Skip to main content
Log in

In-situ grown flower-like nanostructured CuO on screen printed carbon electrodes for non-enzymatic amperometric sensing of glucose

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A planar electrochemical sensor, based on flower-like CuO nanostructures growth “in situ” on a commercial screen printed carbon electrode, was fabricated by an easy and effective technique and employed for the non-enzymatic determination of glucose. The prepared CuO nanostructures were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The carbon electrode modification with CuO was optimized by investigating the effect of the number of deposition cycles of precursor and their concentration. The electrodes modified by in situ growth of CuO were compared to an electrode prepared by simple deposition of CuO powder previously synthesized by the same technique. Cyclic voltammetric and chronoamperometric tests demonstrated that the in situ growth of CuO leads to excellent electrochemical performance toward glucose oxidation in 0.1 M KOH solution. The best sensor, if operated at an applied potential of 0.6 V, has a sensitivity of 1460 μA·mM−1·cm−2 and a 2.5 μM detection limit (at an S/N ratio of 3). Tests carried out within six months revealed an excellent long-term stability. This suggests that the method applied to modify the carbon electrode represents a useful tool for fabrication of an inexpensive and reliable non-enzymatic glucose sensor.

Schematic of a glucose sensor fabricated by growing flower-like CuO nanostructures in-situ on a screen printed carbon electrode (SPCE). The sensor showed excellent sensitivity and long-term stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108(7):2482–2505. doi:10.1021/cr068069y

    Article  CAS  Google Scholar 

  2. Chen C, Xie Q, Yang D, Xiao H, Fu Y, Tan Y, Yao S (2013) Recent advances in electrochemical glucose biosensors: a review. RSC Adv 3(14):4473–4491. doi:10.1039/C2RA22351A

    Article  CAS  Google Scholar 

  3. Koschinsky T, Heinemann L (2001) Sensors for glucose monitoring: technical and clinical aspects. Diabetes Metab Res Rev 17(2):113–123. doi:10.1002/dmrr.188

    Article  CAS  Google Scholar 

  4. Ghanbari K, Babaei Z (2016) Fabrication and characterization of non-enzymatic glucose sensor based on ternary NiO/CuO/polyaniline nanocomposite. Anal Biochem 498:37–46. doi:10.1016/j.ab.2016.01.006

    Article  CAS  Google Scholar 

  5. Liu X-W, Pan P, Zhang Z-M, Guo F, Yang Z-C, Wei J, Wei Z (2016) Ordered self-assembly of screen-printed flower-like CuO and CuO/MWCNTs modified graphite electrodes and applications in non-enzymatic glucose sensor. J Electroanal Chem 763:37–44. doi:10.1016/j.jelechem.2015.12.039

    Article  CAS  Google Scholar 

  6. Yoo E-H, Lee S-Y (2010) Glucose biosensors: an overview of use in clinical practice. Sensors 10(5):4558. doi:10.3390/s100504558

    Article  Google Scholar 

  7. Nagaraja P, Honnur K, Shivakumar A, Shrestha AK (2012) Development of quantitative enzymatic method and its validation for the assay of glucose in human serum. Clin Biochem 45(1–2):139–143. doi:10.1016/j.clinbiochem.2011.11.007

    Article  CAS  Google Scholar 

  8. Li Q, Luo G, Feng J, Zhou Q, Zhang L, Zhu Y (2001) Amperometric detection of glucose with glucose oxidase absorbed on porous Nanocrystalline TiO2 film. Electroanalysis 13(5):413–416. doi:10.1002/1521-4109(200104)13:5<413::aid-elan413>3.0.co;2-i

    Article  CAS  Google Scholar 

  9. Zhang W, Li R, Xing L, Wang X, Gou X (2016) Carnation-like CuO hierarchical nanostructures assembled by porous Nanosheets for Nonenzymatic glucose sensing. Electroanalysis 28(9):2214–2221. doi:10.1002/elan.201600132

    Article  CAS  Google Scholar 

  10. Zhong Y, Shi T, Liu Z, Cheng S, Huang Y, Tao X, Liao G, Tang Z (2016) Ultrasensitive non-enzymatic glucose sensors based on different copper oxide nanostructures by in-situ growth. Sensors Actuators B Chem 236:326–333. doi:10.1016/j.snb.2016.06.020

    Article  CAS  Google Scholar 

  11. Ampelli C, Leonardi SG, Genovese C, Lanzafame P, Perathoner S, Centi G, Neri G (2015) Monitoring of glucose in fermentation processes by using au/TiO2 composites as novel modified electrodes. J Appl Electrochem 45:943. doi:10.1007/s10800-015-0874-4

    Article  CAS  Google Scholar 

  12. Bo X, Ndamanisha JC, Bai J, Guo L (2010) Nonenzymatic amperometric sensor of hydrogen peroxide and glucose based on Pt nanoparticles/ordered mesoporous carbon nanocomposite. Talanta 82(1):85–91. doi:10.1016/j.talanta.2010.03.063

    Article  CAS  Google Scholar 

  13. Chu Z, Shi L, Liu L, Liu Y, Jin W (2012) Highly enhanced performance of glucose biosensor via in situ growth of oriented au micro-cypress. J Mater Chem 22(41):21917–21922. doi:10.1039/C2JM35554J

    Article  CAS  Google Scholar 

  14. Çiftçi H, Alver E, Çelik F, Metin AÜ, Tamer U (2016) Non-enzymatic sensing of glucose using a glassy carbon electrode modified with gold nanoparticles coated with polyethyleneimine and 3-aminophenylboronic acid. Microchim Acta 183(4):1479–1486. doi:10.1007/s00604-016-1782-y

    Article  Google Scholar 

  15. Mei H, Wu W, Yu B, Li Y, Wu H, Wang S, Xia Q (2015) Non-enzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with carbon supported co@Pt core-shell nanoparticles. Microchim Acta 182(11):1869–1875. doi:10.1007/s00604-015-1524-6

    Article  CAS  Google Scholar 

  16. Zhao L, Wu G, Cai Z, Zhao T, Yao Q, Chen X (2015) Ultrasensitive non-enzymatic glucose sensing at near-neutral pH values via anodic stripping voltammetry using a glassy carbon electrode modified with Pt3Pd nanoparticles and reduced graphene oxide. Microchim Acta 182(11):2055–2060. doi:10.1007/s00604-015-1555-z

    Article  CAS  Google Scholar 

  17. Cui H-F, Ye J-S, Zhang W-D, Li C-M, Luong JHT, Sheu F-S (2007) Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotube nanocomposites. Anal Chim Acta 594(2):175–183. doi:10.1016/j.aca.2007.05.047

    Article  CAS  Google Scholar 

  18. Yuan M, Liu A, Zhao M, Dong W, Zhao T, Wang J, Tang W (2014) Bimetallic PdCu nanoparticle decorated three-dimensional graphene hydrogel for non-enzymatic amperometric glucose sensor. Sensors Actuators B Chem 190:707–714. doi:10.1016/j.snb.2013.09.054

    Article  CAS  Google Scholar 

  19. Gao Z, Lin Y, He Y, Tang D (2017) Enzyme-free amperometric glucose sensor using a glassy carbon electrode modified with poly(vinyl butyral) incorporating a hybrid nanostructure composed of molybdenum disulfide and copper sulfide. Microchim Acta 184(3):807–814. doi:10.1007/s00604-016-2061-7

    Article  CAS  Google Scholar 

  20. Jiang L-C, Zhang W-D (2010) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25(6):1402–1407. doi:10.1016/j.bios.2009.10.038

    Article  CAS  Google Scholar 

  21. Rahman MM, Saleh Ahammad AJ, Jin J-H, Ahn SJ, Lee J-J (2010) A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors (Basel, Switzerland) 10(5):4855–4886. doi:10.3390/s100504855

    Article  CAS  Google Scholar 

  22. Zhu H, Li L, Zhou W, Shao Z, Chen X (2016) Advances in non-enzymatic glucose sensors based on metal oxides. J Mater Chem B 4(46):7333–7349. doi:10.1039/C6TB02037B

    Article  CAS  Google Scholar 

  23. Li Z, Chen Y, Xin Y, Zhang Z (2015) Sensitive electrochemical nonenzymatic glucose sensing based on anodized CuO nanowires on three-dimensional porous copper foam. Scientific Reports 5:16115. doi:10.1038/srep16115

    Article  CAS  Google Scholar 

  24. Zhang Y, Liu Y, Su L, Zhang Z, Huo D, Hou C, Lei Y (2014) CuO nanowires based sensitive and selective non-enzymatic glucose detection. Sensors Actuators B Chem 191:86–93. doi:10.1016/j.snb.2013.08.096

    Article  CAS  Google Scholar 

  25. Huang F, Zhong Y, Chen J, Li S, Li Y, Wang F, Feng S (2013) Nonenzymatic glucose sensor based on three different CuO nanomaterials. Anal Methods 5(12):3050–3055. doi:10.1039/C3AY40342D

    Article  CAS  Google Scholar 

  26. Mahmoud BG, Khairy M, Rashwan FA, Foster CW, Banks CE (2016) Self-assembly of porous copper oxide hierarchical nanostructures for selective determinations of glucose and ascorbic acid. RSC Adv 6(18):14474–14482. doi:10.1039/C5RA22940E

    Article  CAS  Google Scholar 

  27. Saraf M, Natarajan K, Mobin SM (2016) Non-enzymatic amperometric sensing of glucose by employing sucrose templated microspheres of copper oxide (CuO). Dalton Trans 45(13):5833–5840. doi:10.1039/C6DT00670A

    Article  CAS  Google Scholar 

  28. Alizadeh T, Mirzagholipur S (2014) A Nafion-free non-enzymatic amperometric glucose sensor based on copper oxide nanoparticles–graphene nanocomposite. Sensor Actuat B Chem 198:438–447. doi:10.1016/j.snb.2014.03.049

    Article  CAS  Google Scholar 

  29. Zhang P, Zhang L, Zhao G, Feng F (2012) A highly sensitive nonenzymatic glucose sensor based on CuO nanowires. Microchim Acta 176(3):411–417. doi:10.1007/s00604-011-0733-x

    Article  CAS  Google Scholar 

  30. Park JC, Kim J, Kwon H, Song H (2009) Gram-scale synthesis of Cu2O Nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv Mater 21(7):803–807. doi:10.1002/adma.200800596

    Article  CAS  Google Scholar 

  31. Xu W, Dai S, Wang X, He X, Wang M, Xi Y, Hu C (2015) Nanorod-aggregated flower-like CuO grown on a carbon fiber fabric for a super high sensitive non-enzymatic glucose sensor. J Mater Chem B 3(28):5777–5785. doi:10.1039/C5TB00592B

    Article  CAS  Google Scholar 

  32. Li Y, Zhao M, Chen J, Fan S, Liang J, Ding L, Chen S (2016) Flexible chitosan/carbon nanotubes aerogel, a robust matrix for in-situ growth and non-enzymatic biosensing applications. Sensors Actuators B Chem 232:750–757. doi:10.1016/j.snb.2016.04.023

    Article  CAS  Google Scholar 

  33. Jia W, Guo M, Zheng Z, Yu T, Wang Y, Rodriguez EG, Lei Y (2008) Vertically aligned CuO nanowires based electrode for Amperometric detection of hydrogen peroxide. Electroanalysis 20(19):2153–2157. doi:10.1002/elan.200804299

    Article  CAS  Google Scholar 

  34. Xiang JY, Tu JP, Zhang L, Zhou Y, Wang XL, Shi SJ (2010) Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries. J Power Sources 195(1):313–319. doi:10.1016/j.jpowsour.2009.07.022

    Article  CAS  Google Scholar 

  35. Zhuang Z, Su X, Yuan H, Sun Q, Xiao D, Choi MMF (2008) An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified cu electrode. Analyst 133(1):126–132. doi:10.1039/B712970J

    Article  CAS  Google Scholar 

  36. Espro C, Donato N, Galvagno S, Aloisio D, Leonardi SG, Neri G (2014) CuO nanowires-based electrodes for glucose sensors. Chem Eng Trans 41:415–420. doi:10.3303/CET1441070

    Google Scholar 

  37. Lu Y, Qiu K, Zhang D, Lin J, Xu J, Liu X, Tang C, Kim J-K, Luo Y (2014) Cost-effective CuO nanotube electrodes for energy storage and non-enzymatic glucose detection. RSC Adv 4(87):46814–46822. doi:10.1039/C4RA08230C

    Article  CAS  Google Scholar 

  38. Meher SK, Rao GR (2013) Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose. Nano 5(5):2089–2099. doi:10.1039/C2NR33264G

    CAS  Google Scholar 

  39. Pasta M, Ruffo R, Falletta E, Mari CM, Pina CD (2010) Alkaline glucose oxidation on nanostructured gold electrodes. Gold Bull 43(1):57–64. doi:10.1007/bf03214967

    Article  CAS  Google Scholar 

  40. Zhang X, Zhang Z, Liao Q, Liu S, Kang Z, Zhang Y (2016) Nonenzymatic glucose sensor based on in situ reduction of Ni/NiO-graphene nanocomposite. Sensors 16(11):1791. doi:10.3390/s16111791

    Article  Google Scholar 

  41. Yang J, Yu J-H, Rudi Strickler J, Chang W-J, Gunasekaran S (2013) Nickel nanoparticle-chitosan-reduced graphene oxide-modified screen-printed electrodes for enzyme-free glucose sensing in portable microfluidic devices. Biosens Bioelectron 47:530–538. doi:10.1016/j.bios.2013.03.051

    Article  CAS  Google Scholar 

  42. Dhara K, Thiagarajan R, Nair BG, Thekkedath GSB (2015) Highly sensitive and wide-range nonenzymatic disposable glucose sensor based on a screen printed carbon electrode modified with reduced graphene oxide and Pd-CuO nanoparticles. Microchim Acta 182(13):2183–2192. doi:10.1007/s00604-015-1549-x

    Article  CAS  Google Scholar 

  43. Reddy S, Swamy BK, Jayadevappa H (2012) CuO nanoparticle sensor for the electrochemical determination of dopamine. Electrochim Acta 61:78–86. doi:10.1016/j.electacta.2011.11.091

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Neri.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonardi, S.G., Marini, S., Espro, C. et al. In-situ grown flower-like nanostructured CuO on screen printed carbon electrodes for non-enzymatic amperometric sensing of glucose. Microchim Acta 184, 2375–2385 (2017). https://doi.org/10.1007/s00604-017-2232-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2232-1

Keywords

Navigation