Skip to main content

Advertisement

Log in

Effects of low-level laser therapy on bone formed after distraction osteogenesis

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study evaluated the effect of low-level laser therapy (LLLT) on the chemical composition, crystallinity and crystalline structure of bone at the site of distraction osteogenesis. Five rabbits were subjected to distraction osteogenesis (latency = 3 days; rate and frequency = 0.7 mm/day for 7 days; consolidation = 10 days), and three were given LLLT with arsenide–gallium–aluminum (AsGaAl; 830 nm, 40 mW): 10 J/cm2 dose per spot, applied directly to the distraction osteogenesis site during the consolidation stage at 48 h intervals. Samples were harvested at the end of the consolidation stage. X-ray fluorescence and X-ray diffraction were used to analyze chemical composition, crystallinity and crystalline structure of bone at the distraction osteogenesis site. The analysis of chemical composition and calcium (Ca) and phosphorus (P) ratios revealed greater mineralization in the LLLT group. Diffractograms showed that the crystalline structure of the samples was similar to that of hydroxyapatites. Crystallinity percentages were greater in rabbits that were given LLLT. Crystallinity (41.14% to 54.57%) and the chemical composition of the bone at the distraction osteogenesis site were similar to the that of the control group (42.37% to 49.29%). The results showed that LLLT had a positive effect on the biomodulation of newly formed bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shimazaki A, Inui K, Azuma Y, Nishimura N, Yamano Y (2000) Low-intensity pulsed ultrasound accelerates bone maturation in distraction osteogenesis in rabbits. J Bone Joint Surg Br 82:1077–1082. doi:10.1302/0301-620X.82B7.9948

    Article  CAS  PubMed  Google Scholar 

  2. Hagiwara T, Bell WH (2000) Effect of electrical stimulation on mandibular distraction osteogenesis. J Craniomaxillofac Surg 28:12–19. doi:10.1054/jcms.1999.0104

    CAS  PubMed  Google Scholar 

  3. al Ruhaimi KA (2001) Effect of calcium sulphate on the rate of osteogenesis in distract bone. Int J Oral Maxillofac Surg 30:228–233. doi:10.1054/ijom.2001.0048

    Article  CAS  PubMed  Google Scholar 

  4. Hamdy RC, Amako M, Beckman L, et al (2003) Effects of osteogenic protein-1 on distraction osteogenesis in rabbits. Bone 33:248–255. doi:10.1016/S8756-3282(03)00154-6

    Article  CAS  PubMed  Google Scholar 

  5. El-Hakim IE, Azim AM, El-Hassan MF, Maree SM (2004) Preliminary investigation into the effects of electrical stimulation on mandibular distraction osteogenesis in goats. Int J Oral Maxillofac Surg 33:42–47. doi:10.1054/ijom.2003.0445

    Article  CAS  PubMed  Google Scholar 

  6. Swennen GR, Schutyser F, Mueller MC, Kramer FJ, Eulzer C, Schliephake H (2005) Effect of platelet-rich-plasma on cranial distraction osteogenesis in sheep: preliminary clinical and radiographic results. Int J Oral Maxillofac Surg 34:294–304. doi:10.1016/j.ijom.2004.09.001

    Article  CAS  PubMed  Google Scholar 

  7. Pampu AA, Dolanmaz D, Tüz HH, Avunduk MC, Kişnişci RS (2008) Histomorphometric evaluation of the effects of zoledronic acid on mandibular distraction osteogenesis in rabbits. J Oral Maxillofac Surg 66:905–910. doi:10.1016/j.joms.2007.12.004

    Article  PubMed  Google Scholar 

  8. Kawasaki K, Shimizu N (2000) Effects of low-energy Laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med 26:282–291. doi:10.1002/(SICI)1096-9101(2000)26:3<282::AID-LSM6>3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  9. Silva Júnior AN, Pinheiro AL, Oliveira MG, Weismann R, Ramalho LM, Nicolau RA (2002) Computerized morphometric assessment of the effect of low-level laser therapy on bone repair: an experimental animal study. J Clin Laser Med Surg 20:83–87. doi:10.1089/104454702753768061

    Article  PubMed  Google Scholar 

  10. Weber JB, Pinheiro AL, de Oliveira MG, Oliveira FA, Ramalho LM (2006) Laser therapy improves healing of bone defects submitted to autologous bone graft. Photomed Laser Surg 24:38–44. doi:10.1089/pho.2006.24.38

    Article  PubMed  Google Scholar 

  11. Cerqueira A, Silveira RL, Oliveira MG, Sant’ana Filho M, Heitz C (2007) Bone tissue microscopic findings related to the use of diode laser (830 nm) in ovine mandible submitted to distraction osteogenesis. Acta Cir Bras 22:92–97. doi:10.1590/S0102-86502007000200003

    Article  PubMed  Google Scholar 

  12. Blaya DS, Guimarães MB, Pozza DH, Weber JB, de Oliveira MG (2008) Histologic study of the effect of laser therapy on bone repair. J Contemp Dent Pract 9:41–48

    PubMed  Google Scholar 

  13. Seifi M, Maghzi A, Gutknecht N, Mir M, Asna-Ashari M (2009) The effect of 904 nm low level laser on condylar growth in rats. Lasers Med Sci. Epub ahead of print

  14. Brundle CR, Evans CA, Wilson S (1992) Encyclopedia of materials characterization. Butterworth-Heinemann, Boston Greenwich

  15. Krawczyk A, Kuropka P, Kuryszko J, Wall A, Dragan S, Kulej M (2007) Experimental studies on the effect of osteotomy technique on the bone regeneration in distraction osteogenesis. Bone 40:781–791. doi:10.1016/j.bone.2006.10.002

    Article  PubMed  Google Scholar 

  16. Saito S, Shimizu N (1997) Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am J Orthod Dentofacial Orthop 111:525–532. doi:10.1016/S0889-5406(97)70152-5

    Article  CAS  PubMed  Google Scholar 

  17. Seifi M, Shafeei HA, Daneshdoost S, Mir M (2007) Effects of two types of low-level laser wave lengths (850 and 630 nm) on the orthodontic tooth movements in rabbits. Lasers Med Sci 22:261–264. doi:10.1007/s10103-007-0447-9

    Article  PubMed  Google Scholar 

  18. Bohic S, Heymann D, Pouëzat JA, Gauthier O, Daculsi G (1998) Transmission FT-IR microspectroscopy of mineral phases in calcified tissues. Comptes Rendus Acad Sci Ser III 321:865–876. doi:10.1016/S0764-4469(99)80027-4

    CAS  Google Scholar 

  19. Shea JE, Miller SC (2005) Skeletal function and structure: implications for tissue-targeted therapeutics. Adv Drug Deliv Rev 57:945–957. doi:10.1016/j.addr.2004.12.017

    Article  CAS  PubMed  Google Scholar 

  20. Miller LM, Vairavamurthy V, Chance MR, et al (2001) In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the v4 PO 3−4 vibration. Biochim Biophys Acta 1527:11–19

    CAS  PubMed  Google Scholar 

  21. Zyman Z, Ivanov I, Glushko V, Dedukh N, Malyshkina S (1998) Inorganic phase composition of remineralisation in porous CaP ceramics. Biomaterials 19:1269–1273. doi:10.1016/S0142-9612(98)00024-6

    Article  CAS  PubMed  Google Scholar 

  22. Hayakawa T, Yoshinari M, Kiba H, Yamamoto H, Nemoto K, Jansen JA (2002) Trabecular bone response to surface roughened and calcium phosphate (Ca-P) coated titanium implants. Biomaterials 23:1025–1031. doi:10.1016/S0142-9612(01)00214-9

    Article  CAS  PubMed  Google Scholar 

  23. Lobato JV, Sooraj Hussain N, Botelho CM, Maurício AC, Afonso A, Ali N, Santos JD (2006) Assessment of Bonelike® graft with a resorbable matrix using an animal model. Thin Solid Films 515:362–367. doi:10.1016/j.tsf.2005.12.153

    Article  CAS  Google Scholar 

  24. Zhou Y, Jiang T, Qian M, Zhang X, Wang J, Shi B (2008) Roles of bone scintigraphy and resonance frequency analysis in evaluating osseointegration of endosseous implant. Biomaterials 29:461–474. doi:10.1016/j.biomaterials.2007.10.021

    Article  PubMed  Google Scholar 

  25. Miloro M, Miller JJ, Stoner JA (2007) Low-level laser effect on mandibular distraction osteogenesis. J Oral Maxillofac Surg 65:168–176. doi:10.1016/j.joms.2006.10.002

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, for financial support for this study. We also thank Dr. Adriana Etges from Universidade Federal de Pelotas, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marília Gerhardt de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hübler, R., Blando, E., Gaião, L. et al. Effects of low-level laser therapy on bone formed after distraction osteogenesis. Lasers Med Sci 25, 213–219 (2010). https://doi.org/10.1007/s10103-009-0691-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-009-0691-2

Keywords

Navigation