Skip to main content

Advertisement

Log in

In vivo efficacy of low-level laser therapy on bone regeneration

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Purpose

In clinical use of low-level laser therapy for bone regeneration (LLLT), application protocol (dose, duration, and repetitions) has not been established. This study aimed to depict a reliable dosage of LLLT by evaluating the efficacy of different dosing of LLLT (diode) on the healing of rabbit cranial defects.

Methods

Critical size defects were prepared in calvarias of 26 New Zealand White Rabbits in such each animal containing both test and control groups. Test groups were irradiated with 4 Joule/cm2 (j/cm2), 6 j/cm2, and 8 j/cm2. The rabbits were subjected to six times of laser treatments in 10 days. At the end of the second week, 5 rabbits were sacrificed for histopathological and immunohistochemical analyses. At the 4th and 8th weeks, 20 rabbits (10 each) were sacrificed for micro-CT and histopathological analyses.

Results

Micro-CT evaluation revealed improved new bone formation in all test groups compared to the control group. 6 j/cm2 group demonstrated the highest bone formation. The highest bone morphogenic protein -2 levels were found in the 4 j/cm2 group. Osteocalcin expression was significantly higher in 4 j/cm2 group.

Conclusions

Our findings indicate that LLLT have a positive effect on new bone formation. The high efficacy of doses of 4 j/cm2 and 6 j/cm2 is promising to promote early bone healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

All data is available.

References

  1. Eke P et al (2012) CDC Periodontal Disease Surveillance workgroup: James Beck, Gordon Douglass, Roy Page, 2012. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res 91: 914-920

  2. Hansson S, Halldin A (2012) Alveolar ridge resorption after tooth extraction: a consequence of a fundamental principle of bone physiology. J Dent Biomech 3:1758736012456543

  3. Seo B-M et al (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. The Lancet 364(9429):149–155

    Article  CAS  Google Scholar 

  4. Pilipchuk SP et al (2015) Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent Mater 31(4):317–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sowmya S et al (2011) Biocompatible β-chitin hydrogel/nanobioactive glass ceramic nanocomposite scaffolds for periodontal bone regeneration. Artif Organs 25(1):1–11

    Google Scholar 

  6. Lindh T et al (1998) A meta-analysis of implants in partial edentulism. Clin Oral Implant Res 9(2):80–90

    Article  CAS  Google Scholar 

  7. Giannobile WV et al (2019) Biological factors involved in alveolar bone regeneration: consensus report of Working Group 1 of the 15th European Workshop on Periodontology on Bone Regeneration. J Clin Periodontol 46:6–11

    Article  PubMed  Google Scholar 

  8. de Miranda, JR et al (2019) Histologic evaluation of early bone regeneration treated with simvastatin associated with low-level laser therapy. International Journal of Oral & Maxillofacial Implants 34(3):658–664

  9. Fekrazad R et al (2015) The effects of combined low level laser therapy and mesenchymal stem cells on bone regeneration in rabbit calvarial defects. J Photochem Photobiol, B 151:180–185

    Article  CAS  Google Scholar 

  10. Gabbai A et al (2018) Association of bioglass/collagen/magnesium composites and low level irradiation: effects on bone healing in a model of tibial defect in rats. Laser Ther 27(4):271–282

    Article  Google Scholar 

  11. Hübler R et al (2010) Effects of low-level laser therapy on bone formed after distraction osteogenesis. Lasers Med Sci 25(2):213–219

    Article  PubMed  Google Scholar 

  12. Metin R, Tatli U, Evlice B (2018) Effects of low-level laser therapy on soft and hard tissue healing after endodontic surgery. Lasers Med Sci 33(8):1699–1706

    Article  PubMed  Google Scholar 

  13. Marques L et al (2015) New LLLT protocol to speed up the bone healing process—histometric and immunohistochemical analysis in rat calvarial bone defect. Lasers Med Sci 30(4):1225–1230

    Article  PubMed  Google Scholar 

  14. Medina-Huertas R et al (2014) The effects of low-level diode laser irradiation on differentiation, antigenic profile, and phagocytic capacity of osteoblast-like cells (MG-63). Lasers Med Sci 29(4):1479–1484

    PubMed  Google Scholar 

  15. Kovacs I (1974) Stimulation of wound healing by laser rays as estimated by means of the rabbit ear chamber method. Acta Chir Acad Sci Hung 15(4):427–32

  16. Cury V et al (2013) Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1α and MMP-2. J Photochem Photobiol, B 125:164–170

    Article  CAS  Google Scholar 

  17. Khadra M, Kasem N, Haanaes HR, Ellingsen JE, Lyngstadaas SP (2004) Enhancement of bone formation in rat calvarial bone defects using low-level laser therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97(6):693–700

    Article  PubMed  Google Scholar 

  18. Altan AB et al (2015) The effect of dosage on the efficiency of LLLT in new bone formation at the expanded suture in rats. Lasers Med Sci 30(1):255–262

    Article  PubMed  Google Scholar 

  19. Ng DY et al (2018) A pilot study of laser energy transmission through bone and gingiva. J Am Dent Assoc 149(8):704–711

    Article  PubMed  Google Scholar 

  20. Huang Y-Y, Chen A C-H, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose Response 1;7(4):358–83

  21. Kilkenny C et al (2010) Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol 160(7):1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mester E et al (1968) On the biologic effect of laser rays. Bulletin de la Societe internationale de chirurgie 27(1):68

    CAS  PubMed  Google Scholar 

  23. Batista JD et al (2015) Low-level laser therapy on bone repair: is there any effect outside the irradiated field? Lasers Med Sci 30(5):1569–1574

    Article  PubMed  Google Scholar 

  24. Sohn JY, Park JC, Um YJ, Jung UW, Kim CS, Cho KS, Choi SH (2010) Spontaneous healing capacity of rabbit cranial defects of various sizes. J Periodontal Implant Sci 40(4):180–187

    Article  Google Scholar 

  25. Zhang J et al (2016) Combination of simvastatin, calcium silicate/gypsum, and gelatin and bone regeneration in rabbit calvarial defects. Sci Rep 6(1):1–12

    Article  Google Scholar 

  26. Fedchenko N, Reifenrath J (2014) Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue–a review. Diagn Pathol 9(1):221

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kruse A et al (2011) Bone regeneration in the presence of a synthetic hydroxyapatite/silica oxide-based and a xenogenic hydroxyapatite-based bone substitute material. Clin Oral Implant Res 22(5):506–511

    Article  CAS  Google Scholar 

  28. Bayat M et al (2005) Low-level laser therapy improves early healing of medial collateral ligament injuries in rats. Photomed Laser Surg 23(6):556–560

    Article  PubMed  Google Scholar 

  29. Lirani-Galvão AP, Jorgetti V, Da Silva OL (2006) Comparative study of how low-level laser therapy and low-intensity pulsed ultrasound affect bone repair in rats. Photomed Laser Ther 24(6):735–740

    Article  Google Scholar 

  30. Miloro M, Miller JJ, Stoner JA (2007) Low-level laser effect on mandibular distraction osteogenesis. J Oral Maxillofac Surg 65(2):168–176

    Article  PubMed  Google Scholar 

  31. Wang YH, Wu JY, Kong SC, Chiang MH, Ho ML, Yeh ML, Chen CH (2018) Low power laser irradiation and human adipose-derived stem cell treatments promote bone regeneration in critical-sized calvarial defects in rats. PLoS One 5;13(4):e0195337

  32. Pyo S-J et al (2013) Low-level laser therapy induces the expressions of BMP-2, osteocalcin, and TGF-β1 in hypoxic-cultured human osteoblasts. Lasers Med Sci 28(2):543–550

    Article  PubMed  Google Scholar 

  33. Silva Júnior AN et al (2002) Computerized morphometric assessment of the effect of low-level laser therapy on bone repair: an experimental animal study. J Clin Laser Med Surg 20(2):83–87

    Article  PubMed  Google Scholar 

  34. Gurler G, Gursoy B (2018) Investigation of effects of low level laser therapy in distraction osteogenesis. J Stomatol Oral Maxillofac Surg 119(6):469–476

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Chen SK, Li L, Qin L, Wang XL, Lai YX (2015) Bone defect animal models for testing efficacy of bone substitute biomaterials. J Orthop Translat 3(3):95–104

    Article  PubMed  PubMed Central  Google Scholar 

  36. Atasoy KT, Korkmaz YT, Odaci E, Hanci H (2017) The efficacy of low-level 940 nm laser therapy with different energy intensities on bone healing. Braz Oral Res 31:e7. https://doi.org/10.1590/1807-3107BOR-2017.vol31.0007

  37. Meyer KRM et al (2011) The effect of laser on the stimulation of bone-implant interaction: an experimental study in rabbits. Revista Odonto Ciência 26(3):242–246

    Article  Google Scholar 

  38. Minamisako MC, Ribeiro GH, Lisboa ML, Mariela Rodríguez Cordeiro M, Grando LJ (2016) Medication-related osteonecrosis of jaws: a low-level laser therapy and antimicrobial photodynamic therapy case approach. Case Rep Dent 2016:6267406. https://doi.org/10.1155/2016/6267406

  39. Petri AD et al (2010) Effects of low-level laser therapy on human osteoblastic cells grown on titanium. Braz Dent J 21(6):491–498

    Article  PubMed  Google Scholar 

  40. Shin S-H et al (2016) Effect of low-level laser therapy on bisphosphonate-treated osteoblasts. Maxillofac Plast Reconstr Surg 38(1):1–8

    Article  Google Scholar 

  41. Garcia VG et al (2014) Effect of LLLT on autogenous bone grafts in the repair of critical size defects in the calvaria of immunosuppressed rats. J Craniomaxillofac Surg 42(7):1196–1202

    Article  PubMed  Google Scholar 

  42. Moreira GS, Machado Alves PH, Esper LA, Sbrana MC, da Silva Dalben G, Neppelenbroek KH, Fraga de Almeida, A (2018) Effect of low-level laser on the healing of bone defects filled with autogenous bone or bioactive glass: in vivo study. Int J Oral Maxillofac Implants 33(1):169–174

Download references

Acknowledgements

The authors express their gratitude to Hacettepe University Advanced Technologies Application and Research Center and also like to thank Ayhan Parmaksiz due to his significant contribution to statistical analyses of the study.

Funding

This project had been supported by Hacettepe University Scientific Research Projects Coordination Unit (Grant no: TSA-2017–14499).

Hacettepe Üniversitesi,Grant no: TSA-2017–14499,Birtan Tolga Yılmaz

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birtan Tolga Yılmaz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

The study protocol was approved by Hacettepe University Animal Experiments Local Ethics Committee (date/number:28.03.2017/52338575).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmaz, B.T., Akman, A.C., Çetinkaya, A. et al. In vivo efficacy of low-level laser therapy on bone regeneration. Lasers Med Sci 37, 2209–2216 (2022). https://doi.org/10.1007/s10103-021-03487-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03487-8

Keywords

Navigation