Skip to main content

Advertisement

Log in

Targeted therapy for osteosarcoma: a review

  • Review
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Osteosarcoma is a common primary malignant tumour of the bone that usually occurs in children and adolescents. It is characterised by difficult treatment, recurrence and metastasis, and poor prognosis. Currently, the treatment of osteosarcoma is mainly based on surgery and auxiliary chemotherapy. However, for recurrent and some primary osteosarcoma cases, owing to the rapid progression of disease and chemotherapy resistance, the effects of chemotherapy are poor. With the rapid development of tumour-targeted therapy, molecular-targeted therapy for osteosarcoma has shown promise.

Purpose

In this paper, we review the molecular mechanisms, related targets, and clinical applications of targeted osteosarcoma therapy. In doing this, we provide a summary of recent literature on the characteristics of targeted osteosarcoma therapy, the advantages of its clinical application, and development of targeted therapy in future. We aim to provide new insights into the treatment of osteosarcoma.

Conclusion

Targeted therapy shows potential in the treatment of osteosarcoma and may offer an important means of precise and personalised treatment in the future, but drug resistance and adverse effects may limit its application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  • Alexander JH, Binitie OT, Letson GD et al (2021) Osteosarcoma: an evolving understanding of a complex disease. J Am Acad Orthop Surg 29(20):e993–e1004

    PubMed  Google Scholar 

  • Ameline B, Kovac M, Nathrath M et al (2021) Overactivation of the IGF signalling pathway in osteosarcoma: a potential therapeutic target? J Pathol Clin Res 7(2):165–172

    CAS  PubMed  Google Scholar 

  • Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22(10):1276–1312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Assi T, Watson S, Samra B et al (2021) Targeting the VEGF pathway in osteosarcoma. Cells 10(5):1240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belayneh R, Fourman MS, Bhogal S et al (2021) Update on osteosarcoma. Curr Oncol Rep 23(6):71

    PubMed  Google Scholar 

  • Cao D, Lei Y, Ye Z et al (2020) Blockade of IGF/IGF-1R signaling axis with soluble IGF-1R mutants suppresses the cell proliferation and tumor growth of human osteosarcoma. Am J Cancer Res 10(10):3248–3266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chau V, Bilusic M (2020) Pembrolizumab in combination with axitinib as first-line treatment for patients with renal cell carcinoma (RCC): evidence to date. Cancer Manag Res 12:7321–7330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chawla SP, Staddon AP, Baker LH et al (2012) Phase II study of the mammalian target of rapamycin inhibitor ridaforolimus in patients with advanced bone and soft tissue sarcomas. J Clin Oncol 30(1):78–84

    CAS  PubMed  Google Scholar 

  • Chen X, Bahrami A, Pappo A et al (2014) Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep 7(1):104–112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Zhao Z, Huang Z et al (2018) Super enhancer inhibitors suppress MYC driven transcriptional amplification and tumor progression in osteosarcoma. Bone Res 6:11

    PubMed  PubMed Central  Google Scholar 

  • Chen Y, Liu R, Wang W et al (2021) Advances in targeted therapy for osteosarcoma based on molecular classification. Pharmacol Res 169:105684

    CAS  PubMed  Google Scholar 

  • Cole KA, Pal S, Kudgus RA et al (2020) Phase I clinical trial of the wee1 inhibitor adavosertib (AZD1775) with irinotecan in children with relapsed solid tumors: a COG phase I consortium report (ADVL1312). Clin Cancer Res 26(6):1213–1219

    CAS  PubMed  Google Scholar 

  • Cole S, Gianferante DM, Zhu B et al (2022) Osteosarcoma: a surveillance, epidemiology, and end results program-based analysis from 1975 to 2017. Cancer 128(11):2107–2118

    PubMed  Google Scholar 

  • Czarnecka AM, Synoradzki K, Firlej W et al (2020) Molecular biology of osteosarcoma. Cancers (basel) 12(8):2130

    CAS  PubMed  Google Scholar 

  • Davis LE, Bolejack V, Ryan CW et al (2019) Randomized double-blind phase II study of regorafenib in patients with metastatic osteosarcoma. J Clin Oncol 37(16):1424–1431

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Nigris F, Ruosi C, Napoli C (2021) Clinical efficiency of epigenetic drugs therapy in bone malignancies. Bone 143:115605

    PubMed  Google Scholar 

  • Duan Z, Choy E, Harmon D et al (2009) Insulin-like growth factor-I receptor tyrosine kinase inhibitor cyclolignan picropodophyllin inhibits proliferation and induces apoptosis in multidrug resistant osteosarcoma cell lines. Mol Cancer Ther 8(8):2122–2130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duffaud F, Mir O, Boudou-Rouquette P et al (2019) Efficacy and safety of regorafenib in adult patients with metastatic osteosarcoma: a non-comparative, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol 20(1):120–133

    CAS  PubMed  Google Scholar 

  • Ebb D, Meyers P, Grier H et al (2012) Phase II trial of trastuzumab in combination with cytotoxic chemotherapy for treatment of metastatic osteosarcoma with human epidermal growth factor receptor 2 overexpression: a report from the children’s oncology group. J Clin Oncol 30(20):2545–2551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elete KR, Albritton KH, Akers LJ et al (2020) Response to pazopanib in patients with relapsed osteosarcoma. J Pediatr Hematol Oncol 42(4):e254–e257

    PubMed  Google Scholar 

  • Feng W, Dean DC, Hornicek FJ et al (2020) Myc is a prognostic biomarker and potential therapeutic target in osteosarcoma. Ther Adv Med Oncol 12:1758835920922055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fleuren ED, Versleijen-Jonkers YM, Roeffen MH et al (2014) Temsirolimus combined with cisplatin or bevacizumab is active in osteosarcoma models. Int J Cancer 135(12):2770–2782

    CAS  PubMed  Google Scholar 

  • Frankel P, Ruel C, Uche A et al (2022) Pazopanib in patients with osteosarcoma metastatic to the lung: phase 2 study results and the lessons for tumor measurement. J Oncol 2022:3691025

    PubMed  PubMed Central  Google Scholar 

  • Fu W, Ma L, Chu B et al (2011) The cyclin-dependent kinase inhibitor SCH 727965 (dinacliclib) induces the apoptosis of osteosarcoma cells. Mol Cancer Ther 10(6):1018–1027

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goetz MP, Toi M, Campone M et al (2017) MONARCH 3: abemaciclib as initial therapy for advanced breast cancer. J Clin Oncol 35(32):3638–3646

    CAS  PubMed  Google Scholar 

  • Grignani G, Palmerini E, Dileo P et al (2012) A phase II trial of sorafenib in relapsed and unresectable high-grade osteosarcoma after failure of standard multimodal therapy: an Italian Sarcoma Group study. Ann Oncol 23(2):508–516

    CAS  PubMed  Google Scholar 

  • Grignani G, Palmerini E, Ferraresi V et al (2015) Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised phase 2 clinical trial. Lancet Oncol 16(1):98–107

    CAS  PubMed  Google Scholar 

  • Han G, Wang Y, Bi W (2012) C-Myc overexpression promotes osteosarcoma cell invasion via activation of MEK-ERK pathway. Oncol Res 20(4):149–156

    PubMed  Google Scholar 

  • He Y, Luo Y, Huang L et al (2021) New frontiers against sorafenib resistance in renal cell carcinoma: from molecular mechanisms to predictive biomarkers. Pharmacol Res 170:105732

    CAS  PubMed  Google Scholar 

  • Higuchi T, Sugisawa N, Miyake K et al (2019) The combination of olaratumab with doxorubicin and cisplatinum regresses a chemotherapy-resistant osteosarcoma in a patient-derived orthotopic xenograft mouse model. Transl Oncol 12(9):1257–1263

    PubMed  PubMed Central  Google Scholar 

  • Higuchi T, Igarashi K, Yamamoto N et al (2021) Multikinase-inhibitor screening in drug-resistant osteosarcoma patient-derived orthotopic xenograft mouse models identifies the clinical potential of regorafenib. Cancer Genomics Proteomics 18(5):637–643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu K, Dai HB, Qiu ZL (2016) mTOR signaling in osteosarcoma: Oncogenesis and therapeutic aspects (review). Oncol Rep 36(3):1219–1225

    CAS  PubMed  Google Scholar 

  • Hua H, Kong Q, Zhang H et al (2019) Targeting mTOR for cancer therapy. J Hematol Oncol 12(1):71

    PubMed  PubMed Central  Google Scholar 

  • Huang PQ, Boren BC, Hegde SG et al (2021) Discovery of ZN-c3, a highly potent and selective wee1 inhibitor undergoing evaluation in clinical trials for the treatment of cancer. J Med Chem 64(17):13004–13024

    CAS  PubMed  Google Scholar 

  • Hussain S, Singh A, Nazir SU et al (2019) Cancer drug resistance: a fleet to conquer. J Cell Biochem 120(9):14213–14225

    CAS  PubMed  Google Scholar 

  • Italiano A, Mir O, Mathoulin-Pelissier S et al (2020) Cabozantinib in patients with advanced Ewing sarcoma or osteosarcoma (CABONE): a multicentre, single-arm, phase 2 trial. Lancet Oncol 21(3):446–455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji J, Quindipan C, Parham D et al (2017) Inherited germline ATRX mutation in two brothers with ATR-X syndrome and osteosarcoma. Am J Med Genet A 173(5):1390–1395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia P, Chang S, Zhang Y et al (2021) Safety of bevacizumab combined with chemotherapy in the treatment of recurrent ovarian cancer and its effect on adverse reactions and digestive function. Minerva Gastroenterol (torino). https://doi.org/10.23736/S2724-5985.21.02921-1

    Article  PubMed  Google Scholar 

  • Jiang J, Pan H, Li M et al (2021) Predictive model for the 5-year survival status of osteosarcoma patients based on the SEER database and XGBoost algorithm. Sci Rep 11(1):5542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kovac M, Blattmann C, Ribi S et al (2015) Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat Commun 6:8940

    CAS  PubMed  Google Scholar 

  • Kreahling JM, Foroutan P, Reed D et al (2013) Wee1 inhibition by MK-1775 leads to tumor inhibition and enhances efficacy of gemcitabine in human sarcomas. PLoS ONE 8(3):e57523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang J, Zhao H, Diplas BH et al (2020) Genome-wide CRISPR-Cas9 screen reveals selective vulnerability of ATRX-mutant cancers to WEE1 inhibition. Cancer Res 80(3):510–523

    CAS  PubMed  Google Scholar 

  • Liu M, Sun LL, Li YJ et al (2015) Trastuzumab enhanced the cytotoxicity of Vgamma9Vdelta2 T cells against zoledronate-sensitized osteosarcoma cells. Int Immunopharmacol 28(1):160–167

    CAS  PubMed  Google Scholar 

  • Liu K, Ren T, Huang Y et al (2017) Apatinib promotes autophagy and apoptosis through VEGFR2/STAT3/BCL-2 signaling in osteosarcoma. Cell Death Dis 8(8):e3015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Huang N, Liao S et al (2021) Current research progress in targeted anti-angiogenesis therapy for osteosarcoma. Cell Prolif 54(9):e13102

    PubMed  PubMed Central  Google Scholar 

  • Lockwood WW, Stack D, Morris T et al (2011) Cyclin E1 is amplified and overexpressed in osteosarcoma. J Mol Diagn 13(3):289–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long Z, Huang M, Liu K et al (2021) Assessment of efficiency and safety of apatinib in advanced bone and soft tissue sarcomas: a systematic review and meta-analysis. Front Oncol 11:662318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowery CD, Blosser W, Dowless M et al (2018) Olaratumab exerts antitumor activity in preclinical models of pediatric bone and soft tissue tumors through inhibition of platelet-derived growth factor receptor alpha. Clin Cancer Res 24(4):847–857

    CAS  PubMed  Google Scholar 

  • Lukasik P, Zaluski M, Gutowska I (2021) Cyclin-dependent kinases (CDK) and their role in diseases development-review. Int J Mol Sci 22(6):2935

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madden SK, de Araujo AD, Gerhardt M et al (2021) Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Mol Cancer 20(1):3

    PubMed  PubMed Central  Google Scholar 

  • Man S, Luo C, Yan M et al (2021) Treatment for liver cancer: from sorafenib to natural products. Eur J Med Chem 224:113690

    CAS  PubMed  Google Scholar 

  • Marchio C, Annaratone L, Marques A et al (2021) Evolving concepts in HER2 evaluation in breast cancer: heterogeneity, HER2-low carcinomas and beyond. Semin Cancer Biol 72:123–135

    CAS  PubMed  Google Scholar 

  • Martin AI, Priego T, Moreno-Ruperez A et al (2021) IGF-1 and IGFBP-3 in inflammatory cachexia. Int J Mol Sci 22(17):9469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masliah-Planchon J, Levy D, Heron D et al (2018) Does ATRX germline variation predispose to osteosarcoma? Three additional cases of osteosarcoma in two ATR-X syndrome patients. Eur J Hum Genet 26(8):1217–1221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mason-Osann E, Dai A, Floro J et al (2018) Identification of a novel gene fusion in ALT positive osteosarcoma. Oncotarget 9(67):32868–32880

    PubMed  PubMed Central  Google Scholar 

  • Matheson CJ, Backos DS, Reigan P (2016) Targeting WEE1 kinase in cancer. Trends Pharmacol Sci 37(10):872–881

    CAS  PubMed  Google Scholar 

  • Mei J, Zhu X, Wang Z et al (2014) VEGFR, RET, and RAF/MEK/ERK pathway take part in the inhibition of osteosarcoma MG63 cells with sorafenib treatment. Cell Biochem Biophys 69(1):151–156

    CAS  PubMed  Google Scholar 

  • Mele L, Del Vecchio V, Liccardo D et al (2020) The role of autophagy in resistance to targeted therapies. Cancer Treat Rev 88:102043

    CAS  PubMed  Google Scholar 

  • Meng X, Gao JZ, Gomendoza SMT et al (2021) Recent advances of wee1 inhibitors and statins in cancers with p53 mutations. Front Med (lausanne) 8:737951

    PubMed  Google Scholar 

  • Mickymaray S, Alfaiz FA, Paramasivam A et al (2021) Rhaponticin suppresses osteosarcoma through the inhibition of PI3K-Akt-mTOR pathway. Saudi J Biol Sci 28(7):3641–3649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed FEA, Khalil EZI, Toni NDM (2020) Caveolin-1 expression together with VEGF can be a predictor for lung metastasis and poor prognosis in osteosarcoma. Pathol Oncol Res 26(3):1787–1795

    PubMed  Google Scholar 

  • Moiseeva TN, Qian C, Sugitani N et al (2019) WEE1 kinase inhibitor AZD1775 induces CDK1 kinase-dependent origin firing in unperturbed G1- and S-phase cells. Proc Natl Acad Sci USA 116(48):23891–23893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morita K, Sasaki K (2021) Current status and novel strategy of CML. Int J Hematol 113(5):624–631

    CAS  PubMed  Google Scholar 

  • Mosse YP, Fox E, Teachey DT et al (2019) A phase II study of alisertib in children with recurrent/refractory solid tumors or leukemia: children’s oncology group phase I and pilot consortium (ADVL0921). Clin Cancer Res 25(11):3229–3238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y, Okamoto W, Kato T et al (2021) Circulating tumor DNA-guided treatment with pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer: a phase 2 trial. Nat Med 27(11):1899–1903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Navid F, Santana VM, Neel M et al (2017) A phase II trial evaluating the feasibility of adding bevacizumab to standard osteosarcoma therapy. Int J Cancer 141(7):1469–1477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newswire PR (2021a) OS Therapies Receives Rare Pediatric Disease Designation (RDD) in Osteosarcoma for OST-HER2 (Listeria monocytogenes). OS-THERAPIES-FDA-appr: Y

  • Newswire PR (2021b) OS Therapies Announces Dosing of First Patient in a Phase IIb Trial of OST-HER2 (Listeria monocytogenes) in Recurred, Resected Osteosarcoma. OSTHERAPIES-dosing: Y

  • Niu NK, Wang ZL, Pan ST et al (2015) Pro-apoptotic and pro-autophagic effects of the Aurora kinase A inhibitor alisertib (MLN8237) on human osteosarcoma U-2 OS and MG-63 cells through the activation of mitochondria-mediated pathway and inhibition of p38 MAPK/PI3K/Akt/mTOR signaling pathway. Drug Des Devel Ther 9:1555–1584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oda Y, Wehrmann B, Radig K et al (1995) Expression of growth factors and their receptors in human osteosarcomas. Immunohistochemical detection of epidermal growth factor, platelet-derived growth factor and their receptors: its correlation with proliferating activities and p53 expression. Gen Diagn Pathol 141(2):97–103

    CAS  PubMed  Google Scholar 

  • Oshiro H, Tome Y, Miyake K et al (2021) Combination of CDK4/6 and mTOR inhibitors suppressed doxorubicin-resistant osteosarcoma in a patient-derived orthotopic xenograft mouse model: a translatable strategy for recalcitrant disease. Anticancer Res 41(7):3287–3292

    CAS  PubMed  Google Scholar 

  • Pahl JH, Ruslan SE, Buddingh EP et al (2012) Anti-EGFR antibody cetuximab enhances the cytolytic activity of natural killer cells toward osteosarcoma. Clin Cancer Res 18(2):432–441

    CAS  PubMed  Google Scholar 

  • Park HJ, Bae JS, Kim KM et al (2018) The PARP inhibitor olaparib potentiates the effect of the DNA damaging agent doxorubicin in osteosarcoma. J Exp Clin Cancer Res 37(1):107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parmar D, Apte M (2021) Angiopoietin inhibitors: a review on targeting tumor angiogenesis. Eur J Pharmacol 899:174021

    CAS  PubMed  Google Scholar 

  • Pignochino Y, Dell’Aglio C, Basirico M et al (2013) The combination of sorafenib and everolimus abrogates mTORC1 and mTORC2 upregulation in osteosarcoma preclinical models. Clin Cancer Res 19(8):2117–2131

    CAS  PubMed  Google Scholar 

  • PosthumaDeBoer J, Wurdinger T, Graat HC et al (2011) WEE1 inhibition sensitizes osteosarcoma to radiotherapy. BMC Cancer 11:156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pottier C, Fresnais M, Gilon M et al (2020) Tyrosine kinase inhibitors in cancer: breakthrough and challenges of targeted therapy. Cancers (basel) 12(3):731

    CAS  PubMed  Google Scholar 

  • Puzik A, Uhl M, Ruf J et al (2021) Unusual course of disease and genetic profile in Li-Fraumeni syndrome-associated osteosarcoma—a case report. Hered Cancer Clin Pract 19(1):44

    PubMed  PubMed Central  Google Scholar 

  • Qadeer ZA, Valle-Garcia D, Hasson D et al (2019) ATRX in-frame fusion neuroblastoma is sensitive to EZH2 inhibition via modulation of neuronal gene signatures. Cancer Cell 36(5):512-527 e519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qi B, Zhang R, Sun R et al (2019) IGF-1R inhibitor PQ401 inhibits osteosarcoma cell proliferation, migration and colony formation. Int J Clin Exp Pathol 12(5):1589–1598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rader J, Russell MR, Hart LS et al (2013) Dual CDK4/CDK6 inhibition induces cell-cycle arrest and senescence in neuroblastoma. Clin Cancer Res 19(22):6173–6182

    CAS  PubMed  Google Scholar 

  • Rickel K, Fang F, Tao J (2017) Molecular genetics of osteosarcoma. Bone 102:69–79

    CAS  PubMed  Google Scholar 

  • Robert C, Karaszewska B, Schachter J et al (2015) Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med 372(1):30–39

    PubMed  Google Scholar 

  • Rosen EM, Pishvaian MJ (2014) Targeting the BRCA1/2 tumor suppressors. Curr Drug Targets 15(1):17–31

    CAS  PubMed  Google Scholar 

  • Sabbah DA, Hajjo R, Sweidan K (2020) Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr Top Med Chem 20(10):815–834

    CAS  PubMed  Google Scholar 

  • Saraon P, Pathmanathan S, Snider J et al (2021) Receptor tyrosine kinases and cancer: oncogenic mechanisms and therapeutic approaches. Oncogene 40(24):4079–4093

    CAS  PubMed  Google Scholar 

  • Sayles LC, Breese MR, Koehne AL et al (2019) Genome-informed targeted therapy for osteosarcoma. Cancer Discov 9(1):46–63

    CAS  PubMed  Google Scholar 

  • Schram AM, Chang MT, Jonsson P et al (2017) Fusions in solid tumours: diagnostic strategies, targeted therapy, and acquired resistance. Nat Rev Clin Oncol 14(12):735–748

    CAS  PubMed  Google Scholar 

  • Sciot R (2021) MDM2 amplified sarcomas: a literature review. Diagnostics (basel) 11(3):496

    CAS  PubMed  Google Scholar 

  • Seidman A, Hudis C, Pierri MK et al (2002) Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol 20(5):1215–1221

    CAS  PubMed  Google Scholar 

  • Seligmann JF, Fisher DJ, Brown LC et al (2021) Inhibition of WEE1 is effective in TP53- and RAS-mutant metastatic colorectal cancer: a randomized trial (FOCUS4-C) comparing adavosertib (AZD1775) with active monitoring. J Clin Oncol 39(33):3705–3715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sevelda F, Mayr L, Kubista B et al (2015) EGFR is not a major driver for osteosarcoma cell growth in vitro but contributes to starvation and chemotherapy resistance. J Exp Clin Cancer Res 34:134

    PubMed  PubMed Central  Google Scholar 

  • Shaikh AB, Li F, Li M et al (2016) Present advances and future perspectives of molecular targeted therapy for osteosarcoma. Int J Mol Sci 17(4):506

    PubMed  PubMed Central  Google Scholar 

  • Sheng J, Yin M, Sun Z et al (2017) SPC24 promotes osteosarcoma progression by increasing EGFR/MAPK signaling. Oncotarget 8(62):105276–105283

    PubMed  PubMed Central  Google Scholar 

  • Song H, Zhou Y, Peng A et al (2020) Aurora-B promotes osteosarcoma cell growth and metastasis through activation of the NPM1/ERK/NF-kappabeta/MMPs axis. Cancer Manag Res 12:4817–4827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sorolla A, Wang E, Golden E et al (2020) Precision medicine by designer interference peptides: applications in oncology and molecular therapeutics. Oncogene 39(6):1167–1184

    CAS  PubMed  Google Scholar 

  • Suehara Y, Alex D, Bowman A et al (2019) Clinical genomic sequencing of pediatric and adult osteosarcoma reveals distinct molecular subsets with potentially targetable alterations. Clin Cancer Res 25(21):6346–6356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Synoradzki KJ, Bartnik E, Czarnecka AM et al (2021) TP53 in biology and treatment of osteosarcoma. Cancers (basel) 13(17):4284

    CAS  PubMed  Google Scholar 

  • Takebe N, Naqash AR, O’Sullivan Coyne G et al (2021) Safety, antitumor activity, and biomarker analysis in a phase I trial of the once-daily wee1 inhibitor adavosertib (AZD1775) in patients with advanced solid tumors. Clin Cancer Res 27(14):3834–3844

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang F, Min L, Seebacher NA et al (2019) Targeting mutant TP53 as a potential therapeutic strategy for the treatment of osteosarcoma. J Orthop Res 37(3):789–798

    CAS  PubMed  Google Scholar 

  • Tavanti E, Sero V, Vella S et al (2013) Preclinical validation of Aurora kinases-targeting drugs in osteosarcoma. Br J Cancer 109(10):2607–2618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor MH, Lee CH, Makker V et al (2020) Phase IB/II trial of lenvatinib plus pembrolizumab in patients with advanced renal cell carcinoma, endometrial cancer, and other selected advanced solid tumors. J Clin Oncol 38(11):1154–1163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tumbrink HL, Heimsoeth A, Sos ML (2021) The next tier of EGFR resistance mutations in lung cancer. Oncogene 40(1):1–11

    CAS  PubMed  Google Scholar 

  • Tzanakakis GN, Giatagana EM, Berdiaki A et al (2021) The role of IGF/IGF-IR-signaling and extracellular matrix effectors in bone sarcoma pathogenesis. Cancers (basel) 13(10):2478

    CAS  PubMed  Google Scholar 

  • Udagawa C, Zembutsu H (2020) Pharmacogenetics for severe adverse drug reactions induced by molecular-targeted therapy. Cancer Sci 111(10):3445–3457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner LM, Fouladi M, Ahmed A et al (2015) Phase II study of cixutumumab in combination with temsirolimus in pediatric patients and young adults with recurrent or refractory sarcoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer 62(3):440–444

    CAS  PubMed  Google Scholar 

  • Wahlstrom T, Henriksson MA (2015) Impact of MYC in regulation of tumor cell metabolism. Biochim Biophys Acta 1849(5):563–569

    PubMed  Google Scholar 

  • Wan Z, Huang S, Mo F et al (2019) CSN5 controls the growth of osteosarcoma via modulating the EGFR/PI3K/Akt axis. Exp Cell Res 384(2):111646

    CAS  PubMed  Google Scholar 

  • Wang D, Bao H (2022) Abemaciclib is synergistic with doxorubicin in osteosarcoma pre-clinical models via inhibition of CDK4/6-Cyclin D-Rb pathway. Cancer Chemother Pharmacol 89(1):31–40

    CAS  PubMed  Google Scholar 

  • Wang B, Li J (2020) Piceatannol suppresses the proliferation and induced apoptosis of osteosarcoma cells through PI3K/AKT/mTOR pathway. Cancer Manag Res 12:2631–2640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Sun W, Zhao Y et al (2014) SAR405838: an optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression. Cancer Res 74(20):5855–5865

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JY, Wu PK, Chen PC et al (2017) Generation of osteosarcomas from a combination of Rb silencing and c-Myc overexpression in human mesenchymal stem cells. Stem Cells Transl Med 6(2):512–526

    CAS  PubMed  Google Scholar 

  • Wei R, Thanindratarn P, Dean DC et al (2020) Cyclin E1 is a prognostic biomarker and potential therapeutic target in osteosarcoma. J Orthop Res 38(9):1952–1964

    CAS  PubMed  Google Scholar 

  • Weigel B, Malempati S, Reid JM et al (2014) Phase 2 trial of cixutumumab in children, adolescents, and young adults with refractory solid tumors: a report from the Children’s Oncology Group. Pediatr Blood Cancer 61(3):452–456

    CAS  PubMed  Google Scholar 

  • Wintheiser GA, Silberstein P (2022) Physiology, tyrosine kinase receptors. StatPearls, Treasure Island (FL)

  • Wu X, Liu JM, Song HH et al (2020) Aurora-B knockdown inhibits osteosarcoma metastasis by inducing autophagy via the mTOR/ULK1 pathway. Cancer Cell Int 20(1):575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Xu J, Sun X et al (2021) Apatinib plus ifosfamide and etoposide for relapsed or refractory osteosarcoma: a retrospective study in two centres. Oncol Lett 22(1):552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xing S, Wang C, Tang H et al (2020) Down-regulation of PDGFRbeta suppresses invasion and migration in osteosarcoma cells by influencing epithelial-mesenchymal transition. FEBS Open Bio 10(9):1748–1757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Xie L, Guo W (2018) PDGF/PDGFR effects in osteosarcoma and the “add-on” strategy. Clin Sarcoma Res 8:15

    PubMed  PubMed Central  Google Scholar 

  • Yamaguchi SI, Ueki A, Sugihara E et al (2015) Synergistic antiproliferative effect of imatinib and adriamycin in platelet-derived growth factor receptor-expressing osteosarcoma cells. Cancer Sci 106(7):875–882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Fang D, Chen H et al (2015) Cyclin-dependent kinase 2 is an ideal target for ovary tumors with elevated cyclin E1 expression. Oncotarget 6(25):20801–20812

    PubMed  PubMed Central  Google Scholar 

  • Yu X, Yustein JT, Xu J (2021) Research models and mesenchymal/epithelial plasticity of osteosarcoma. Cell Biosci 11(1):94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong L, Li Y, Xiong L et al (2021) Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther 6(1):201

    PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Shen JK, Hornicek FJ et al (2016) The emerging roles and therapeutic potential of cyclin-dependent kinase 11 (CDK11) in human cancer. Oncotarget 7(26):40846–40859

    PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Shen JK, Yu Z et al (2018) Expression and therapeutic implications of cyclin-dependent kinase 4 (CDK4) in osteosarcoma. Biochim Biophys Acta Mol Basis Dis 1864(5 Pt A):1573–1582

    CAS  PubMed  Google Scholar 

  • Zhu X, Mei J, Wang Z (2014) Aurora-A kinase: potential tumor marker of osteosarcoma. J Cancer Res Ther 10(Suppl):C102-107

    PubMed  Google Scholar 

  • Zocchi L, Wu SC, Wu J et al (2018) The cyclin-dependent kinase inhibitor flavopiridol (alvocidib) inhibits metastasis of human osteosarcoma cells. Oncotarget 9(34):23505–23518

    PubMed  PubMed Central  Google Scholar 

  • Zvi Y, Ugur E, Batko B et al (2021) Prognostic and therapeutic utility of variably expressed cell surface receptors in osteosarcoma. Sarcoma 2021:8324348

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

(1) Shenyang Science and Technology Project (21-173-9-24). (2) China Postdoctoral Science Foundation, sponsor number: 2021M693912. (3) 345 Talent Project of Shengjing Hospital (M0944 and M0744).

Author information

Authors and Affiliations

Authors

Contributions

SL wrote the main manuscript, HZ and JL prepared the tables and figures, GS edited this manuscript and viewed this study. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Guanning Shang.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhang, H., Liu, J. et al. Targeted therapy for osteosarcoma: a review. J Cancer Res Clin Oncol 149, 6785–6797 (2023). https://doi.org/10.1007/s00432-023-04614-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-023-04614-4

Keywords

Navigation