Skip to main content
Log in

Aptamer based surface plasmon resonance sensor for aflatoxin B1

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a surface plasmon resonance (SPR) based aptasensor for the carcinogenic mycotoxin aflatoxin B1 (AFB1) in a direct assay format. The aptamer is immobilized on the surface of a commercial sensor chip, and the SPR signal increases on binding of AFB1. The sensor chip can be fully regenerated by passing a flow of buffer over it upon which bound AFB1 dissociates from the aptamer. The biosensor works in the 0.4 nM to 200 nM AFB1 concentration range and has a 0.4 nM detection limit. It allows AFB1 to be determined in complex samples such as diluted red wine and beer. The assay is sensitive, and the chip is easily regenerated and stable. The method therefore overcomes certain limitations of antibody-based SPR assays and of competitive SPR assays for AFB1.

Schematic presentation of the assay: Aptamer is coated on the chip of SPR, and the binding between aflatoxin B1 (AFB1) and the aptamer on chip causes SPR responses, allowing sensitive detection of AFB1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brase S, Encinas A, Keck J, Nising CF (2009) Chemistry and biology of mycotoxins and related fungal metabolites. Chem Rev 109(9):3903–3990. doi:10.1021/cr050001f

    Article  CAS  Google Scholar 

  2. Minto RE, Townsend CA (1997) Enzymology and molecular biology of aflatoxin biosynthesis. Chem Rev 97(7):2537–2556. doi:10.1021/cr960032y

    Article  CAS  Google Scholar 

  3. Han Z, Zheng Y, Luan L, Cai Z, Ren Y, Wu Y (2010) An ultra-high-performance liquid chromatography-tandem mass spectrometry method for simultaneous determination of aflatoxins B1, B2, G1, G2, M1 and M2 in traditional Chinese medicines. Anal Chim Acta 664(2):165–171. doi:10.1016/j.aca.2010.02.009

    Article  CAS  Google Scholar 

  4. Li P, Zhang Q, Zhang W (2009) Immunoassays for aflatoxins. Trends Anal Chem 28(9):1115–1126. doi:10.1016/j.trac.2009.07.003

    Article  CAS  Google Scholar 

  5. Di Nardo F, Baggiani C, Giovannoli C, Spano G, Anfossi L (2017) Multicolor immunochromatographic strip test based on gold nanoparticles for the determination of aflatoxin B1 and fumonisins. Microchim Acta. doi:10.1007/s00604-017-2121-7

    Google Scholar 

  6. Zhang Y, Liao Z, Liu Y, Wan Y, Chang J, Wang H (2017) Flow cytometric immunoassay for aflatoxin B1 using magnetic microspheres encoded with upconverting fluorescent nanocrystals. Microchim Acta. doi:10.1007/s00604-017-2116-4

    Google Scholar 

  7. Li Q, Lv S, Lu M, Lin Z, Tang D (2016) Potentiometric competitive immunoassay for determination of aflatoxin B1 in food by using antibody-labeled gold nanoparticles. Microchim Acta 183(10):2815–2822. doi:10.1007/s00604-016-1929-x

    Article  CAS  Google Scholar 

  8. Wu J, Zhu Y, Xue F, Mei Z, Yao L, Wang X, Zheng L, Liu J, Liu G, Peng C, Chen W (2014) Recent trends in SELEX technique and its application to food safety monitoring. Microchim Acta 181(5):479–491. doi:10.1007/s00604-013-1156-7

    Article  CAS  Google Scholar 

  9. Li F, Zhang H, Wang Z, Newbigging AM, Reid MS, Li XF, Le XC (2015) Aptamers facilitating amplified detection of biomolecules. Anal Chem 87:274–292. doi:10.1021/ac5037236

    Article  CAS  Google Scholar 

  10. Deng B, Lin YW, Wang C, Li F, Wang ZX, Zhang H, Li XF, Le XC (2014) Aptamer binding assays for proteins: the thrombin example-a review. Anal Chim Acta 837:1–15. doi:10.1016/j.aca.2014.04.055

    Article  CAS  Google Scholar 

  11. Liu X, Zhang X (2015) Aptamer-based technology for food analysis. Appl Biochem Biotechnol 175(1):603–624. doi:10.1007/s12010-014-1289-0

    Article  CAS  Google Scholar 

  12. Le LC, Cruz-Aguado JA, Penner GA (2012) DNA ligands for aflatoxin and zearalenone. U.S. patent PCT/CA2010/001292, Sep. 6, 2012

  13. Lu ZS, Chen XJ, Wang Y, Zheng XT, Li CM (2015) Aptamer based fluorescence recovery assay for aflatoxin B1 using a quencher system composed of quantum dots and graphene oxide. Microchim Acta 182(3–4):571–578. doi:10.1007/s00604-014-1360-0

    Article  CAS  Google Scholar 

  14. Wang B, Chen Y, Wu Y, Weng B, Liu Y, Lu Z, Li CM, Yu C (2016) Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1. Biosens Bioelectron 78:23–30. doi:10.1016/j.bios.2015.11.015

    Article  CAS  Google Scholar 

  15. Goud KY, Sharma A, Hayat A, Catanante G, Gobi KV, Gurban AM, Marty JL (2016) Tetramethyl-6-carboxyrhodamine quenching-based aptasensing platform for aflatoxin B1: analytical performance comparison of two aptamers. Anal Biochem 508:19–24. doi:10.1016/j.ab.2016.05.018

    Article  CAS  Google Scholar 

  16. Seok Y, Byun JY, Shim WB, Kim MG (2015) A structure-switchable aptasensor for aflatoxin B1 detection based on assembly of an aptamer/split DNAzyme. Anal Chim Acta 886:182–187. doi:10.1016/j.aca.2015.05.041

    Article  CAS  Google Scholar 

  17. Shim WB, Mun H, Joung HA, Ofori JA, Chung DH, Kim MG (2014) Chemiluminescence competitive aptamer assay for the detection of aflatoxin B1 in corn samples. Food Control 36(1):30–35. doi:10.1016/j.foodcont.2013.07.042

    Article  CAS  Google Scholar 

  18. Guo X, Wen F, Zheng N, Luo Q, Wang H, Wang H, Li S, Wang J (2014) Development of an ultrasensitive aptasensor for the detection of aflatoxin B1. Biosens Bioelectron 56:340–344. doi:10.1016/j.bios.2014.01.045

    Article  CAS  Google Scholar 

  19. Nguyen B, Tanious FA, Wilson WD (2007) Biosensor-surface plasmon resonance: quantitative analysis of small molecule-nucleic acid interactions. Methods 42(2):150–161. doi:10.1016/j.ymeth.2006.09.009

    Article  CAS  Google Scholar 

  20. Wang XP, Zhan SY, Huang ZH, Hong XY (2013) Review: advances and applications of surface plasmon resonance biosensing instrumentation. Instrum Sci Technol 41(6):574–607. doi:10.1080/10739149.2013.807822

    Article  Google Scholar 

  21. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377(3):528–539. doi:10.1007/s00216-003-2101-0

    Article  CAS  Google Scholar 

  22. Yi X, Hao Y, Xia N, Wang J, Quintero M, Li D, Zhou F (2013) Sensitive and continuous screening of inhibitors of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) at single SPR chips. Anal Chem 85(7):3660–3666. doi:10.1021/ac303624z

    Article  CAS  Google Scholar 

  23. Liu L, Xia N, Wang J (2012) Potential applications of SPR in early diagnosis and progression of Alzheimer’s disease. RSC Adv 2:2200–2204. doi:10.1039/c2ra00667g

    Article  CAS  Google Scholar 

  24. Charlermroj R, Oplatowska M, Gajanandana O, Himananto O, Grant IR, Karoonuthaisiri N, Elliott CT (2013) Strategies to improve the surface plasmon resonance-based immmunodetection of bacterial cells. Microchim Acta 80(7):643–650. doi:10.1007/s00604-013-0975-x

    Article  Google Scholar 

  25. Lei P, Tang H, Ding S, Ding X, Zhu D, Shen B, Cheng Q, Yan Y (2015) Determination of the invA gene of salmonella using surface plasmon resonance along with streptavidin aptamer amplification. Microchim Acta 182(1):289–296. doi:10.1007/s00604-014-1330-6

    Article  CAS  Google Scholar 

  26. Chen H, Jia S, Gao Y, Liu F, Chen X, Koh K, Wang K (2015) Surface plasmon resonance sensor for norepinephrine using a monolayer of a calix[4]arene crown ether. Microchim Acta 182(9):757–1763. doi:10.1007/s00604-015-1510-z

    Google Scholar 

  27. Shankaran DR, Matsumoto K, Toko K, Miura N (2006) Development and comparison of two immunoassays for the detection of 2,4,6-trinitrotoluene (TNT) based on surface plasmon resonance. Sensor Actuat B-Chem 114(1):71–79. doi:10.1016/j.snb.2005.04.013

    Article  CAS  Google Scholar 

  28. Choulier L, Nomine Y, Zeder-Lutz G, Charbonnier S, Didier B, Jung ML, Altschuh D (2013) Chemical library screening using a SPR-based inhibition in solution assay: simulations and experimental validation. Anal Chem 85(18):8787–8795. doi:10.1021/ac4019445

    Article  CAS  Google Scholar 

  29. Mitchell JS, Wu Y, Cook CJ, Main L (2005) Sensitivity enhancement of surface plasmon resonance biosensing of small molecules. Anal Biochem 343(1):125–135. doi:10.1016/j.ab.2005.05.001

    Article  CAS  Google Scholar 

  30. Daly SJ, Keating GJ, Dillon PP, Manning BM, O'Kennedy R, Lee HA, Morgan MR (2000) Development of surface plasmon resonance-based immunoassay for aflatoxin B(1). J Agric Food Chem 48(11):5097–5104. doi:10.1021/jf9911693

    Article  CAS  Google Scholar 

  31. Munoz EM, Lorenzo-Abalde S, Gonzalez-Fernandez A, Quintela O, Lopez-Rivadulla M, Riguera R (2011) Direct surface plasmon resonance immunosensor for in situ detection of benzoylecgonine, the major cocaine metabolite. Biosens Bioelectron 26(11):4423–4428. doi:10.1016/j.bios.2011.04.056

    Article  CAS  Google Scholar 

  32. Yakes BJ, Kanyuck KM, DeGrasse SL (2014) First report of a direct surface plasmon resonance immunosensor for a small molecule seafood toxin. Anal Chem 86(18):9251–9255. doi:10.1021/ac502271y

    Article  CAS  Google Scholar 

  33. Zhu Z, Feng M, Zuo L, Zhu Z, Wang F, Chen L, Li J, Shan G, Luo SZ (2015) An aptamer based surface plasmon resonance biosensor for the detection of ochratoxin a in wine and peanut oil. Biosens Bioelectron 65:320–326. doi:10.1016/j.bios.2014.10.059

    Article  CAS  Google Scholar 

  34. Park JH, Kim Y-P, Kim I-H, Ko S (2014) Rapid detection of aflatoxin B1 by a bifunctional protein crosslinker-based surface plasmon resonance biosensor. Food Control 36(1):183–190. doi:10.1016/j.foodcont.2013.08.038

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 21575153, 21435008), Strategic Priority Research Program of the Chinese Academy of Sciences (XDB14030200), and the Key Research Program of the Chinese Academy of Sciences (KFZD-SW-203). We would be grateful to Yuanyuan Chen, Zhenwei Yang (Institute of Biophysics, Chinese Academy of Sciences) for technical help with SPR experiments on Biacore instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhao.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 415 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Wu, L. & Zhao, Q. Aptamer based surface plasmon resonance sensor for aflatoxin B1. Microchim Acta 184, 2605–2610 (2017). https://doi.org/10.1007/s00604-017-2265-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2265-5

Keywords

Navigation