Skip to main content
Log in

Porous Ni3N nanosheet array as a catalyst for nonenzymatic amperometric determination of glucose

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A glassy carbon electrode was modified with an array of porous Ni3N nanosheets (Ni3N NA) and studied for its use in non-enzymatic electrochemical detection of glucose. The morphology and structure of the Ni3N NA were characterized by scanning electron microscopy and X-ray diffraction. Electrochemical studies demonstrated that the Ni3N NA acts as an efficient catalyst for the electro-oxidation of glucose at pH 13, best at a working voltage of 0.55 V (vs. Ag/AgCl). Figures of merit include (a) high sensitivity (39 μA·mM−1·cm−2), (b) a low limit of detection (0.48 μM), and (c) a linear range that extends from 2 μM to 7.5 mM. The sensor was applied to the determination of glucose levels in human serum, and satisfactory results were obtained.

Nonenzymatic electrochemical glucose sensor based on porous Ni3N nanosheet array. The arrow indicates the successive addition of glucose standard solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Mao G, Cai Q, Wang F, Luo C, Ji X, He Z (2017) One-step synthesis of Rox-DNA functionalized CdZnTeS quantum dots for the visual detection of hydrogen peroxide and blood glucose. Anal Chem 89(21):11628–11635

    Article  CAS  Google Scholar 

  2. Jin L, Meng Z, Zhang Y, Cai S, Zhang Z, Li C, Shang L, Shen Y (2017) Ultrasmall Pt nanoclusters as robust peroxidase mimics for colorimetric detection of glucose in human serum. ACS Appl Mater Interfaces 9(11):10027–10033

    Article  CAS  Google Scholar 

  3. Xiong Y, Zhang Y, Rong P, Yang J, Wang W, Liu D (2015) A high-throughput colorimetric assay for glucose detection based on glucose oxidase-catalyzed enlargement of gold nanoparticles. Nano 7(38):15584–15588

    CAS  Google Scholar 

  4. Zhang Y, Ma R, Zhen XV, Kudva YC, Buhlmann P, Koester SJ (2017) Capacitive sensing of glucose in electrolytes using graphene quantum capacitance varactors. ACS Appl Mater Interfaces 9(44):38863–38869

    Article  CAS  Google Scholar 

  5. Hu Y, Cheng H, Zhao X, Wu J, Muhammad F, Lin S, He J, Zhou L, Zhang C, Deng Y, Wang P, Zhou Z, Nie S, Wei H (2017) Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 11(6):5558–5566

    Article  CAS  Google Scholar 

  6. Liu JW, Luo Y, Wang YM, Duan LY, Jiang JH, Yu RQ (2016) Graphitic carbon nitride nanosheets-based ratiometric fluorescent probe for highly sensitive detection of H2O2 and glucose. ACS Appl Mater Interfaces 8(49):33439–33445

    Article  CAS  Google Scholar 

  7. Kannan PK, Rout CS (2015) High performance non-enzymatic glucose sensor based on one-step electrodeposited nickel sulfide. Chemistry 21(26):9355–9359

    Article  CAS  Google Scholar 

  8. Kitte SA, Gao W, Zholudov YT, Qi L, Nsabimana A, Liu Z, Xu G (2017) Stainless steel electrode for sensitive luminol electrochemiluminescent detection of H2O2, glucose, and glucose oxidase activity. Anal Chem 89(18):9864–9869

    Article  CAS  Google Scholar 

  9. Foroughi F, Rahsepar M, Hadianfard MJ, Kim H (2018) Microwave-assisted synthesis of graphene modified CuO nanoparticles for voltammetric enzyme-free sensing of glucose at biological pH values. Microchim Acta 185(1):Unsp 57

    Article  Google Scholar 

  10. Thiruppathi M, Thiyagarajan N, Gopinathan M, Chang J-L, Zen J-M (2017) A dually functional 4-aminophenylboronic acid dimer for voltammetric detection of hypochlorite, glucose and fructose. Microchim Acta 184(10):4073–4080

    Article  CAS  Google Scholar 

  11. Gao Z, Lin Y, He Y, Tang D (2017) Enzyme-free amperometric glucose sensor using a glassy carbon electrode modified with poly(vinyl butyral) incorporating a hybrid nanostructure composed of molybdenum disulfide and copper sulfide. Microchim Acta 184(3):807–814

    Article  CAS  Google Scholar 

  12. Ciftci H, Alver E, Celik F, Metin AU, Tamer U (2016) Non-enzymatic sensing of glucose using a glassy carbon electrode modified with gold nanoparticles coated with polyethyleneimine and 3-aminophenylboronic acid. Microchim Acta 183(4):1479–1486

    Article  CAS  Google Scholar 

  13. Roh S, Kim J (2015) Electrodeposition of three-dimensionally assembled platinum spheres on a gold-coated silicon wafer, and its application to nonenzymatic sensing of glucose. Microchim Acta 182(3–4):849–854

    Article  CAS  Google Scholar 

  14. Gougis M, Tabet-Aoul A, Ma D, Mohamedi M (2014) Nanostructured cerium oxide catalyst support: effects of morphology on the electroactivity of gold toward oxidative sensing of glucose. Microchim Acta 181(11–12):1207–1214

    Article  CAS  Google Scholar 

  15. Naik KK, Gangan A, Chakraborty B, Nayak SK, Rout CS (2017) Enhanced nonenzymatic glucose-sensing properties of electrodeposited NiCo2O4-Pd nanosheets: experimental and DFT investigations. ACS Appl Mater Interfaces 9(28):23894–23903

    Article  CAS  Google Scholar 

  16. Chen D, Wang H, Yang M (2017) A novel ball-in-ball hollow NiCo2S4 sphere based sensitive and selective nonenzymatic glucose sensor. Anal Methods 9:4718–4725

    Article  CAS  Google Scholar 

  17. Ji Y, Liu J, Liu X, Yuen MMF, Fu X-Z, Yang Y, Sun R, Wong C-P (2017) 3D porous Cu@Cu2O films supported Pd nanoparticles for glucose electrocatalytic oxidation. Electrochim Acta 248:299–306

    Article  CAS  Google Scholar 

  18. Meher SK, Rao GR (2013) Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose. Nano 5(5):2089–2099

    CAS  Google Scholar 

  19. Hou Q, Zhen M, Liu L, Chen Y, Huang F, Zhang S, Li W, Ju M (2018) Tin phosphate as a heterogeneous catalyst for efficient dehydration of glucose into 5-hydroxymethylfurfural in ionic liquid. Appl Catal B Environ 224:183–193

    Article  CAS  Google Scholar 

  20. Shu Y, Yan Y, Chen J, Xu Q, Pang H, Hu X (2017) Ni and NiO nanoparticles decorated metal-organic framework nanosheets: facile synthesis and high-performance nonenzymatic glucose detection in human serum. ACS Appl Mater Interfaces 9(27):22342–22349

    Article  CAS  Google Scholar 

  21. Chen T, Liu D, Lu W, Wang K, Du G, Asiri AM, Sun X (2016) Three-dimensional Ni2P nanoarray: an efficient catalyst electrode for sensitive and selective nonenzymatic glucose sensing with high specificity. Anal Chem 88(16):7885–7889

    Article  CAS  Google Scholar 

  22. Shen C, Su J, Li X, Luo J, Yang M (2015) Electrochemical sensing platform based on Pd–Au bimetallic cluster for non-enzymatic detection of glucose. Sens Actuators B Chem 209:695–700

    Article  CAS  Google Scholar 

  23. Yabushita M, Li P, Islamoglu T, Kobayashi H, Fukuoka A, Farha OK, Katz A (2017) Selective metal–organic framework catalysis of glucose to 5-Hydroxymethylfurfural using phosphate-modified NU-1000. Ind Eng Chem Res 56(25):7141–7148

    Article  CAS  Google Scholar 

  24. Balogun M-S, Zeng Y, Qiu W, Luo Y, Onasanya A, Olaniyi TK, Tong Y (2016) Three-dimensional nickel nitride (Ni3N) nanosheets: free standing and flexible electrodes for lithium ion batteries and supercapacitors. J Mater Chem A 4(25):9844–9849

    Article  CAS  Google Scholar 

  25. Yu Y, Gao W, Shen Z, Zheng Q, Wu H, Wang X, Song W, Ding K (2015) A novel Ni3N/graphene nanocomposite as supercapacitor electrode material with high capacitance and energy density. J Mater Chem A 3(32):16633–16641

    Article  CAS  Google Scholar 

  26. Li X, Hasan MM, Hector AL, Owen JR (2013) Performance of nanocrystalline Ni3N as a negative electrode for sodium-ion batteries. J MaterChem A 1(21):6441–6445

    CAS  Google Scholar 

  27. Sun Z, Chen H, Zhang L, Lu D, Du P (2016) Enhanced photocatalytic H2 production on cadmium sulfide photocatalysts using nickel nitride as a novel cocatalyst. J Mater Chem A 4(34):13289–13295

    Article  CAS  Google Scholar 

  28. Liu T, Li M, Jiao C, Hassan M, Bo X, Zhou M, Wang H-L (2017) Design and synthesis of integrally structured Ni3N nanosheets/carbon microfibers/Ni3N nanosheets for efficient full water splitting catalysis. J Mater Chem A 5(19):9377–9390

    Article  CAS  Google Scholar 

  29. Gao D, Zhang J, Wang T, Xiao W, Tao K, Xue D, Ding J (2016) Metallic Ni3N nanosheets with exposed active surface sites for efficient hydrogen evolution. J Mater Chem A 4(44):17363–17369

    Article  CAS  Google Scholar 

  30. Liu Q, Xie L, Qu F, Liu Z, Du G, Asiri AM, Sun X (2017) A porous Ni3N nanosheet array as a high-performance non-noble-metal catalyst for urea-assisted electrochemical hydrogen production. Inorg Chem Front 4(7):1120–1124

    Article  CAS  Google Scholar 

  31. Li S-J, Hou L-L, Yuan B-Q, Chang M-Z, Ma Y, Du J-M (2016) Enzyme-free glucose sensor using a glassy carbon electrode modified with reduced graphene oxide decorated with mixed copper and cobalt oxides. Microchim Acta 183:1813–1821

    Article  CAS  Google Scholar 

  32. Niu X, Lan M, Zhao H, Chen C (2013) Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures. Anal Chem 85(7):3561–3569

    Article  CAS  Google Scholar 

  33. Fu S, Zhu C, Song J, Engelhard M, Xia H, Du D, Lin Y (2016) PdCuPt nanocrystals with multibranches for enzyme-free glucose detection. ACS Appl Mater Interfaces 8(34):22196–22200

    Article  CAS  Google Scholar 

  34. Sheng L, Li Z, Meng A, Xu Q (2018) Ultrafast responsive and highly sensitive enzyme-free glucose sensor based on a novel Ni(OH)2 @PEDOT-rGO nanocomposite. Sens Actuators B Chem 254:1206–1215

    Article  CAS  Google Scholar 

  35. Leonardi SG, Marini S, Espro C, Bonavita A, Galvagno S, Neri G (2017) In-situ grown flower-like nanostructured CuO on screen printed carbon electrodes for non-enzymatic amperometric sensing of glucose. Microchim Acta 184:2375–2385

    Article  CAS  Google Scholar 

  36. Zhang Y, Lei W, Wu Q, Xia X, Hao Q (2017) Amperometric nonenzymatic determination of glucose via a glassy carbon electrode modified with nickel hydroxide and N-doped reduced graphene oxide. Microchim Acta 184:3103–3111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the support of this work by the National Natural Science Foundation of China (Grant No.21575165, 21775089) and the support by Central South University (Grant No.2017gczd018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minghui Yang or Fengli Qu.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Zhao, D., Yang, M. et al. Porous Ni3N nanosheet array as a catalyst for nonenzymatic amperometric determination of glucose. Microchim Acta 185, 229 (2018). https://doi.org/10.1007/s00604-018-2764-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2764-z

Keywords

Navigation