Skip to main content
Log in

Dexmedetomidine as a cardioprotective drug: a narrative review

  • Review Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Dexmedetomidine (DEX), a highly selective alpha2-adrenoceptors agonist, is not only a sedative drug used during mechanical ventilation in the intensive care unit but also a cardio-protective drug against ischemia–reperfusion injury (IRI). Numerous preclinical in vivo and ex vivo studies, mostly evaluating the effect of DEX pretreatment in healthy rodents, have shown the efficacy of DEX in protecting the hearts from IRI. However, whether DEX can maintain its cardio-protective effect in hearts with comorbidities such as diabetes has not been fully elucidated. Multiple clinical trials have reported promising results, showing that pretreatment with DEX can attenuate cardiac damage in patients undergoing cardiac surgery. However, evidence of the post-treatment effects of DEX in clinical practice remains limited. In this narrative review, we summarize the previously reported evidence of DEX-induced cardio-protection against IRI and clarify the condition of the hearts and the timing of DEX administration that has not been tested. With further investigations evaluating these knowledge gaps, the use of DEX as a cardio-protective drug could be further facilitated in the management of patients undergoing cardiac surgery and might be considered in a broader area of clinical settings beyond cardiac surgery, including patients with acute myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bilotta F, Pugliese F. The evolving clinical use of dexmedetomidine. Lancet. 2020;396(10245):145–7. https://doi.org/10.1016/s0140-6736(20)30902-8.

    Article  CAS  PubMed  Google Scholar 

  2. Keating GM. Dexmedetomidine: a review of its use for sedation in the intensive care setting. Drugs. 2015;75(10):1119–30. https://doi.org/10.1007/s40265-015-0419-5.

    Article  CAS  PubMed  Google Scholar 

  3. Homberg MC, Bouman EAC, Joosten BAJ. Optimization of procedural sedation and analgesia during atrial fibrillation ablation. Curr Opin Anaesthesiol. 2023;36(3):354–60. https://doi.org/10.1097/aco.0000000000001263.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Okada H, Kurita T, Mochizuki T, Morita K, Sato S. The cardioprotective effect of dexmedetomidine on global ischaemia in isolated rat hearts. Resuscitation. 2007;74(3):538–45. https://doi.org/10.1016/j.resuscitation.2007.01.032.

    Article  CAS  PubMed  Google Scholar 

  5. Peng K, Shen YP, Ying YY, Kiaii B, Rodriguez V, Boyd D, Applegate RL 2nd, Lubarsky DA, Zhang Z, Xia Z, Feng XM, Yang JP, Liu H, Ji FH. Perioperative dexmedetomidine and 5-year survival in patients undergoing cardiac surgery. Br J Anaesth. 2021;127(2):215–23. https://doi.org/10.1016/j.bja.2021.03.040.

    Article  CAS  PubMed  Google Scholar 

  6. Ji F, Li Z, Nguyen H, Young N, Shi P, Fleming N, Liu H. Perioperative dexmedetomidine improves outcomes of cardiac surgery. Circulation. 2013;127(15):1576–84. https://doi.org/10.1161/circulationaha.112.000936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roekaerts PM, Prinzen FW, De Lange S. Beneficial effects of dexmedetomidine on ischaemic myocardium of anaesthetized dogs. Br J Anaesth. 1996;77(3):427–9. https://doi.org/10.1093/bja/77.3.427.

    Article  CAS  PubMed  Google Scholar 

  8. Kocoglu H, Karaaslan K, Gonca E, Bozdogan O, Gulcu N. Preconditionin effects of dexmedetomidine on myocardial ischemia/reperfusion injury in rats. Curr Ther Res Clin Exp. 2008;69(2):150–8. https://doi.org/10.1016/j.curtheres.2008.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ibacache M, Sanchez G, Pedrozo Z, Galvez F, Humeres C, Echevarria G, Duaso J, Hassi M, Garcia L, Díaz-Araya G, Lavandero S. Dexmedetomidine preconditioning activates pro-survival kinases and attenuates regional ischemia/reperfusion injury in rat heart. Biochim Biophys Acta. 2012;1822(4):537–45. https://doi.org/10.1016/j.bbadis.2011.12.013.

    Article  CAS  PubMed  Google Scholar 

  10. Yoshitomi O, Cho S, Hara T, Shibata I, Maekawa T, Ureshino H, Sumikawa K. Direct protective effects of dexmedetomidine against myocardial ischemia-reperfusion injury in anesthetized pigs. Shock. 2012;38(1):92–7. https://doi.org/10.1097/SHK.0b013e318254d3fb.

    Article  CAS  PubMed  Google Scholar 

  11. Behmenburg F, Pickert E, Mathes A, Heinen A, Hollmann MW, Huhn R, Berger MM. The cardioprotective effect of dexmedetomidine in rats is dose-dependent and mediated by bkca channels. J Cardiovasc Pharmacol. 2017;69(4):228–35. https://doi.org/10.1097/fjc.0000000000000466.

    Article  CAS  PubMed  Google Scholar 

  12. Rossello X, Yellon DM. The RISK pathway and beyond. Basic Res Cardiol. 2018;113(1):2. https://doi.org/10.1007/s00395-017-0662-x.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang J, Jiang H, Liu DH, Wang GN. Effects of dexmedetomidine on myocardial ischemia-reperfusion injury through PI3K-Akt-mTOR signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(15):6736–43. https://doi.org/10.26355/eurrev_201908_18565.

    Article  CAS  PubMed  Google Scholar 

  14. Chang JH, Jin MM, Liu JT. Dexmedetomidine pretreatment protects the heart against apoptosis in ischemia/reperfusion injury in diabetic rats by activating PI3K/Akt signaling in vivo and in vitro. Biomed Pharmacother. 2020;127:110188. https://doi.org/10.1016/j.biopha.2020.110188.

    Article  CAS  PubMed  Google Scholar 

  15. Chen ZR, Hong Y, Wen SH, Zhan YQ, Huang WQ. Dexmedetomidine pretreatment protects against myocardial ischemia/reperfusion injury by activating STAT3 signaling. Anesth Analg. 2023. https://doi.org/10.1213/ane.0000000000006487.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Riquelme JA, Westermeier F, Hall AR, Vicencio JM, Pedrozo Z, Ibacache M, Fuenzalida B, Sobrevia L, Davidson SM, Yellon DM, Sánchez G, Lavandero S. Dexmedetomidine protects the heart against ischemia-reperfusion injury by an endothelial eNOS/NO dependent mechanism. Pharmacol Res. 2016;103:318–27. https://doi.org/10.1016/j.phrs.2015.11.004.

    Article  CAS  PubMed  Google Scholar 

  17. Yoshikawa Y, Hirata N, Kawaguchi R, Tokinaga Y, Yamakage M. Dexmedetomidine maintains its direct cardioprotective effect against ischemia/reperfusion injury in hypertensive hypertrophied myocardium. Anesth Analg. 2018;126(2):443–52. https://doi.org/10.1213/ANE.0000000000002452.

    Article  CAS  PubMed  Google Scholar 

  18. Yang YF, Wang H, Song N, Jiang YH, Zhang J, Meng XW, Feng XM, Liu H, Peng K, Ji FH. Dexmedetomidine attenuates ischemia/reperfusion-induced myocardial inflammation and apoptosis through inhibiting endoplasmic reticulum stress signaling. J Inflamm Res. 2021;14:1217–33. https://doi.org/10.2147/jir.S292263.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yang YF, Peng K, Liu H, Meng XW, Zhang JJ, Ji FH. Dexmedetomidine preconditioning for myocardial protection in ischaemia-reperfusion injury in rats by downregulation of the high mobility group box 1-toll-like receptor 4-nuclear factor κB signalling pathway. Clin Exp Pharmacol Physiol. 2017;44(3):353–61. https://doi.org/10.1111/1440-1681.12711.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang JJ, Peng K, Zhang J, Meng XW, Ji FH. Dexmedetomidine preconditioning may attenuate myocardial ischemia/reperfusion injury by down-regulating the HMGB1-TLR4-MyD88-NF-кB signaling pathway. PLoS ONE. 2017;12(2):e0172006. https://doi.org/10.1371/journal.pone.0172006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang J, Xia F, Zhao H, Peng K, Liu H, Meng X, Chen C, Ji F. Dexmedetomidine-induced cardioprotection is mediated by inhibition of high mobility group box-1 and the cholinergic anti-inflammatory pathway in myocardial ischemia-reperfusion injury. PLoS ONE. 2019;14(7):e0218726. https://doi.org/10.1371/journal.pone.0218726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song J, Du J, Tan X, Wu Z, Yuan J, Cong B. Dexmedetomidine protects the heart against ischemia reperfusion injury via regulation of the bradykinin receptors. Eur J Pharmacol. 2021;911:174493. https://doi.org/10.1016/j.ejphar.2021.174493.

    Article  CAS  PubMed  Google Scholar 

  23. Yoshikawa Y, Hirata N, Terada H, Sawashita Y, Yamakage M. Identification of Candidate Genes and Pathways in Dexmedetomidine-Induced Cardioprotection in the Rat Heart by Bioinformatics Analysis. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20071614.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yu J, Yang W, Wang W, Wang Z, Pu Y, Chen H, Wang F, Qian J. Involvement of miR-665 in protection effect of dexmedetomidine against Oxidative Stress Injury in myocardial cells via CB2 and CK1. Biomed Pharmacother. 2019;115:108894. https://doi.org/10.1016/j.biopha.2019.108894.

    Article  CAS  PubMed  Google Scholar 

  25. Zhong Y, Li YP, Yin YQ, Hu BL, Gao H. Dexmedetomidine inhibits pyroptosis by down-regulating miR-29b in myocardial ischemia reperfusion injury in rats. Int Immunopharmacol. 2020;86:106768. https://doi.org/10.1016/j.intimp.2020.106768.

    Article  CAS  PubMed  Google Scholar 

  26. He L, Wang Z, Zhou R, Xiong W, Yang Y, Song N, Qian J. Dexmedetomidine exerts cardioprotective effect through miR-146a-3p targeting IRAK1 and TRAF6 via inhibition of the NF-κB pathway. Biomed Pharmacother. 2021;133:110993. https://doi.org/10.1016/j.biopha.2020.110993.

    Article  CAS  PubMed  Google Scholar 

  27. Chang Y, Xing L, Zhou W, Zhang W. Up-regulating microRNA-138-5p enhances the protective role of dexmedetomidine on myocardial ischemia-reperfusion injury mice via down-regulating Ltb4r1. Cell Cycle. 2021;20(4):445–58. https://doi.org/10.1080/15384101.2021.1878330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zheng X, Li J, Fan Q, Zhao X, Chen K. Dexmedetomidine alleviates myocardial ischemia/reperfusion-induced injury and Ca(2+) overload via the microRNA-346-3p/CaMKIId axis. Int J Cardiol. 2021;338:185–95. https://doi.org/10.1016/j.ijcard.2021.03.016.

    Article  PubMed  Google Scholar 

  29. Mimuro S, Katoh T, Suzuki A, Yu S, Adachi YU, Uraoka M, Sano H, Sato S. Deterioration of myocardial injury due to dexmedetomidine administration after myocardial ischaemia. Resuscitation. 2010;81(12):1714–7. https://doi.org/10.1016/j.resuscitation.2010.07.021.

    Article  CAS  PubMed  Google Scholar 

  30. Bunte S, Behmenburg F, Majewski N, Stroethoff M, Raupach A, Mathes A, Heinen A, Hollmann MW, Huhn R. Characteristics of dexmedetomidine postconditioning in the field of myocardial ischemia-reperfusion injury. Anesth Analg. 2020;130(1):90–8. https://doi.org/10.1213/ane.0000000000004417.

    Article  CAS  PubMed  Google Scholar 

  31. Raupach A, Karakurt E, Torregroza C, Bunte S, Feige K, Stroethoff M, Brandenburger T, Heinen A, Hollmann MW, Huhn R. Dexmedetomidine provides cardioprotection during early or late reperfusion mediated by different mitochondrial K+-channels. Anesth Analg. 2021;132(1):253–60. https://doi.org/10.1213/ane.0000000000005148.

    Article  CAS  PubMed  Google Scholar 

  32. Yu P, Zhang J, Ding Y, Chen D, Sun H, Yuan F, Li S, Li X, Yang P, Fu L, Yu S, Zhang J. Dexmedetomidine post-conditioning alleviates myocardial ischemia-reperfusion injury in rats by ferroptosis inhibition via SLC7A11/GPX4 axis activation. Hum Cell. 2022. https://doi.org/10.1007/s13577-022-00682-9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cheng XY, Gu XY, Gao Q, Zong QF, Li XH, Zhang Y. Effects of dexmedetomidine postconditioning on myocardial ischemia and the role of the PI3K/Akt-dependent signaling pathway in reperfusion injury. Mol Med Rep. 2016;14(1):797–803. https://doi.org/10.3892/mmr.2016.5345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Du J, Xu Z, Zhen J, Liu J, Yang D, Zheng EL, Leng JY. Dexmedetomidine attenuates myocardial ischemia/reperfusion injury through regulating lactate signaling cascade in mice. Eur Rev Med Pharmacol Sci. 2019;23(8):3527–32. https://doi.org/10.26355/eurrev_201904_17721.

    Article  CAS  PubMed  Google Scholar 

  35. Peng K, Chen WR, Xia F, Liu H, Meng XW, Zhang J, Liu HY, Xia ZY, Ji FH. Dexmedetomidine post-treatment attenuates cardiac ischaemia/reperfusion injury by inhibiting apoptosis through HIF-1alpha signalling. J Cell Mol Med. 2020;24(1):850–61. https://doi.org/10.1111/jcmm.14795.

    Article  CAS  PubMed  Google Scholar 

  36. Li Y, Qu M, Xing F, Li H, Cheng D, Xing N, Zhang W. The protective mechanism of dexmedetomidine in regulating Atg14L-Beclin1-Vps34 complex against myocardial ischemia-reperfusion injury. J Cardiovasc Transl Res. 2021;14(6):1063–74. https://doi.org/10.1007/s12265-021-10125-9.

    Article  PubMed  Google Scholar 

  37. Sun Y, Jiang C, Jiang J, Qiu L. Dexmedetomidine protects mice against myocardium ischaemic/reperfusion injury by activating an AMPK/PI3K/Akt/eNOS pathway. Clin Exp Pharmacol Physiol. 2017;44(9):946–53. https://doi.org/10.1111/1440-1681.12791.

    Article  CAS  PubMed  Google Scholar 

  38. Lejay A, Fang F, John R, Van JA, Barr M, Thaveau F, Chakfe N, Geny B, Scholey JW. Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus. J Mol Cell Cardiol. 2016;91:11–22. https://doi.org/10.1016/j.yjmcc.2015.12.020.

    Article  CAS  PubMed  Google Scholar 

  39. Tanaka K, Kehl F, Gu W, Krolikowski JG, Pagel PS, Warltier DC, Kersten JR. Isoflurane-induced preconditioning is attenuated by diabetes. Am J Physiol Heart Circ Physiol. 2002;282(6):H2018–23. https://doi.org/10.1152/ajpheart.01130.2001.

    Article  CAS  PubMed  Google Scholar 

  40. Penna C, Tullio F, Moro F, Folino A, Merlino A, Pagliaro P. Effects of a protocol of ischemic postconditioning and/or captopril in hearts of normotensive and hypertensive rats. Basic Res Cardiol. 2010;105(2):181–92. https://doi.org/10.1007/s00395-009-0075-6.

    Article  PubMed  Google Scholar 

  41. Ma LL, Zhang FJ, Kong FJ, Qian LB, Ma H, Wang JA, Yan M. Hypertrophied myocardium is refractory to sevoflurane-induced protection with alteration of reperfusion injury salvage kinase/glycogen synthase kinase 3β signals. Shock. 2013;40(3):217–21. https://doi.org/10.1097/SHK.0b013e3182a0674b.

    Article  CAS  PubMed  Google Scholar 

  42. Wagner C, Ebner B, Tillack D, Strasser RH, Weinbrenner C. Cardioprotection by ischemic postconditioning is abrogated in hypertrophied myocardium of spontaneously hypertensive rats. J Cardiovasc Pharmacol. 2013;61(1):35–41. https://doi.org/10.1097/FJC.0b013e3182760c4d.

    Article  CAS  PubMed  Google Scholar 

  43. Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Lin JK, Farzadfar F, Khang YH, Stevens GA, Rao M, Ali MK, Riley LM, Robinson CA, Ezzati M. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants. Lancet. 2011;378(9785):31–40. https://doi.org/10.1016/s0140-6736(11)60679-x.

    Article  CAS  PubMed  Google Scholar 

  44. Miki T, Itoh T, Sunaga D, Miura T. Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning. Cardiovasc Diabetol. 2012;11:67. https://doi.org/10.1186/1475-2840-11-67.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Di Angelantonio E, Kaptoge S, Wormser D, Willeit P, Butterworth AS, Bansal N, O’Keeffe LM, Gao P, Wood AM, Burgess S, Freitag DF, Pennells L, Peters SA, Hart CL, Håheim LL, Gillum RF, Nordestgaard BG, Psaty BM, Yeap BB, Knuiman MW, Nietert PJ, Kauhanen J, Salonen JT, Kuller LH, Simons LA, van der Schouw YT, Barrett-Connor E, Selmer R, Crespo CJ, Rodriguez B, Verschuren WM, Salomaa V, Svärdsudd K, van der Harst P, Björkelund C, Wilhelmsen L, Wallace RB, Brenner H, Amouyel P, Barr EL, Iso H, Onat A, Trevisan M, D’Agostino RB Sr, Cooper C, Kavousi M, Welin L, Roussel R, Hu FB, Sato S, Davidson KW, Howard BV, Leening MJ, Leening M, Rosengren A, Dörr M, Deeg DJ, Kiechl S, Stehouwer CD, Nissinen A, Giampaoli S, Donfrancesco C, Kromhout D, Price JF, Peters A, Meade TW, Casiglia E, Lawlor DA, Gallacher J, Nagel D, Franco OH, Assmann G, Dagenais GR, Jukema JW, Sundström J, Woodward M, Brunner EJ, Khaw KT, Wareham NJ, Whitsel EA, Njølstad I, Hedblad B, Wassertheil-Smoller S, Engström G, Rosamond WD, Selvin E, Sattar N, Thompson SG, Danesh J. Association of cardiometabolic multimorbidity with mortality. JAMA. 2015;314(1):52–60. https://doi.org/10.1001/jama.2015.7008.

    Article  CAS  PubMed  Google Scholar 

  46. Deng L, Chen H, Wei N, Zhang Z, Wang G. The cardioprotective effect of dexmedetomidine on regional ischemia/reperfusion injury in type 2 diabetic rat hearts. Microvasc Res. 2019;123:1–6. https://doi.org/10.1016/j.mvr.2018.08.006.

    Article  CAS  PubMed  Google Scholar 

  47. Li J, Zhao Y, Zhou N, Li L, Li K. Dexmedetomidine attenuates myocardial ischemia-reperfusion injury in diabetes mellitus by inhibiting endoplasmic reticulum stress. J Diabetes Res. 2019;2019:7869318. https://doi.org/10.1155/2019/7869318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cheng X, Hu J, Wang Y, Ye H, Li X, Gao Q, Li Z. Effects of dexmedetomidine postconditioning on myocardial ischemia/reperfusion injury in diabetic rats: role of the PI3K/Akt-dependent signaling pathway. J Diabetes Res. 2018;2018:3071959. https://doi.org/10.1155/2018/3071959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Torregroza C, Feige K, Schneider L, Bunte S, Stroethoff M, Heinen A, Hollmann MW, Huhn R, Raupach A. Influence of Hyperglycemia on Dexmedetomidine-Induced Cardioprotection in the Isolated Perfused Rat Heart. J Clin Med. 2020. https://doi.org/10.3390/jcm9051445.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dong J, Guo X, Yang S, Li L. The effects of dexmedetomidine preconditioning on aged rat heart of ischaemia reperfusion injury. Res Vet Sci. 2017;114:489–92. https://doi.org/10.1016/j.rvsc.2017.09.028.

    Article  CAS  PubMed  Google Scholar 

  51. Tani M, Suganuma Y, Hasegawa H, Shinmura K, Hayashi Y, Guo X, Nakamura Y. Changes in ischemic tolerance and effects of ischemic preconditioning in middle-aged rat hearts. Circulation. 1997;95(11):2559–66. https://doi.org/10.1161/01.cir.95.11.2559.

    Article  CAS  PubMed  Google Scholar 

  52. Bartling B, Friedrich I, Silber RE, Simm A. Ischemic preconditioning is not cardioprotective in senescent human myocardium. Ann Thorac Surg. 2003;76(1):105–11. https://doi.org/10.1016/s0003-4975(03)00186-3.

    Article  PubMed  Google Scholar 

  53. Boengler K, Konietzka I, Buechert A, Heinen Y, Garcia-Dorado D, Heusch G, Schulz R. Loss of ischemic preconditioning’s cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43. Am J Physiol Heart Circ Physiol. 2007;292(4):H1764–9. https://doi.org/10.1152/ajpheart.01071.2006.

    Article  CAS  PubMed  Google Scholar 

  54. Reichart D, Lindberg EL, Maatz H, Miranda AMA, Viveiros A, Shvetsov N, Gärtner A, Nadelmann ER, Lee M, Kanemaru K, Ruiz-Orera J, Strohmenger V, DeLaughter DM, Patone G, Zhang H, Woehler A, Lippert C, Kim Y, Adami E, Gorham JM, Barnett SN, Brown K, Buchan RJ, Chowdhury RA, Constantinou C, Cranley J, Felkin LE, Fox H, Ghauri A, Gummert J, Kanda M, Li R, Mach L, McDonough B, Samari S, Shahriaran F, Yapp C, Stanasiuk C, Theotokis PI, Theis FJ, van den Bogaerdt A, Wakimoto H, Ware JS, Worth CL, Barton PJR, Lee YA, Teichmann SA, Milting H, Noseda M, Oudit GY, Heinig M, Seidman JG, Hubner N, Seidman CE. Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies. Science. 2022;377(6606):eabo1984. https://doi.org/10.1126/science.abo1984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ríha H, Kotulák T, Březina A, Hess L, Kramář P, Szárszoi O, Netuka I, Pirk J. Comparison of the effects of ketamine-dexmedetomidine and sevoflurane-sufentanil anesthesia on cardiac biomarkers after cardiac surgery: an observational study. Physiol Res. 2012;61(1):63–72. https://doi.org/10.33549/physiolres.932224.

    Article  PubMed  Google Scholar 

  56. Chen S, Hua F, Lu J, Jiang Y, Tang Y, Tao L, Zou B, Wu Q. Effect of dexmedetomidine on myocardial ischemia-reperfusion injury. Int J Clin Exp Med. 2015;8(11):21166–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ammar AS, Mahmoud KM, Kasemy ZA, Helwa MA. Cardiac and renal protective effects of dexmedetomidine in cardiac surgeries: a randomized controlled trial. Saudi J Anaesth. 2016;10(4):395–401. https://doi.org/10.4103/1658-354x.177340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chi X, Liao M, Chen X, Zhao Y, Yang L, Luo A, Yang H. Dexmedetomidine attenuates myocardial injury in off-pump coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2016;30(1):44–50. https://doi.org/10.1053/j.jvca.2015.06.026.

    Article  CAS  PubMed  Google Scholar 

  59. Soliman R, Zohry G. The myocardial protective effect of dexmedetomidine in high-risk patients undergoing aortic vascular surgery. Ann Card Anaesth. 2016;19(4):606–13. https://doi.org/10.4103/0971-9784.191570.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wang Z, Chen Q, Guo H, Li Z, Zhang J, Lv L, Guo Y. Effects of dexmedetomidine on H-FABP, CK-MB, cTnI levels, neurological function and near-term prognosis in patients undergoing heart valve replacement. Exp Ther Med. 2017;14(6):5851–6. https://doi.org/10.3892/etm.2017.5265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhou H, Zhou D, Lu J, Wu C, Zhu Z. Effects of pre-cardiopulmonary bypass administration of dexmedetomidine on cardiac injuries and the inflammatory response in valve replacement surgery with a sevoflurane postconditioning protocol: a pilot study. J Cardiovasc Pharmacol. 2019;74(2):91–7. https://doi.org/10.1097/fjc.0000000000000698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Elgebaly AS, Fathy SM, Sallam AA, Elbarbary Y. Cardioprotective effects of propofol-dexmedetomidine in open-heart surgery: a prospective double-blind study. Ann Card Anaesth. 2020;23(2):134–41. https://doi.org/10.4103/aca.ACA_168_18.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wang L, Wang S, Xing Z, Li F, Teng J, Jia T. Application of dexmedetomidine in cardiopulmonary bypass prefilling. Dose Response. 2020;18(3):1559325820939764. https://doi.org/10.1177/1559325820939764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang D, Lin Q, Du M, Zheng G, Xu W, Zhang H, Liu K. Protective effect of dexmedetomidine on perioperative myocardial injury in patients with Stanford type-A aortic dissection. Rev Assoc Med Bras. 2020;66(12):1638–44. https://doi.org/10.1590/1806-9282.66.12.1638.

    Article  PubMed  Google Scholar 

  65. Tang C, Hu Y, Gao J, Jiang J, Shi S, Wang J, Geng Q, Liang X, Chai X. Dexmedetomidine pretreatment attenuates myocardial ischemia reperfusion induced acute kidney injury and endoplasmic reticulum stress in human and rat. Life Sci. 2020;257:118004. https://doi.org/10.1016/j.lfs.2020.118004.

    Article  CAS  PubMed  Google Scholar 

  66. Tosun Z, Baktir M, Kahraman HC, Baskol G, Guler G, Boyaci A. Does dexmedetomidine provide cardioprotection in coronary artery bypass grafting with cardiopulmonary bypass? A pilot study. J Cardiothorac Vasc Anesth. 2013;27(4):710–5. https://doi.org/10.1053/j.jvca.2012.12.013.

    Article  CAS  PubMed  Google Scholar 

  67. Ueki M, Kawasaki T, Habe K, Hamada K, Kawasaki C, Sata T. The effects of dexmedetomidine on inflammatory mediators after cardiopulmonary bypass. Anaesthesia. 2014;69(7):693–700. https://doi.org/10.1111/anae.12636.

    Article  CAS  PubMed  Google Scholar 

  68. Bulow NM, Colpo E, Pereira RP, Correa EF, Waczuk EP, Duarte MF, Rocha JB. Dexmedetomidine decreases the inflammatory response to myocardial surgery under mini-cardiopulmonary bypass. Braz J Med Biol Res. 2016;49(4):e4646. https://doi.org/10.1590/1414-431x20154646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kim HJ, Kim WH, Kim G, Kim E, Park MH, Shin BS, Sim WS, Kim CS, Lee YT, Cho HS. A comparison among infusion of lidocaine and dexmedetomidine alone and in combination in subjects undergoing coronary artery bypass graft: a randomized trial. Contemp Clin Trials. 2014;39(2):303–9. https://doi.org/10.1016/j.cct.2014.10.005.

    Article  PubMed  Google Scholar 

  70. Chen M, Li X, Mu G. (2021) Myocardial protective and anti-inflammatory effects of dexmedetomidine in patients undergoing cardiovascular surgery with cardiopulmonary bypass: a systematic review and meta-analysis. J Anesth. 2021:1–12. https://doi.org/10.1007/s00540-021-02982-0.

  71. Chen W, Wang Y, Pan Z, Chen X, Luo D, Wang H. Protective effects of dexmedetomidine on the ischemic myocardium in patients undergoing rheumatic heart valve replacement surgery. Exp Ther Med. 2021;21(5):427. https://doi.org/10.3892/etm.2021.9844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KT: Conceptualization, Writing—original draft preparation. YY: Conceptualization, Writing—original draft preparation. MK: Formal analysis and investigation, Writing—review and editing. NH: Conceptualization, Writing—review and supervision. MY: Writing—review and editing, supervision.

Corresponding author

Correspondence to Yusuke Yoshikawa.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, K., Yoshikawa, Y., Kanda, M. et al. Dexmedetomidine as a cardioprotective drug: a narrative review. J Anesth 37, 961–970 (2023). https://doi.org/10.1007/s00540-023-03261-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-023-03261-w

Keywords

Navigation