Skip to main content

Advertisement

Log in

The effect of dosage on the efficiency of LLLT in new bone formation at the expanded suture in rats

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effect that dosage has on the efficiency of low-level laser therapy (LLLT) in bone formation in a rat study model. Twenty-eight rats were divided into four groups as only expansion (OE), expansion + low dose (0.15 J) (LD), expansion + medium dose (0.65 J) (MD), and expansion + high dose (198 J) (HD) laser therapy groups. The midpalatal suture was expanded during 5 days. Afterwards, irradiations were started and performed with an 820 nm, continuous wave, Ga-Al-As diode laser (Doris, CTL-1106MX, Warsaw, Poland). At the end of experiment, the premaxillae of the animals were dissected. The sections were transferred into PC environment and analyzed by using Image Analysis program. Number of osteoblasts, osteoclasts, fibroblasts, vessels, transforming growth factor beta (TGF-β) expression, and new bone formation were evaluated with this program. Amount of expansion did not show any difference among the groups. All parameters except the number of osteoclasts were increased in all lased groups while that parameter was significantly decreased. Vessels, TGF-β expression, and new bone formation were mostly increased in LD group followed by HD group. Among the lased groups, a significant difference was observed only for the amount of new bone formation, which was between the LD and the MD groups. On the other hand, the difference in this parameter was insignificant between OE and MD groups. Low-level laser therapy with both 5 and 6,300 J/cm2 doses was found to be significantly effective, while the 20 J/cm2 dose did not show a significant effect in increasing new bone formation. This finding reveals that the efficiency of the therapy is affected by the dosage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McNamara JA, Brudon WL (1995) Orthodontics and dentofacial orthopedics‬. Needham Press, Ann Arbor, pp 211–212

    Google Scholar 

  2. Cameron CG, Franchi L, Baccetti T, McNamara JA Jr (2002) Long-term effects of rapid maxillary expansion: a posteroanterior cephalometric evaluation. Am J Orthod Dentofacial Orthop 121(2):129–135

    Article  PubMed  Google Scholar 

  3. McNamara JA Jr (1987) An orthopedic approach to the treatment of Class III malocclusion in young patients. J Clin Orthod 21:598–608

    PubMed  Google Scholar 

  4. Borzabadi-Farahani A, Lane CJ, Yen SLK (2014) Late maxillary protraction in patients with unilateral cleft lip and palate: A retrospective study. Cleft Palate Craniofac J 51(1):e1–e10

    Article  PubMed  Google Scholar 

  5. Capezolla Filho L, Silva Filho OG (1997) Rapid Maxillary Expansion: a general approach and clinical apllications. Part I. Rev Dent Press Ortod Ortop Maxilofac 2:88–102

    Google Scholar 

  6. Mcnamara JA (2002) Treatment of children in mixed dentition phase. In: Graber TM, Vanarsdall RL (eds) Current principals and techniques, 3rd edn. Guanabara Koogan, Rio de Janeiro, pp 467–496

    Google Scholar 

  7. Iseri H, Ozsoy S (2004) Semirapid maxillary expansion—a study of long-term transverse effects in older adolescents and adults. Angle Orthod 74:71–78

    PubMed  Google Scholar 

  8. Uysal T, Amasyali M, Enhos S, Sonmez MF, Sagdic D (2009) Effect of ED-71, a new active Vitamin D analog, on bone formation in an orthopedically expanded suture in rats. A histomorphometric study. Eur J Dent 3:165–172

    PubMed Central  PubMed  Google Scholar 

  9. Kara IM, Erciyes K, Altan AB, Ozkut M, Ay S, Inan S (2012) Thymoquinone accelerates new bone formation in the rapid maxillary expansion procedure. Arch Oral Biol 57(4):357–363

    Article  CAS  PubMed  Google Scholar 

  10. Saito S, Shimizu N (1997) Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am J Orthod Dentofacial Orthop 111:525–532

    Article  CAS  PubMed  Google Scholar 

  11. Liu SS, Opperman LA, Buschang PH (2009) Effects of recombinant human bone morphogenetic protein-2 on midsagittal sutural bone formation during expansion. Am J Orthod Dentofacial Orthop 136:768.e1-8

  12. Ozawa Y, Shimizu N, Kariya G, Abiko Y (1998) Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22:347–354

    Article  CAS  PubMed  Google Scholar 

  13. Barushka O, Yaakobi T, Oron U (1995) Effect of low-energy laser (He-Ne) irradiation on the process of bone repair in the rat tibia. Bone 16:47–55

    CAS  PubMed  Google Scholar 

  14. Hamajima S, Hiratsuka K, Kiyama-Kishikawa M, Tagawa T, Kawahara M, Ohta M et al (2003) Effect of low-level laser irradiation on osteoglycin gene expression in osteoblasts. Lasers Med Sci 18:78–82

    Article  CAS  PubMed  Google Scholar 

  15. Luger EJ, Rochkind S, Wollman Y, Kogan G, Dekel S (1998) Effect of low-power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers Surg Med 22:97–102

    Article  CAS  PubMed  Google Scholar 

  16. Yamamoto M, Tamura K, Hiratsuka K, Abiko Y (2001) Stimulation of MCM3 gene expression in osteoblast by low-level laser irradiation. Lasers Med Sci 16:213–217

    Article  CAS  PubMed  Google Scholar 

  17. Stein A, Benayahu D, Maltz L, Oron U (2005) Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 23(2):161–166

    Article  CAS  PubMed  Google Scholar 

  18. Rosa CB, Habib FA, de Araújo TM, Aragão JS, Gomes RS, Barbosa AF, Silveira L Jr, Pinheiro AL (2014) Effect of the laser and light emitting diode (LED) phototherapy on midpalatal suture bone formation after rapid maxilla expansion: a Raman spectroscopy analysis. Lasers Med Sci 29(3):859–867

    PubMed  Google Scholar 

  19. Pinheiro ALB, Gerbi MEMM (2006) Photoengineering of bone repair processes. Photomed Laser Surg 24:169–178

    Article  CAS  PubMed  Google Scholar 

  20. Cepera F, Torres FC, Scanavini MA, Paranhos LR, Capelozza Filho L, Cardoso MA, Siqueira DC, Siqueira DF (2012) Effect of a low-level laser on bone regeneration after rapid maxillary expansion. Am J Orthod Dentofacial Orthop 141(4):444–450

    Article  PubMed  Google Scholar 

  21. Angeletti P, Pereira MD, Gomes HC, Hino CT, Ferreira LM (2010) Effect of low-level laser therapy (GaAlAs) on bone regeneration in midpalatal anterior suture after surgically assisted rapid maxillary expansion. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109(3):e38–e46

    Article  PubMed  Google Scholar 

  22. da Silva AP, Petri AD, Crippa GE, Stuani AS, Stuani AS, Rosa AL, Stuani MB (2012) Effect of low-level laser therapy after rapid maxillary expansion on proliferation and differentiation of osteoblastic cells. Lasers Med Sci 27(4):777–783

    Article  PubMed  Google Scholar 

  23. Glinkowski W, Pokora L (2001) Lasers in therapy. Laser instruments, Centrum Techniki Laserowej, Warsaw

    Google Scholar 

  24. Takahashi O (1990) Histological investigations on the effect of interrupted expansion force applied to the midpalatal suture in the rat. Nihon Univ J Oral Sci 16:212–236

    CAS  Google Scholar 

  25. Isik H, Sezgin E, Avunduk MC (2010) A new software program for pathological data analysis. Comput Biol Med 40(8):715–722

    Article  PubMed  Google Scholar 

  26. Tang GH, Xu J, Chen RJ, Qian YF, Shen G (2011) Lithium delivery enhances bone growth during midpalatal expansion. J Dent Res 90:336–340

    Article  CAS  PubMed  Google Scholar 

  27. Linder-Aronson A, Lindgren J (1979) The skeletal and dental effects of rapid maxillary expansion. Br J Orthod 6:25–29

    Article  CAS  PubMed  Google Scholar 

  28. Gurel HG, Memili B, Erkan M, Sukurica Y (2010) Long-term effects of rapid maxillary expansion followed by fixed appliances. Angle Orthod 80(1):5–9

    Article  PubMed  Google Scholar 

  29. Bossini PS, Rennó AC, Ribeiro DA, Fangel R, Ribeiro AC, Lahoz Mde A, Parizotto NA (2012) Low level laser therapy (830nm) improves bone repair in osteoporotic rats: similar outcomes at two different dosages. Exp Gerontol 47(2):136–142

    Article  PubMed  Google Scholar 

  30. Fujita S, Yamaguchi M, Utsunomiya T, Yamamoto H, Kasai K (2008) Low-energy laser stimulates tooth movement velocity via expression of RANK and RANKL. Orthod Craniofac Res 11:143–155

    Article  CAS  PubMed  Google Scholar 

  31. Marcos RL, Leal Junior EC, Messias Fde M, de Carvalho MH, Pallotta RC, Frigo L, dos Santos RA, Ramos L, Teixeira S, Bjordal JM, Lopes-Martins RÁ (2011) Infrared (810nm) low-level laser therapy in rat achilles tendinitis: a consistent alternative to drugs. Photochem Photobiol 87:1447–1452

    Article  CAS  PubMed  Google Scholar 

  32. Bicakci AA, Kocoglu-Altan B, Toker H, Mutaf I, Sumer Z (2012) Efficiency of low-level laser therapy in reducing pain induced by orthodontic forces. Photomed Laser Surg 30:460–465

    Article  CAS  PubMed  Google Scholar 

  33. Eslamian L, Borzabadi-Farahani A, Hassanzadeh-Azhiri A, Badiee MR, Fekrazad R (2014) The effect of 810-nm low-level laser therapy on pain caused by orthodontic elastomeric separators. Lasers Med Sci 29(2):559–564

    Article  PubMed  Google Scholar 

  34. Conlan MJ, Rapley JW, Cobb CM (1996) Biostimulation of wound healing by low-energy laser irradiation. A review. J Clin Periodontol 23(5):492–496

    Article  CAS  PubMed  Google Scholar 

  35. Xu M, Deng T, Mo F, Deng B, Lam W, Deng P, Zhang X, Liu S (2009) Low-intensity pulsed laser irradiation affects RANKL and OPG mRNA expression in rat calvarial cells. Photomed Laser Surg 27(2):309–315

    Article  CAS  PubMed  Google Scholar 

  36. Fukuhara E, Goto T, Matayoshi T, Kobayashi S, Takahashi T (2006) Optimal low-energy laser irradiation causes temporal G2/M arrest on rat calvarial osteoblasts. Calcif Tissue Int 79(6):443–450

    Article  CAS  PubMed  Google Scholar 

  37. Stein E, Koehn J, Sutter W, Wendtlandt G, Wanschitz F, Thurnher D, Baghestanian M, Turhani D (2008) Initial effects of low-level laser therapy on growth and differentiation of human osteoblast-like cells. Wien Klin Wochenschr 120(3–4):112–117

    Article  CAS  PubMed  Google Scholar 

  38. Schwartz-Filho HO, Reimer AC, Marcantonio C, Marcantonio E Jr, Marcantonio RAC (2011) Effects of low-level laser therapy (685nm) at different doses in osteogenic cell cultures. Lasers Med Sci 26:539–543

    Article  PubMed  Google Scholar 

  39. Peplov PV, Chung TY, Baxter GD (2010) Laser photobiomodulation of proliferation of cells in culture: a review of human and animal studies. Photomed Laser Surg 28(Suppl):S3–S40

    Google Scholar 

  40. Peplov PV, Chung TY, Baxter GD (2010) Laser photobiomodulation of wound healing: a review of experimental studies in mouse and rat animal models. Photomed Laser Surg 28(3):291–325

    Article  Google Scholar 

  41. Takeda Y (1998) Irradiation effect of low laser on alveolar bone after tooth extraction. Experimental study in rats. Int J Oral Maxillofac Surg 17(6):388–391

    Article  Google Scholar 

  42. Huang YY, Chen AC-H, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose Response 7(4):358–383

    Article  PubMed Central  PubMed  Google Scholar 

  43. Seifi M, Shafeei HA, Daneshdoost S, Mir M (2007) Effects of two types of low-level laser wavelengths (850 and 630nm) on the orthodontic tooth movements in rabbits. Lasers Med Sci 22:261–264

    Article  PubMed  Google Scholar 

  44. Goulart CS, Nouer PRA, Martins LM, Garbin IU, Lizarelli RFZ (2006) Photoradiation and orthodontic movement: experimental study with canines. Photomed Laser Surg 24:192–196

    Article  PubMed  Google Scholar 

  45. Sasaki A, Touma Y, Ishino Y, Tanaka E, Aoyama J, Hanaoka K et al (2003) Linear polarized near-infrared irradiation stimulates mechanical expansion of the rat sagittal suture. Luminescence 18:58–60

    Article  PubMed  Google Scholar 

  46. Bunsen RW, Roscoe HE (1859) Photochemische Untersuchungen. Ann Phys 108(2):193

    Article  Google Scholar 

  47. Oron U, Yaakobi T, Oron A, Hayam G, Gepstein L, Rubin O, Wolf T, Ben Haim S (2001) Attenuation of infarct size in rats and dogs after myocardial infarction by low-energy laser irradiation. Lasers Surg Med 28:204–211

    Article  CAS  PubMed  Google Scholar 

  48. Schindl A, Rosado-Schlosser B, Trautinger F (2001) Reciprocity regulation in photobiology. An overview. Hautarzt 52(9):779–785

    Article  CAS  PubMed  Google Scholar 

  49. Chow RT, Heller GZ, Barnsley L (2006) The effect of 300 mW, 830 nm laser on chronic neck pain: a double-blind, randomized, placebo-controlled study. Pain 124:201–210

    Article  PubMed  Google Scholar 

  50. Hawkins D, Abrahamse H (2006) Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts. Photomed Laser Surg 24:705–714

    Article  CAS  PubMed  Google Scholar 

  51. Chen AC-H, Arany PR, Huang YY, Tomkinson EM, Saleem T, Yull FE, Blackwell TS, Hamblin MR (2011) Low level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One 6(7):e22453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Calabrese EJ (2001) Nitric oxide: biphasic dose responses. Crit Rev Toxicol 31:489–501

    Article  CAS  PubMed  Google Scholar 

  53. Huang SS, Zheng RL (2006) Biphasic regulation of angiogenesis by reactive oxygen species. Pharmazie 61:223–229

    CAS  PubMed  Google Scholar 

  54. Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16:4

    Article  PubMed Central  PubMed  Google Scholar 

  55. Yamagishi H, Shinohara C, Saito S, Sasaki H, Kanegae H, Shibasaki Y (1994) A basic study on the use of semiconductor laser of penetrative sensitivity on living tissue. J Jpn Soc Laser Dent 5:13–22

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayse Burcu Altan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altan, A.B., Bicakci, A.A., Avunduk, M.C. et al. The effect of dosage on the efficiency of LLLT in new bone formation at the expanded suture in rats. Lasers Med Sci 30, 255–262 (2015). https://doi.org/10.1007/s10103-014-1645-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-014-1645-x

Keywords

Navigation