaga K (2015) Improvement of the low-temperature property of aliphatic polycarbonate glycols-based polyurethane elastomers. Sci Adv Mater 7:934–939. https://doi.org/10.1166/sam.2015.1913

    Article  CAS  Google Scholar 

  20. Špírková M, Pavličević J, Strachota A, Poreba R, Bera O, Kaprálková L, Baldrian J, Šlouf M, Lazić N, Budinski-Simendić J (2011) Novel polycarbonate-based polyurethane elastomers: composition–property relationship. Eur Polym J 47:959–972. https://doi.org/10.1016/j.eurpolymj.2011.01.001

    Article  CAS  Google Scholar 

  21. Pavličević J, Špírková M, Jovičić M, Bera O, Poręba R, Budinski-Simendić J (2013) The structure and thermal properties of novel polyurethane/organoclay nanocomposites obtained by pre-polymerization. Compos Part B 45:232–238. https://doi.org/10.1016/j.compositesb.2012.09.018

    Article  CAS  Google Scholar 

  22. Eceiza A, Martin MD, de la Caba K, Kortaberria G, Gabilondo N, Corcuera MA, Mondragon I (2008) Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: mechanical and thermal properties. Polym Eng Sci 48:297–306. https://doi.org/10.1002/pen.20905

    Article  CAS  Google Scholar 

  23. Kojio K, Furukawa M, Motokucho S, Mizokami M, Yoshinaga K (2012) Influence of side group contents of polycarbonate glycol on aggregation structures and mechanical properties of polyurethane elastomers. Nippon Gomu Kyokaishi 85:151–156. https://doi.org/10.2324/gomu.85.151

    Article  CAS  Google Scholar 

  24. Lambert R, Ibarboure E, Fleury G, Carlotti S (2019) Low-temperature amino-based catalyst activation for on-demand polyurethane synthesis. Polym J. https://doi.org/10.1038/s41428-019-0246-8

  25. Zhang Y, Qi YH, Zhang ZP (2015) The influence of 2,4-toluene diisocyanate content on the intrinsic self-healing performance of polyurethane at room-temperature. J Polym Res 22:94. https://doi.org/10.1007/s10965-015-0744-0

  26. Takahara A, Tashita J, Kajiyama T, Takayanagi M, Macknight WJ (1985) Microphase separated structure, surface-composition and blood compatibility of segmented poly(urethaneureas) with various soft segment components. Polymer 26:987–996. https://doi.org/10.1016/0032-3861(85)90218-6

    Article  CAS  Google Scholar 

  27. Higaki Y, Suzuki K, Oniki Y, White KL, Ohta N, Takahara A (2015) Molecular aggregation structure evolution during stretching of environmentally benign lysine-based segmented poly(urethane-urea)s. Polymer 78:173–179. https://doi.org/10.1016/j.polymer.2015.10.002

    Article  CAS  Google Scholar 

  28. Oprea S, Timpu D, Oprea V (2019) Design-properties relationships of polyurethanes elastomers depending on different chain extenders structures. J Polym Res 26:117. https://doi.org/10.1007/s10965-019-1777-6

    Article  CAS  Google Scholar 

  29. Nakagawa T, Takeuchi H, Sato K, Yamasaki S (2016) Pentamethylene diisocyanate. US patent US 9,376,404 B2,

  30. Hespe HF, Zembrod A, Cama FJ, Lantman CW, Seneker SD (1992) Influence of molecular-weight on the thermal and mechanical-properties of polyurethane elastomers based on 4,4′-diisocyanato dicyclohexylmethane. J Appl Polym Sci 44:2029–2035. https://doi.org/10.1002/app.1992.070441118

    Article  CAS  Google Scholar 

  31. Lin CK, Kuo JF, Chen CY (2000) Synthesis and mesomorphism of thermotropic liquid crystalline polyurethanes based on meta-diisocyanates with 4,4 '-bis(omega-hydroxyalkoxy) biphenyls. Eur Polym J 36:1183–1193. https://doi.org/10.1016/s0014-3057(99)00164-0

    Article  CAS  Google Scholar 

  32. Lin C-K, Kuo JF, Chen CY, Fang J-J (2012) Investigation of bifurcated hydrogen bonds within the thermotropic liquid crystalline polyurethanes. Polymer 53:254–258. https://doi.org/10.1016/j.polymer.2011.11.009

  33. Nozaki S, Masuda S, Kamitani K, Kojio K, Takahara A, Kuwamura G, Hasegawa D, Moorthi K, Mita K, Yamasaki S (2017) Superior properties of polyurethane elastomers synthesized with aliphatic diisocyanate bearing a symmetric structure. Macromolecules 50:1008–1015. https://doi.org/10.1021/acs.macromol.6b02044

  34. Yamasaki S, Kuwamura G, Morita H, Hasegawa D, Kojio K, Takahara A (2017) High performance polyurethane elastomers using new cyclaliphatic diisocyanate. Nihon Reoroji Gakkaishi 45:261–268

  35. Rahmawati R, Nozaki S, Kojio K, Takahara A, Shinohara N, Yamasaki S (2019) Microphase-separated structure and mechanical properties of cycloaliphatic diisocyanate-based thiourethane elastomers. Polym J 51:265–273. https://doi.org/10.1038/s41428-018-0148-1

    Article  CAS  Google Scholar 

  36. Rahmawati R, Masuda S, Cheng C-H, Nagano C, Nozaki S, Kamitani K, Kojio K, Takahara A, Shinohara N, Mita K, Uchida K, Yamasaki S (2019) Investigation of deformation behavior of thiourethane elastomers using in situ X-ray scattering, diffraction, and absorption methods. Macromolecules 52:6825–6833

  37. Yilgor I, Yilgor E, Guler IG, Ward TC, Wilkes GL (2006) FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes. Polymer 47:4105–4114. https://doi.org/10.1016/j.polymer.2006.02.027

    Article  CAS  Google Scholar 

  38. Yilgör I, Yilgör E, Wilkes GL (2015) Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: a comprehensive review. Polymer 58:A1–A36. https://doi.org/10.1016/j.polymer.2014.12.014

    Article  CAS  Google Scholar 

  39. Kuwamura G, Nakagawa T, Hasegawa D, Yamasaki S (2009) Bis(isocyanatomethyl)cyclohexane for making polyurethane resin useful for various applications. WO2009051114A1,

  40. Kojio K, Nozaki S, Takahara A, Yamasaki S (2019) Control of mechanical properties of polyurethane elastomers synthesized with aliphatic diisocyanate bearing a symmetric structure. Elastomers and Composites 54:271–278. https://doi.org/10.7473/ec.2019.54.4.271

  41. Kihara N, Endo T (1993) Synthesis and properties of poly(Hydroxyurethane)s. J Polym Sci, Part A: Polym Chem 31:2765–2773. https://doi.org/10.1002/pola.1993.080311113

    Article  CAS  Google Scholar 

  42. Tomita H, Sanda F, Endo T (2001) Model reaction for the synthesis of polyhydroxyurethanes from cyclic carbonates with amines: substituent effect on the reactivity and selectivity of ring-opening direction in the reaction of five-membered cyclic carbonates with amine. J Polym Sci, Part A: Polym Chem 39:3678–3685. https://doi.org/10.1002/pola.10009

    Article  CAS  Google Scholar 

  43. Tomita H, Sanda F, Endo T (2001) Structural analysis of polyhydroxyurethane obtained by polyaddition of bifunctional five-membered cyclic carbonate and diamine based on the model reaction. J Polym Sci, Part A: Polym Chem 39:851–859. https://doi.org/10.1002/1099-0518(20010315)39:6<851::aid-pola1058>3.0.co;2-3

    Article  CAS  Google Scholar 

  44. Leitsch EK, Beniah G, Liu K, Lan T, Heath WH, Scheidt KA, Torkelson JM (2016) Nonisocyanate thermoplastic Polyhydroxyurethane elastomers via cyclic carbonate Aminolysis: critical role of hydroxyl groups in controlling Nanophase separation. ACS Macro Lett 5:424–429. https://doi.org/10.1021/acsmacrolett.6b00102

    Article  CAS  Google Scholar 

  45. Beniah G, Chen X, Uno BE, Liu K, Leitsch EK, Jeon J, Heath WH, Scheidt KA, Torkelson JM (2017) Combined effects of carbonate and soft-segment molecular structures on the Nanophase separation and properties of segmented Polyhydroxyurethane. Macromolecules 50:3193–3203. https://doi.org/10.1021/acs.macromol.6b02513

    Article  CAS  Google Scholar 

  46. Beniah G, Fortman DJ, Heath WH, Dichtel WR, Torkelson JM (2017) Non-Isocyanate polyurethane thermoplastic elastomer: amide-based chain extender yields enhanced Nanophase separation and properties in Polyhydroxyurethane. Macromolecules 50:4425–4434. https://doi.org/10.1021/acs.macromol.7b00765

    Article  CAS  Google Scholar 

  47. Yuan XK, Sang ZH, Zhao JB, Zhang ZY, Zhang JY, Cheng J (2017) Synthesis and properties of non-isocyanate aliphatic thermoplastic polyurethane elastomers with polycaprolactone soft segments. J Polym Res 24:88. https://doi.org/10.1007/s10965-017-1249-9

    Article  CAS  Google Scholar 

  48. Lai S-M, Wu W-L, Wang Y-J (2016) Annealing effect on the shape memory properties of polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends. J Polym Res 23:99. https://doi.org/10.1007/s10965-016-0993-6

    Article  CAS  Google Scholar 

  49. Liff SM, Kumar N, McKinley GH (2007) High-performance elastomeric nanocomposites via solvent-exchange processing. Nat Mater 6:76–83. https://doi.org/10.1038/nmat1798

    Article  CAS  PubMed  Google Scholar 

  50. Tien YI, Wei KH (2001) High-tensile-property layered silicates/polyurethane Nanocomposites by using reactive silicates as Pseudo chain extenders. Macromolecules 34:9045–9052. https://doi.org/10.1021/ma010551p

    Article  CAS  Google Scholar 

  51. Higaki Y, Otsuka H, Endo T, Takahara A (2003) Polyurethane macroinitiator for controlled monomer insertion of styrene. Macromolecules 36:1494–1499. https://doi.org/10.1021/ma021091i

    Article  CAS  Google Scholar 

  52. Otsuka H, Aotani K, Higaki Y, Takahara A (2003) Polymer scrambling: macromolecular radical crossover reaction between the main chains of alkoxyamine-based dynamic covalent polymers. J Am Chem Soc 125:4064–4065. https://doi.org/10.1021/ja0340477

    Article  CAS  PubMed  Google Scholar 

  53. Ghosh B, Urban MW (2009) Self-repairing oxetane-substituted chitosan polyurethane networks. Science 323:1458–1460. https://doi.org/10.1126/science.1167391

    Article  CAS  PubMed  Google Scholar 

  54. Amamoto Y, Otsuka H, Takahara A, Matyjaszewski K (2012) Self-healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light. Adv Mater 24:3975–3980. https://doi.org/10.1002/adma.201201928

    Article  CAS  PubMed  Google Scholar 

  55. Oku T, Furusho Y, Takata T (2004) A concept for recyclable cross-linked polymers: topologically networked polyrotaxane capable of undergoing reversible assembly and disassembly. Angew Chem Int Ed Engl 43:966–969. https://doi.org/10.1002/anie.200353046

    Article  CAS  PubMed  Google Scholar 

  56. Murakami H, Nishiide R, Ohira S, Ogata A (2014) Synthesis of MDI and PCL-diol-based polyurethanes containing 2 and 3 rotaxanes and their properties. Polymer 55:6239–6244. https://doi.org/10.1016/j.polymer.2014.10.003

    Article  CAS  Google Scholar 

  57. Kim BK, Lee JC (1996) Waterborne polyurethanes and their properties. J Polym Sci, Part A: Polym Chem 34:1095–1104. https://doi.org/10.1002/(sici)1099-0518(19960430)34:6<1095::aid-pola19>3.0.co;2-2

    Article  CAS  Google Scholar 

  58. Kim BK, Seo JW, Jeong HM (2003) Morphology and properties of waterborne polyurethane/clay nanocomposites. Eur Polym J 39:85–91. https://doi.org/10.1016/s0014-3057(02)00173-8

    Article  CAS  Google Scholar 

  59. Li R, Shan Z (2018) Asynchronous synthesis method of waterborne polyurethane with the differences of structural features and thermal conductivity. J Polym Res 25:197. https://doi.org/10.1007/s10965-018-1577-4

    Article  CAS  Google Scholar 

  60. Yang Z, Zang H, Wu G (2019) Study of solvent-free sulfonated waterborne polyurethane as an advanced leather finishing material. J Polym Res 26:213. https://doi.org/10.1007/s10965-019-1884-4

    Article  CAS  Google Scholar 

  61. Song N, Xin X, Liu H, Xu B, Li B, Li Y, Hou S, Yu Y (2019) Effects of different macrodiols as soft segments on properties of waterborne polyurethane. J Polym Res 26:152. https://doi.org/10.1007/s10965-019-1793-6

    Article  CAS  Google Scholar 

  62. Ren Z, Liu L, Wang H, Fu Y, Jiang L, Ren B (2015) Novel amphoteric polyurethane dispersions with postpolymerization crosslinking function derived from hydroxylated tung oil: synthesis and properties. RSC Adv 5:27717–27721. https://doi.org/10.1039/c5ra03115j

    Article  CAS  Google Scholar 

  63. Yang X, Ren B, Ren Z, Jiang L, Liu W, Zhu C (2015) Synthesis and properties of novel non-ionic polyurethane dispersion based on Hydroxylated Tung oil and alicyclic Isocyanates. Journal of Materials Science and Chemical Engineering 03:88–94. https://doi.org/10.4236/msce.2015.31013

    Article  CAS  Google Scholar 

  64. Meuse CW, Yang XZ, Yang DC, Hsu SL (1992) Spectroscopic analysis of ordering and phase-separation behavior of model polyurethanes in a restricted geometry. Macromolecules 25:925–932. https://doi.org/10.1021/ma00028a064

    Article  CAS  Google Scholar 

  65. Tao H-J, Meuse CW, Yang X, MacKnight WJ, Hsu SL (1994) A spectroscopic analysis of phase separation behavior of polyurethane in restricted geometry: chain rigidity effects. Macromolecules 27:7146–7151. https://doi.org/10.1021/ma00102a023

    Article  CAS  Google Scholar 

  66. Jiang L, Wu J, Nedolisa C, Saiani A, Assender HE (2015) Phase separation and crystallization in high hard block content polyurethane thin films. Macromolecules 48:5358–5366. https://doi.org/10.1021/acs.macromol.5b01083

    Article  CAS  Google Scholar 

  67. Kojio K, Uchiba Y, Yamamoto Y, Motokucho S, Furukawa M (2009) Chain and mirophase-separated structures of ultrathin polyurethane films. J Phys Conf Ser 184:012028. https://doi.org/10.1088/1742-6596/184/1/012028

    Article  CAS  Google Scholar 

  68. Aoki D, Ajiro H (2017) Design of polyurethane composed of only hard main chain with oligo(ethylene glycol) units as side chain simultaneously achieved high biocompatible and mechanical properties. Macromolecules 50:6529–6538. https://doi.org/10.1021/acs.macromol.7b00629

  69. Estes GM, Seymour RW, Cooper SL (1971) Infrared studies of segmented polyurethane elastomers. II Infrared Dichroism Macromolecules 4:452–457. https://doi.org/10.1021/ma60022a018

    Article  Google Scholar 

  70. Müller-Riederer G, Bonart R (1977) Orientierungsvorgiinge bei der delmung von polyurethan-elastomeren. Progress in Colloids and Polymer Science 62:99–105. https://doi.org/10.1007/BFb0117099

  71. Brunette CM, Hsu SL, Macknight WJ (1982) Hydrogen-bonding properties of hard-segment model compounds in polyurethane block copolymers. Macromolecules 15:71–77. https://doi.org/10.1021/ma00229a014

    Article  CAS  Google Scholar 

  72. Lee HS, Wang YK, Hsu SL (1987) Spectroscopic analysis of phase-separation behavior of model polyurethanes. Macromolecules 20:2089–2095. https://doi.org/10.1021/ma00175a008

    Article  CAS  Google Scholar 

  73. Koberstein JT, Russell TP (1986) Simultaneous SAXS-DSC study of multiple endothermic behavior in polyether-based polyurethane block copolymers. Macromolecules 19:714–720. https://doi.org/10.1021/ma00157a039

    Article  CAS  Google Scholar 

  74. Blundell DJ, Eeckhaut G, Fuller W, Mahendrasingam A, Martin C (2002) Real time SAXS/stress-strain studies of thermoplastic polyurethanes at large strains. Polymer 43:5197–5207. https://doi.org/10.1016/s0032-3861(02)00386-5

    Article  CAS  Google Scholar 

  75. Garrett JT, Lin JS, Runt J (2002) Influence of preparation conditions on microdomain formation in poly(urethane urea) block copolymers. Macromolecules 35:161–168. https://doi.org/10.1021/ma010915d

    Article  CAS  Google Scholar 

  76. Blundell DJ, Eeckhaut G, Fuller W, Mahendrasingam A, Martin C (2006) Time-resolved SAXS/stress–strain studies of thermoplastic polyurethanes during mechanical cycling at large strains. J Macromol Sci, Part B 43:125–142. https://doi.org/10.1081/mb-120027754

    Article  Google Scholar 

  77. Kojio K, Matsuo K, Motokucho S, Yoshinaga K, Shimodaira Y, Kimura K (2011) Simultaneous small-angle X-ray scattering/wide-angle X-ray diffraction study of the microdomain structure of polyurethane elastomers during mechanical deformation. Polym J 43:692–699. https://doi.org/10.1038/pj.2011.48

  78. Nozaki S, Hirai T, Higaki Y, Yoshinaga K, Kojio K, Takahara A (2017) Effect of chain architecture of polyol with secondary hydroxyl group on aggregation structure and mechanical properties of polyurethane elastomer. Polymer 116:423–428. https://doi.org/10.1016/j.polymer.2017.03.031

    Article  CAS  Google Scholar 

  79. Masunaga H, Ogawa H, Takano T, Sasaki S, Goto S, Tanaka T, Seike T, Takahashi S, Takeshita K, Nariyama N, Ohashi H, Ohata T, Furukawa Y, Matsushita T, Ishizawa Y, Yagi N, Takata M, Kitamura H, Sakurai K, Tashiro K, Takahara A, Amamiya Y, Horie K, Takenaka M, Kanaya T, Jinnai H, Okuda H, Akiba I, Takahashi I, Yamamoto K, Hikosaka M, Sakurai S, Shinohara Y, Okada A, Sugihara Y (2011) Multipurpose soft-material SAXS/WAXS/GISAXS beamline at SPring-8. Polym J 43:471–477. https://doi.org/10.1038/pj.2011.18

    Article  CAS  Google Scholar 

  80. Sui T, Baimpas N, Dolbnya IP, Prisacariu C, Korsunsky AM (2015) Multiple-length-scale deformation analysis in a thermoplastic polyurethane. Nat Commun 6:6583. https://doi.org/10.1038/ncomms7583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Briber RM, Thomas EL (1983) Investigation of 2 crystal forms in MDI BDO-based polyurethanes. J Macromol Sci-Phys B22:509–528. https://doi.org/10.1080/00222348308224773

    Article  CAS  Google Scholar 

  82. Blackwell J, Gardner KH (1979) Structure of the hard segments in polyurethane elastomers. Polymer 20:13–17. https://doi.org/10.1016/0032-3861(79)90035-1

    Article  CAS  Google Scholar 

  83. Vanbogart JWC, Gibson PE, Cooper SL (1983) Structure-property relationships in Polycaprolactone-polyurethanes. J Polym Sci B Polym Phys 21:65–95. https://doi.org/10.1002/pol.1983.180210106

    Article  CAS  Google Scholar 

  84. Pompe G, Pohlers A, Potschke P, Pionteck J (1998) Influence of processing conditions on the multiphase structure of segmented polyurethane. Polymer 39:5147–5153. https://doi.org/10.1016/s0032-3861(97)10350-0

    Article  CAS  Google Scholar 

  85. Kojio K, Matsumura S, Nozaki S, Motokucho S, Furukawa M, Yoshinaga K, Takahara A (2014) Crystallization behavior of hard segment in polyurethane elastomers. Kobunshi Ronbunshu 71:608–614. https://doi.org/10.1295/koron.71.608

    Article  CAS  Google Scholar 

  86. McLean RS, Sauer BB (1997) Tapping-mode AFM studies using phase detection for resolution of nanophases in segmented polyurethanes and other block copolymers. Macromolecules 30:8314–8317. https://doi.org/10.1021/ma970350e

    Article  CAS  Google Scholar 

  87. Kojio K, Kugumiya S, Uchiba Y, Nishino Y, Furukawa M (2009) The microphase-separated structure of polyurethane bulk and thin films. Polym J 41:118–124. https://doi.org/10.1295/polymj.PJ2008186

    Article  CAS  Google Scholar 

  88. Garrett JT, Siedlecki CA, Runt J (2001) Microdomain morphology of poly(urethane urea) multiblock copolymers. Macromolecules 34:7066–7070. https://doi.org/10.1021/ma0102114

    Article  CAS  Google Scholar 

  89. Akram N, Zia KM, Saeed M, Mansha A, Khan WG (2018) Morphological studies of polyurethane based pressure sensitive adhesives by tapping mode atomic force microscopy. J Polym Res 25:194. https://doi.org/10.1007/s10965-018-1591-6

    Article  CAS  Google Scholar 

  90. Petrovic ZS, Budinski-Simendic J (1985) Study of the effect of soft segment length and concentration on properties of polyetherurethanes. I. the effect on physical and morphological properties. Rubber Chem Technol 58:685–700

    Article  CAS  Google Scholar 

  91. Petrovic ZS, Budinski-Simendic J (1985) Study of the effect of soft segment length and concentration on properties of polyetherurethanes. I. the effect on physical and morphological properties. Rubber Chem Technol 58:701–712

    Article  CAS  Google Scholar 

  92. Sheth JP, Klinedinst DB, Wilkes GL, Yilgor I, Yilgor E (2005) Role of chain symmetry and hydrogen bonding in segmented copolymers with monodisperse hard segments. Polymer 46:7317–7322. https://doi.org/10.1016/j.polymer.2005.04.041

    Article  CAS  Google Scholar 

  93. Sami S, Yildirim E, Yurtsever M, Yurtsever E, Yilgor E, Yilgor I, Wilkes GL (2014) Understanding the influence of hydrogen bonding and diisocyanate symmetry on the morphology and properties of segmented polyurethanes and polyureas: computational and experimental study. Polymer 55:4563–4576. https://doi.org/10.1016/j.polymer.2014.07.028

    Article  CAS  Google Scholar 

  94. Xie R, Bhattacharjee D, Argyropoulos J (2009) Polyurethane elastomers based on 1,3 and 1,4-bis(isocyanatomethyl)cyclohexane. J Appl Polym Sci 113:839–848. https://doi.org/10.1002/app.29934

    Article  CAS  Google Scholar 

  95. Kojio K, Rahmawati R, Shinohara N, Yamasaki S (2019) Molecular aggregation structure and mechanical properties of low-hard segment content polyurethane and polythiourethane elastomers based on cycloaliphatic diisocyanate with a symmetric structure. J Adhes Soc Jpn 55:181–185

  96. Petrovic ZS, Ilavsky M, Dusek K, Vidakovic M, Javni I, Banjanin B (1991) The effect of cross-linking on properties of polyurethane elastomers. J Appl Polym Sci 42:391–398. https://doi.org/10.1002/app.1991.070420211

    Article  CAS  Google Scholar 

  97. Petrovic ZS, Javni I, Banhegy G (1998) Mechanical and dielectric properties of segmented polyurethane elastomers containing chemical crosslinks in the hard segment. J Polym Sci B Polym Phys 36:237–251. https://doi.org/10.1002/(sici)1099-0488(19980130)36:2<237::aid-polb4>3.0.co;2-o

    Article  CAS  Google Scholar 

  98. Furukawa M, Hamada Y, Kojio K (2003) Aggregation structure and mechanical properties of functionally graded polyurethane elastomers. J Polym Sci B Polym Phys 41:2355–2364. https://doi.org/10.1002/polb.10628

    Article  CAS  Google Scholar 

  99. Kojio K, Matsumura S, Komatsu T, Nozaki S, Motokucho S, Furukawa M, Yoshinaga K (2014) Microphase-separated structure and dynamic viscoelastic properties of polyurethanes elastomers prepared at various temperatures and cross-linking agent contents. Nihon Reoroji Gakkaishi 42:143–149. https://doi.org/10.1678/rheology.42.143

  100. Kojio K, Nakamura S, Furukawa M (2008) Effect of side groups of polymer glycol on microphase-separated structure and mechanical properties of polyurethane elastomers. J Polym Sci B Polym Phys 46:2054–2063. https://doi.org/10.1002/polb.21540

    Article  CAS  Google Scholar 

  101. Camberlin Y, Pascault JP, Letoffe JM, Claudy P (1982) Synthesis and DSC study of model hard segments from Diphenyl methane Diisocyanate and butane Diol. J Polym Sci, Part A: Polym Chem 20:383–392. https://doi.org/10.1002/pol.1982.170200212

    Article  CAS  Google Scholar 

  102. Hwang KKS, Wu GS, Lin SB, Cooper SL (1984) Synthesis and characterization of MDI-butanediol urethane model compounds. J Polym Sci, Part A: Polym Chem 22:1677–1697. https://doi.org/10.1002/pol.1984.170220714

    Article  CAS  Google Scholar 

  103. Li Q, Zhou H, Wicks DA, Hoyle CE, Magers DH, McAlexander HR (2009) Comparison of small molecule and polymeric urethanes, thiourethanes, and dithiourethanes: hydrogen bonding and thermal, physical, and mechanical properties. Macromolecules 42:1824–1833. https://doi.org/10.1021/ma802848t

    Article  CAS  Google Scholar 

  104. Shin J, Matsushima H, Chan JW, Hoyle CE (2009) Segmented polythiourethane elastomers through sequential thiol− ene and thiol− isocyanate reactions. Macromolecules 42:3294–3301. https://doi.org/10.1021/ma8026386

    Article  CAS  Google Scholar 

  105. Laity PR, Taylor JE, Wong SS, Khunkamchoo P, Norris K, Cable M, Chohan V, Andrews GT, Johnson AF, Cameron RE (2006) Mechanical deformation of polyurethanes. J Macromol Sci, Part B 43:95–124. https://doi.org/10.1081/mb-120027753

    Article  Google Scholar 

  106. Shibayama M, Kawauchi T, Kotani T, Nomura S, Matsuda T (1986) Structure and properties of fatigued segmented Poly(urethaneurea) I. Segment orientation mechanism due to fatigue. Polym J 18:719–733. https://doi.org/10.1295/polymj.18.719

  107. Shibayama M, Ohki Y, Kotani T, Nomura S (1987) Structure and properties of fatigued segmented poly(urethaneurea)s II. Structural analyses of fatigue mechanism. Polym J 19:1067–1080. https://doi.org/10.1295/polymj.19.1067

  108. Unsal E, Yalcin B, Yilgor I, Yilgor E, Cakmak M (2009) Real time mechano-optical study on deformation behavior of PTMO/CHDI-based polyetherurethanes under uniaxial extension. Polymer 50:4644–4655. https://doi.org/10.1016/j.polymer.2009.07.041

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate Miss Shiori Masuda, Dr. Rahmawati, Dr. Kazutaka Kamitani, Dr. Naoki Shinohara, Mr. Kiminori Uchida, Dr. Kazuki Mita for their experimental supports. This work was supported by the Impulsing Paradigm Change through Disruptive Technology (ImPACT) Program, the Photon and Quantum Basic Research Coordinated Development Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan. In situ simultaneous SAXS/WAXD measurements were conducted at the BL03XU and BL40XU Spring-8 facility with the approval of the Japan Synchrotron Radiation Research Institute (JASRI; Proposal No. 2012B1506, 2013B1186, 2014B1198, 2014B7266, 2015A1514, 2015A7216, 2015B7267, 2016A7217, 2016B7266, 2017A7215, 2017B7267, 2018A7217, and 2018B 7267). We gratefully acknowledge Dr. Hiroyasu Masunaga and Dr. Taizo Kabe (JASRI), for their assistance on the SAXS and WAXD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Kojio.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kojio, K., Nozaki, S., Takahara, A. et al. Influence of chemical structure of hard segments on physical properties of polyurethane elastomers: a review. J Polym Res 27, 140 (2020). https://doi.org/10.1007/s10965-020-02090-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02090-9

Keywords

Navigation