Skip to main content
Log in

Visual and microplate detection of aflatoxin B2 based on NaCl-induced aggregation of aptamer-modified gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a fast and sensitive method for the detection of aflatoxin B2 (AFB2) that is based on the addition of AFB2-sensitive aptamers to a colloidal solution of gold nanoparticles (AuNPs). Subsequent addition of AFB2 and NaCl to the solution causes a color change from wine-red to blue-purple. Best results are obtained at a pH value of 7.0, a 10 mM aptamer concentration, and a 2 M concentration of NaCl. The method has a linear dynamic range that extends from 0.025 to 10 ng∙mL−1 of AFB2, and the detection limit is 25 pg∙mL−1. The method is simple, fast, highly sensitive, and enables both visual and microplate readout.

An aptasensor for AFB2 detection was developed based on the salt-induced aggregation of gold nanoparticles. The absorption at 520 nm decreased with increase of AFB2 concentration from 0.25 to 10 ng∙mL−1. The method is simple, fast, highly sensitive, and enables both visual and microplate readout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Andrade PD, da Silva JLG, Caldas ED (2013) Simultaneous analysis of aflatoxins BI, B2, G-1, G2, M-1 and ochratoxin A in breast milk by high-performance liquid chromatography/fluorescence after liquid-liquid extraction with low temperature purification (LLE-LTP). J Chromatogr A 1304:61–68. doi:10.1016/j.chroma.2013.06.049

    Article  CAS  Google Scholar 

  2. Gnonlonfin GJ, Hell K, Adjovi Y, Fandohan P, Koudande DO, Mensah GA, Sanni A, Brimer L (2013) A review on aflatoxin contamination and its implications in the developing world: a sub-Saharan African perspective. Crit Rev Food Sci Nutr 53:349–65. doi:10.1080/10408398.2010.535718

    Article  CAS  Google Scholar 

  3. Lorini C, Rossetti F, Palazzoni S, Comodo N, Bonaccorsi G (2008) Biological contamination by micromycetes in dried Boletus edulis: research of aflatoxin B1, B2 G1, G2 and ochratoxin A. Ann Ig 20:553–62

    CAS  Google Scholar 

  4. Wogan GN, Kensler TW, Groopman JD (2012) Present and future directions of translational research on aflatoxin and hepatocellular carcinoma. A review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 29:249–57. doi:10.1080/19440049.2011.563370

    Article  CAS  Google Scholar 

  5. Hodnik V, Anderluh G (2009) Toxin detection by surface plasmon resonance. Sensors (Basel) 9:1339–54. doi:10.3390/s9031339

    Article  CAS  Google Scholar 

  6. Ediage EN, Di Mavungu JD, Monbaliu S, Van Peteghem C, De Saeger S (2011) A validated multianalyte LC-MS/MS method for quantification of 25 mycotoxins in cassava flour, peanut cake and maize samples. J Agric Food Chem 59:5173–80. doi:10.1021/jf2009364

    Article  Google Scholar 

  7. Lai XW, Sun DL, Ruan CQ, Zhang H, Liu CL (2014) Rapid analysis of aflatoxins B1, B2, and ochratoxin A in rice samples using dispersive liquid-liquid microextraction combined with HPLC. J Sep Sci 37:92–8. doi:10.1002/jssc.201300970

    Article  CAS  Google Scholar 

  8. Luna AS, Luiz RA, Lima IC, Marco PH, Valderrama P, Boque R, Ferre J (2013) Simultaneous determination of aflatoxins B2 and G2 in peanuts using spectrofluorescence coupled with parallel factor analysis. Anal Chim Acta 778:9–14. doi:10.1016/j.aca.2013.03.038

    Article  CAS  Google Scholar 

  9. Abrunhosa L, Moraless H, Soares C, Calado T, Vila-Cha AS, Pereira M, Venancio A (2014) A Review of Mycotoxins in Food and Feed Products in Portugal and Estimation of Probable Daily Intakes. Crit Rev Food Sci Nutr. doi:10.1080/10408398.2012.720619

    Google Scholar 

  10. McCoy LF, Scholl PF, Sutcliffe AE, Kieszak SM, Powers CD, Rogers HS, Gong YY, Groopman JD, Wild CP, Schleicher RL (2008) Human aflatoxin albumin adducts quantitatively compared by ELISA, HPLC with fluorescence detection, and HPLC with isotope dilution mass spectrometry. Cancer Epidemiol Biomarkers Prev 17:1653–7. doi:10.1158/1055-9965.EPI-07-2780

    Article  CAS  Google Scholar 

  11. Lee NA, Wang S, Allan RD, Kennedy IR (2004) A rapid aflatoxin B1 ELISA: development and validation with reduced matrix effects for peanuts, corn, pistachio, and Soybeans. J Agric Food Chem 52:2746–55. doi:10.1021/jf0354038

    Article  CAS  Google Scholar 

  12. Moscone D, Arduini F, Amine A (2011) A rapid enzymatic method for aflatoxin B detection. Methods Mol Biol 739:217–35. doi:10.1007/978-1-61779-102-4_20

    Article  CAS  Google Scholar 

  13. Ahmad KM, Oh SS, Kim S, McClellen FM, Xiao Y, Soh HT (2011) Probing the limits of aptamer affinity with a microfluidic SELEX platform. PLoS One 6:e27051. doi:10.1371/journal.pone.0027051

    Article  CAS  Google Scholar 

  14. Cruz-Toledo J, McKeague M, Zhang X, Giamberardino A, McConnell E, Francis T, DeRosa MC,Dumontier M (2012) Aptamer Base: a collaborative knowledge base to describe aptamers and SELEX experiments. Database (Oxford) 2012: bas006.doi:10.1093/database/bas006

  15. Tan X, Dey SK, Telmer C, Zhang X, Armitage BA, Bruchez MP (2014) Aptamers act as activators for the thrombin mediated-hydrolysis of peptide substrates. Chembiochem 15:205–8. doi:10.1002/cbic.201300693

    Article  CAS  Google Scholar 

  16. Rahmani A, Jinap S, Soleimany F (2010) Validation of the procedure for the simultaneous determination of aflatoxins ochratoxin A and zearalenone in cereals using HPLC-FLD. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 27:1683–93. doi:10.1080/19440049.2010.514951

    Article  CAS  Google Scholar 

  17. Corcuera LA, Ibanez-Vea M, Vettorazzi A, Gonzalez-Penas E, Cerain AL (2011) Validation of a UHPLC-FLD analytical method for the simultaneous quantification of aflatoxin B1 and ochratoxin a in rat plasma, liver and kidney. J Chromatogr B Analyt Technol Biomed Life Sci 879:2733–40. doi:10.1016/j.jchromb.2011.07.039

    Article  CAS  Google Scholar 

  18. Zheng RS, Xu H, Peng YX, Wang WL, Zhan RT, Chen WW (2014) A high throughput coupled with high performance liquid chromatography-tandem mass spectrometry method for determination of aflatoxin B1, B2, G1, G2 in 10 traditional Chinese medicines. Zhongguo Zhong Yao Za Zhi 39:273–7. doi:10.4268/cjcmm20140222

    CAS  Google Scholar 

  19. Zheng RS, Xu H, Wang WL, Zhan RT, Chen WW (2013) Determination of aflatoxin B1, B2, G1, G2 in armeniacae semen amarum by high-performance liquid chromatography-tandem mass spectrometry. Zhongguo Zhong Yao Za Zhi 38:3534–8

    CAS  Google Scholar 

  20. Tang D, Sauceda JC, Lin Z, Ott S, Basova E, Goryacheva I, Biselli S, Lin J, Niessner R, Knopp D (2009) Magnetic nanogold microspheres-based lateral-flow immunodipstick for rapid detection of aflatoxin B2 in food. Biosens Bioelectron 25:514–8. doi:10.1016/j.bios.2009.07.030

    Article  CAS  Google Scholar 

  21. Xiulan S, Xiaolian Z, Jian T, Zhou J, Chu FS (2005) Preparation of gold-labeled antibody probe and its use in immunochromatography assay for detection of aflatoxin B1. Int J Food Microbiol 99:185–94. doi:10.1016/j.ijfoodmicro.2004.07.021

    Article  Google Scholar 

  22. Shim WB, Yang ZY, Kim JS, Kim JY, Kang SJ, Woo GJ, Chung YC, Eremin SA, Chung DH (2007) Development of immunochromatography strip-test using nanocolloidal gold-antibody probe for the rapid detection of aflatoxin B1 in grain and feed samples. J Microbiol Biotechnol 17:1629–37

    CAS  Google Scholar 

  23. Li X, Li PW, Zhang Q, Li R, Zhang W, Zhang ZW, Ding XX, Tang XQ (2013) Multi-component immunochromatographic assay for simultaneous detection of aflatoxin B-1, ochratoxin A and zearalenone in agro-food. Biosens Bioelectron 49:426–432. doi:10.1016/j.bios.2013.05.039

    Article  CAS  Google Scholar 

  24. Masinde LA, Sheng W, Xu X, Zhang Y, Yuan M, Kennedy IR, Wang S (2013) Colloidal gold based immunochromatographic strip for the simple and sensitive determination of aflatoxin B1 and B2 in corn and rice. Microchim Acta 180:921–928. doi:10.1007/s00604-013-1008-5

    Article  CAS  Google Scholar 

  25. Zekavati R, Safi S, Hashemi SJ, Rahmani-Cherati T, Tabatabaei M, Mohsenifar A, Bayat M (2013) Highly sensitive FRET-based fluorescence immunoassay for aflatoxin B1 using cadmium telluride quantum dots. Microchim Acta 180:1217–1223. doi:10.1007/s00604-013-1047-y

    Article  CAS  Google Scholar 

  26. Liao JY, Li H (2010) Lateral flow immunodipstick for visual detection of aflatoxin B-1 in food using immuno-nanoparticles composed of a silver core and a gold shell. Microchim Acta 171:289–295. doi:10.1007/s00604-010-0431-0

    Article  CAS  Google Scholar 

  27. Ardic M, Karakaya Y, Atasever M, Durmaz H (2008) Determination of aflatoxin B (1) levels in deep-red ground pepper (isot) using immunoaffinity column combined with ELISA. Food Chem Toxicol 46:1596–9. doi:10.1016/j.fct.2007.12.025

    Article  CAS  Google Scholar 

  28. Scholl PF, Turner PC, Sutcliffe AE, Sylla A, Diallo MS, Friesen MD, Groopman JD, Wild CP (2006) Quantitative comparison of aflatoxin B-1 serum albumin adducts in humans by isotope dilution mass spectrometry and ELISA. Cancer Epidemiol Biomark Prev 15:823–826. doi:10.1158/1055-9965.Epi-05-0890

    Article  CAS  Google Scholar 

  29. Khan MA, Asghar MA, Iqbal J, Ahmed A, Shamsuddin ZA (2014) Aflatoxins contamination and prevention in red chillies (Capsicum annuum L.) in Pakistan. Food Additives & Contaminants Part B-Surveillance 7:1–6. doi:10.1080/19393210.2013.825330

    Article  Google Scholar 

  30. Puiu M, Istrate O, Rotariu L, Bala C (2012) Kinetic approach of aflatoxin B1-acetylcholinesterase interaction: A tool for developing surface plasmon resonance biosensors. Anal Biochem 421:587–594. doi:10.1016/J.Ab.2011.10.035

    Article  CAS  Google Scholar 

  31. Yang L, Ding HS, Gu ZN, Zhao JX, Chen HQ, Tian FW, Chen YQ, Zhang H, Chen W (2009) Selection of Single Chain Fragment Variables with Direct Coating of Aflatoxin B-1 to Enzyme-Linked Immunosorbent Assay Plates. J Agric Food Chem 57:8927–8932. doi:10.1021/Jf9019536

    Article  CAS  Google Scholar 

  32. Guo XD, Wen F, Zheng N, Luo QJ, Wang HW, Wang H, Li SL, Wang JQ (2014) Development of an ultrasensitive aptasensor for the detection of aflatoxin B-1. Biosens Bioelectron 56:340–344. doi:10.1016/j.bios.2014.01.045

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors express heartfelt thanks to Professor Ai-Liang Chen from the Chinese Academy of Agricultural Sciences. This research was supported by the National Science Foundation of China (Grant No. 41,301,350), the Innovation and Capacity-building Projects by the Beijing Academy of Agriculture and Forestry Sciences (project KJCX20140302), the Open Project of Beijing Research Center for Agricultural Standards and Testing (ATFM-KFKT2013003), and the National High Technology Research and Development Program of China (863 Program No. 2012AA101609). The authors express their gratitude for the support.

Conflict of Interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anxiang Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 306 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, Y., Chen, J., Xie, G. et al. Visual and microplate detection of aflatoxin B2 based on NaCl-induced aggregation of aptamer-modified gold nanoparticles. Microchim Acta 182, 995–1001 (2015). https://doi.org/10.1007/s00604-014-1420-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1420-5

Keyword

Navigation