Skip to main content
Log in

Treating Head and Neck Cancer in the Age of Immunotherapy: A 2023 Update

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Most patients diagnosed with head and neck squamous cell carcinoma (HNSCC) will present with locally advanced disease, requiring multimodality therapy. While this approach has a curative intent, a significant subset of these patients will develop locoregional failure and/or distant metastases. The prognosis of these patients is poor, and therapeutic options other than palliative chemotherapy are urgently needed. Epidermal growth factor receptor (EGFR) overexpression is an important factor in the pathogenesis of HNSCC, and a decade ago, the EGFR targeting monoclonal antibody cetuximab was approved for the treatment of late-stage HNSCC in different settings. In 2016, the anti-programmed death-1 (PD-1) immune checkpoint inhibitors nivolumab and pembrolizumab were both approved for the treatment of patients with recurrent or metastatic HNSCC with disease progression on or after platinum-containing chemotherapy, and in 2019, pembrolizumab was approved for first-line treatment (either as monotherapy in PD-L1 expressing tumors, or in combination with chemotherapy). Currently, trials are ongoing to include immune checkpoint inhibition in the (neo)adjuvant treatment of HNSCC as well as in novel combinations with other drugs in the recurrent/metastatic setting to improve response rates and survival and help overcome resistance mechanisms to immune checkpoint blockade. This article provides a comprehensive review of the management of head and neck cancers in the current era of immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Global Cancer Observatory. International Agency for Research on Cancer. World Health Organization. https://gco.iarc.fr

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.

    Article  PubMed  Google Scholar 

  3. Gupta B, Bray F, Kumar N, Johnson NW. Associations between oral hygiene habits, diet, tobacco and alcohol and risk of oral cancer: a case-control study from India. Cancer Epidemiol. 2017;51:7–14.

    Article  PubMed  Google Scholar 

  4. Chen YP, Chan ATC, Le QT, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. Lancet. 2019;394(10192):64–80.

    Article  PubMed  Google Scholar 

  5. Chaturvedi AK, Engels EA, Pfeiffer RM, Hernandez BY, Xiao W, Kim E, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol. 2011;29(32):4294–301.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Garnaes E, Kiss K, Andersen L, Therkildsen MH, Franzmann MB, Filtenborg-Barnkob B, et al. A high and increasing HPV prevalence in tonsillar cancers in Eastern Denmark, 2000–2010: the largest registry-based study to date. Int J Cancer. 2015;136(9):2196–203.

    Article  CAS  PubMed  Google Scholar 

  7. Hannisdal K, Schjolberg A, De Angelis PM, Boysen M, Clausen OP. Human papillomavirus (HPV)-positive tonsillar carcinomas are frequent and have a favourable prognosis in males in Norway. Acta Otolaryngol. 2010;130(2):293–9.

    Article  CAS  PubMed  Google Scholar 

  8. Nasman A, Attner P, Hammarstedt L, Du J, Eriksson M, Giraud G, et al. Incidence of human papillomavirus (HPV) positive tonsillar carcinoma in Stockholm, Sweden: an epidemic of viral-induced carcinoma? Int J Cancer. 2009;125(2):362–6.

    Article  PubMed  Google Scholar 

  9. Rietbergen MM, Leemans CR, Bloemena E, Heideman DA, Braakhuis BJ, Hesselink AT, et al. Increasing prevalence rates of HPV attributable oropharyngeal squamous cell carcinomas in the Netherlands as assessed by a validated test algorithm. Int J Cancer. 2013;132(7):1565–71.

    Article  CAS  PubMed  Google Scholar 

  10. de Martel C, Plummer M, Vignat J, Franceschi S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int J Cancer. 2017;141(4):664–70.

    Article  PubMed  PubMed Central  Google Scholar 

  11. O’Sullivan B, Huang SH, Su J, Garden AS, Sturgis EM, Dahlstrom K, et al. Development and validation of a staging system for HPV-related oropharyngeal cancer by the International Collaboration on Oropharyngeal cancer Network for Staging (ICON-S): a multicentre cohort study. Lancet Oncol. 2016;17(4):440–51.

    Article  PubMed  Google Scholar 

  12. Gillison ML, Chaturvedi AK, Anderson WF, Fakhry C. Epidemiology of human papillomavirus-positive head and neck squamous cell carcinoma. J Clin Oncol. 2015;33(29):3235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Taberna M, Mena M, Pavon MA, Alemany L, Gillison ML, Mesia R. Human papillomavirus-related oropharyngeal cancer. Ann Oncol. 2017;28(10):2386–98.

    Article  CAS  PubMed  Google Scholar 

  14. Gillison ML, Broutian T, Pickard RK, Tong ZY, Xiao W, Kahle L, et al. Prevalence of oral HPV infection in the United States, 2009–2010. JAMA. 2012;307(7):693–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tan PF, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363(1):24–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Agalliu I, Gapstur S, Chen Z, Wang T, Anderson RL, Teras L, et al. Associations of Oral alpha-, beta-, and gamma-Human Papillomavirus Types With Risk of Incident Head and Neck Cancer. JAMA Oncol. 2016;2(5):599–606.

    Article  PubMed  PubMed Central  Google Scholar 

  17. D’Souza G, Gross ND, Pai SI, Haddad R, Anderson KS, Rajan S, et al. Oral human papillomavirus (HPV) infection in HPV-positive patients with oropharyngeal cancer and their partners. J Clin Oncol. 2014;32(23):2408–15.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nielsen KJ, Jakobsen KK, Jensen JS, Gronhoj C, Von Buchwald C. The effect of prophylactic HPV vaccines on oral and oropharyngeal HPV infection—a systematic review. Viruses. 2021;13(7).

  19. Snijders PJ, Cromme FV, van den Brule AJ, Schrijnemakers HF, Snow GB, Meijer CJ, et al. Prevalence and expression of human papillomavirus in tonsillar carcinomas, indicating a possible viral etiology. Int J Cancer. 1992;51(6):845–50.

    Article  CAS  PubMed  Google Scholar 

  20. de Villiers EM, Weidauer H, Otto H, zur Hausen HH. Papillomavirus DNA in human tongue carcinomas. Int J Cancer. 1985;36(5):575–8.

    Article  PubMed  Google Scholar 

  21. Hausen zur H. Human papillomaviruses and their possible role in squamous cell carcinomas. Curr Top Microbiol Immunol. 1977;78:1–30.

    Google Scholar 

  22. Gillison ML, Koch WM, Capone RB, Spafford M, Westra WH, Wu L, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst. 2000;92(9):709–20.

    Article  CAS  PubMed  Google Scholar 

  23. Slebos RJ, Yi Y, Ely K, Carter J, Evjen A, Zhang X, et al. Gene expression differences associated with human papillomavirus status in head and neck squamous cell carcinoma. Clin Cancer Res. 2006;12(3 Pt 1):701–9.

    Article  CAS  PubMed  Google Scholar 

  24. Smeets SJ, Braakhuis BJ, Abbas S, Snijders PJ, Ylstra B, van de Wiel MA, et al. Genome-wide DNA copy number alterations in head and neck squamous cell carcinomas with or without oncogene-expressing human papillomavirus. Oncogene. 2006;25(17):2558–64.

    Article  CAS  PubMed  Google Scholar 

  25. Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellsague X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348(6):518–27.

    Article  PubMed  Google Scholar 

  26. Hudelist G, Manavi M, Pischinger KI, Watkins-Riedel T, Singer CF, Kubista E, et al. Physical state and expression of HPV DNA in benign and dysplastic cervical tissue: different levels of viral integration are correlated with lesion grade. Gynecol Oncol. 2004;92(3):873–80.

    Article  CAS  PubMed  Google Scholar 

  27. Yu T, Ferber MJ, Cheung TH, Chung TK, Wong YF, Smith DI. The role of viral integration in the development of cervical cancer. Cancer Genet Cytogenet. 2005;158(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  28. Palefsky JM, Holly EA. Molecular virology and epidemiology of human papillomavirus and cervical cancer. Cancer Epidemiol Biomark Prev. 1995;4(4):415–28.

    CAS  Google Scholar 

  29. Munger K, Phelps WC, Bubb V, Howley PM, Schlegel R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol. 1989;63(10):4417–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dupuy C, Buzoni-Gatel D, Touze A, Le Cann P, Bout D, Coursaget P. Cell mediated immunity induced in mice by HPV 16 L1 virus-like particles. Microb Pathog. 1997;22(4):219–25.

    Article  CAS  PubMed  Google Scholar 

  31. Hinds P, Finlay C, Levine AJ. Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J Virol. 1989;63(2):739–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Masuda H, Miller C, Koeffler HP, Battifora H, Cline MJ. Rearrangement of the p53 gene in human osteogenic sarcomas. Proc Natl Acad Sci USA. 1987;84(21):7716–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Havre PA, Yuan J, Hedrick L, Cho KR, Glazer PM. p53 inactivation by HPV16 E6 results in increased mutagenesis in human cells. Cancer Res. 1995;55(19):4420–4.

    CAS  PubMed  Google Scholar 

  34. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell. 1993;75(3):495–505.

    Article  CAS  PubMed  Google Scholar 

  35. Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science. 1990;248(4951):76–9.

    Article  CAS  PubMed  Google Scholar 

  36. Pagano M, Durst M, Joswig S, Draetta G, Jansen-Durr P. Binding of the human E2F transcription factor to the retinoblastoma protein but not to cyclin A is abolished in HPV-16-immortalized cells. Oncogene. 1992;7(9):1681–6.

    CAS  PubMed  Google Scholar 

  37. Demers GW, Foster SA, Halbert CL, Galloway DA. Growth arrest by induction of p53 in DNA damaged keratinocytes is bypassed by human papillomavirus 16 E7. Proc Natl Acad Sci USA. 1994;91(10):4382–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schwarz E, Freese UK, Gissmann L, Mayer W, Roggenbuck B, Stremlau A, et al. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature. 1985;314(6006):111–4.

    Article  CAS  PubMed  Google Scholar 

  39. Tommasino M, Adamczewski JP, Carlotti F, Barth CF, Manetti R, Contorni M, et al. HPV16 E7 protein associates with the protein kinase p33CDK2 and cyclin A. Oncogene. 1993;8(1):195–202.

    CAS  PubMed  Google Scholar 

  40. Cancer Genome Atlas N. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82.

  41. Parfenov M, Pedamallu CS, Gehlenborg N, Freeman SS, Danilova L, Bristow CA, et al. Characterization of HPV and host genome interactions in primary head and neck cancers. Proc Natl Acad Sci U S A. 2014;111(43):15544–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hajek M, Sewell A, Kaech S, Burtness B, Yarbrough WG, Issaeva N. TRAF3/CYLD mutations identify a distinct subset of human papillomavirus-associated head and neck squamous cell carcinoma. Cancer. 2017;123(10):1778–90.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang JHC, Yang X, Guven E, Nussinov R, Chen Z, VanWaes C. Defective TRAF3 modulates alternative NF-kB signaling and cytokine expression to promote cancer cell survival in HPV positive head and neck cancer (TUM10P1049). J Immunol. 2015;194(211):30.

    Google Scholar 

  44. Banoczy J, Csiba A. Comparative study of the clinical picture and histopathologic structure of oral leukoplakia. Cancer. 1972;29(5):1230–4.

    Article  CAS  PubMed  Google Scholar 

  45. Gupta PC, Mehta FS, Daftary DK, Pindborg JJ, Bhonsle RB, Jalnawalla PN, et al. Incidence rates of oral cancer and natural history of oral precancerous lesions in a 10-year follow-up study of Indian villagers. Community Dent Oral Epidemiol. 1980;8(6):283–333.

    Article  CAS  PubMed  Google Scholar 

  46. Kramer IR, Lucas RB, Pindborg JJ, Sobin LH. Definition of leukoplakia and related lesions: an aid to studies on oral precancer. Oral Surg Oral Med Oral Pathol. 1978;46(4):518–39.

    Article  CAS  PubMed  Google Scholar 

  47. Li S, Lee YC, Li Q, Chen CJ, Hsu WL, Lou PJ, et al. Oral lesions, chronic diseases and the risk of head and neck cancer. Oral Oncol. 2015;51(12):1082–7.

    Article  PubMed  Google Scholar 

  48. Loftus ER, Baric JM, Kapur KK, Chauncey HH. Cigarette smoking and oral leukoplakia in healthy males. Spec Care Dentist. 1981;1(5):206–10.

    Article  CAS  PubMed  Google Scholar 

  49. Shibuya H, Amagasa T, Seto K, Ishibashi K, Horiuchi J, Suzuki S. Leukoplakia-associated multiple carcinomas in patients with tongue carcinoma. Cancer. 1986;57(4):843–6.

    Article  CAS  PubMed  Google Scholar 

  50. Silverman S Jr, Gorsky M, Lozada F. Oral leukoplakia and malignant transformation A follow-up study of 257 patients. Cancer. 1984;53(3):563–8.

    Article  PubMed  Google Scholar 

  51. Napier SS, Speight PM. Natural history of potentially malignant oral lesions and conditions: an overview of the literature. J Oral Pathol Med. 2008;37(1):1–10.

    Article  PubMed  Google Scholar 

  52. Shubhasini AR, Praveen BN, Hegde U, Uma K, Shubha G, Keerthi G, et al. Inter- and intra-observer variability in diagnosis of oral dysplasia. Asian Pac J Cancer Prev. 2017;18(12):3251–4.

    Google Scholar 

  53. van der Waal I. Potentially malignant disorders of the oral and oropharyngeal mucosa; terminology, classification and present concepts of management. Oral Oncol. 2009;45(4–5):317–23.

    Article  PubMed  Google Scholar 

  54. Partridge M, Pateromichelakis S, Phillips E, Emilion GG, A’Hern RP, Langdon JD. A case-control study confirms that microsatellite assay can identify patients at risk of developing oral squamous cell carcinoma within a field of cancerization. Cancer Res. 2000;60(14):3893–8.

    CAS  PubMed  Google Scholar 

  55. Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6(5):963–8.

    Article  CAS  PubMed  Google Scholar 

  56. Califano J, van der Riet P, Westra W, Nawroz H, Clayman G, Piantadosi S, et al. Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res. 1996;56(11):2488–92.

    CAS  PubMed  Google Scholar 

  57. Tabor MP, Brakenhoff RH, van Houten VM, Kummer JA, Snel MH, Snijders PJ, et al. Persistence of genetically altered fields in head and neck cancer patients: biological and clinical implications. Clin Cancer Res. 2001;7(6):1523–32.

    CAS  PubMed  Google Scholar 

  58. Roesch-Ely M, Nees M, Karsai S, Ruess A, Bogumil R, Warnken U, et al. Proteomic analysis reveals successive aberrations in protein expression from healthy mucosa to invasive head and neck cancer. Oncogene. 2007;26(1):54–64.

    Article  CAS  PubMed  Google Scholar 

  59. Schaaij-Visser TB, Graveland AP, Gauci S, Braakhuis BJ, Buijze M, Heck AJ, et al. Differential proteomics identifies protein biomarkers that predict local relapse of head and neck squamous cell carcinomas. Clin Cancer Res. 2009;15(24):7666–75.

    Article  CAS  PubMed  Google Scholar 

  60. Tabor MP, Brakenhoff RH, Ruijter-Schippers HJ, Kummer JA, Leemans CR, Braakhuis BJ. Genetically altered fields as origin of locally recurrent head and neck cancer: a retrospective study. Clin Cancer Res. 2004;10(11):3607–13.

    Article  CAS  PubMed  Google Scholar 

  61. Bhatia A, Burtness B. Novel molecular targets for chemoprevention in malignancies of the head and neck. Cancers (Basel). 2017;9(9).

  62. Benner SE, Pajak TF, Lippman SM, Earley C, Hong WK. Prevention of second primary tumors with isotretinoin in patients with squamous cell carcinoma of the head and neck: long-term follow-up. J Natl Cancer Inst. 1994;86(2):140–1.

    Article  CAS  PubMed  Google Scholar 

  63. Bhatia AK, Lee JW, Pinto HA, Jacobs CD, Limburg PJ, Rubin P, et al. Double-blind, randomized Phase III trial of low-dose 13-cis retinoic acid in the prevention of second primaries in head and neck cancer: Long-term follow-up of a trial of the Eastern Cooperative Oncology Group-ACRIN Cancer Research Group (C0590). Cancer. 2017;123(23):4653–62.

    Article  CAS  PubMed  Google Scholar 

  64. Hong WK, Endicott J, Itri LM, Doos W, Batsakis JG, Bell R, et al. 13-cis-retinoic acid in the treatment of oral leukoplakia. N Engl J Med. 1986;315(24):1501–5.

    Article  CAS  PubMed  Google Scholar 

  65. Hong WK, Lippman SM, Itri LM, Karp DD, Lee JS, Byers RM, et al. Prevention of second primary tumors with isotretinoin in squamous-cell carcinoma of the head and neck. N Engl J Med. 1990;323(12):795–801.

    Article  CAS  PubMed  Google Scholar 

  66. Khuri FR, Lee JJ, Lippman SM, Kim ES, Cooper JS, Benner SE, et al. Randomized phase III trial of low-dose isotretinoin for prevention of second primary tumors in stage I and II head and neck cancer patients. J Natl Cancer Inst. 2006;98(7):441–50.

    Article  CAS  PubMed  Google Scholar 

  67. Mulshine JL, Atkinson JC, Greer RO, Papadimitrakopoulou VA, Van Waes C, Rudy S, et al. Randomized, double-blind, placebo-controlled phase IIb trial of the cyclooxygenase inhibitor ketorolac as an oral rinse in oropharyngeal leukoplakia. Clin Cancer Res. 2004;10(5):1565–73.

    Article  CAS  PubMed  Google Scholar 

  68. Papadimitrakopoulou VA, William WN Jr, Dannenberg AJ, Lippman SM, Lee JJ, Ondrey FG, et al. Pilot randomized phase II study of celecoxib in oral premalignant lesions. Clin Cancer Res. 2008;14(7):2095–101.

    Article  CAS  PubMed  Google Scholar 

  69. William WN Jr, Papadimitrakopoulou V, Lee JJ, Mao L, Cohen EE, Lin HY, et al. Erlotinib and the risk of oral cancer: the Erlotinib Prevention of Oral Cancer (EPOC) Randomized Clinical Trial. JAMA Oncol. 2016;2(2):209–16.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Agarwal R, Mukhtar H. Cancer chemoprevention by polyphenols in green tea and artichoke. Adv Exp Med Biol. 1996;401:35–50.

    Article  CAS  PubMed  Google Scholar 

  71. Kim JW, Amin AR, Shin DM. Chemoprevention of head and neck cancer with green tea polyphenols. Cancer Prev Res (Phila). 2010;3(8):900–9.

    Article  CAS  PubMed  Google Scholar 

  72. Knobloch TJ, Uhrig LK, Pearl DK, Casto BC, Warner BM, Clinton SK, et al. Suppression of proinflammatory and prosurvival biomarkers in oral cancer patients consuming a black raspberry phytochemical-rich troche. Cancer Prev Res (Phila). 2016;9(2):159–71.

    Article  CAS  PubMed  Google Scholar 

  73. Negri E, Franceschi S, Bosetti C, Levi F, Conti E, Parpinel M, et al. Selected micronutrients and oral and pharyngeal cancer. Int J Cancer. 2000;86(1):122–7.

    Article  CAS  PubMed  Google Scholar 

  74. Schwartz JL, Baker V, Larios E, Chung FL. Molecular and cellular effects of green tea on oral cells of smokers: a pilot study. Mol Nutr Food Res. 2005;49(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  75. Seeram NP, Adams LS, Henning SM, Niu Y, Zhang Y, Nair MG, et al. In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J Nutr Biochem. 2005;16(6):360–7.

    Article  CAS  PubMed  Google Scholar 

  76. Warner BM, Casto BC, Knobloch TJ, Accurso BT, Weghorst CM. Chemoprevention of oral cancer by topical application of black raspberries on high at-risk mucosa. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;118(6):674–83.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yang CS, Wang ZY. Tea and cancer. J Natl Cancer Inst. 1993;85(13):1038–49.

    Article  CAS  PubMed  Google Scholar 

  78. Hanna GJ VA, Shi R, O’Neill A, Liu M, Quinn CT, Curtin RK, Flynn M, Treister NS, Sroussi HY, Vacharotayangul P, Goguen LA, Annino DJ, Rettig EM, Jo VY, Wong K, Uppaluri R, Haddad R, Woo SB. A phase II study of nivolumab for high-risk oral leukoplakia. In: AoOsS-S, editor. ESMO 2022; Paris; 2022. https://doi.org/10.1016/annonc/annonc1056 .

  79. Tandon S, Shahab R, Benton JI, Ghosh SK, Sheard J, Jones TM. Fine-needle aspiration cytology in a regional head and neck cancer center: comparison with a systematic review and meta-analysis. Head Neck. 2008;30(9):1246–52.

    Article  PubMed  Google Scholar 

  80. Adoga AA, Silas OA, Nimkur TL. Open cervical lymph node biopsy for head and neck cancers: any benefit? Head Neck Oncol. 2009;29(1):9.

    Article  Google Scholar 

  81. Huang SH, O’Sullivan B. Overview of the 8th edition TNM Classification for Head and Neck Cancer. Curr Treat Options Oncol. 2017;18(7):40.

    Article  PubMed  Google Scholar 

  82. Nguyen-Tan PF, Zhang Q, Ang KK, Weber RS, Rosenthal DI, Soulieres D, et al. Randomized phase III trial to test accelerated versus standard fractionation in combination with concurrent cisplatin for head and neck carcinomas in the Radiation Therapy Oncology Group 0129 trial: long-term report of efficacy and toxicity. J Clin Oncol. 2014;32(34):3858–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lydiatt WM, Patel SG, O’Sullivan B, Brandwein MS, Ridge JA, Migliacci JC, et al. Head and Neck cancers-major changes in the American Joint Committee on cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(2):122–37.

    Article  PubMed  Google Scholar 

  84. Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, et al. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin. 2017;67(2):93–9.

    Article  PubMed  Google Scholar 

  85. Husain ZA, Chen T, Corso CD, Wang Z, Park H, Judson B, et al. A Comparison of prognostic ability of staging systems for human papillomavirus-related oropharyngeal squamous cell carcinoma. JAMA Oncol. 2017;3(3):358–65.

    Article  PubMed  Google Scholar 

  86. Tang LL, Chen YP, Mao YP, Wang ZX, Guo R, Chen L, et al. Validation of the 8th edition of the UICC/AJCC Staging System for nasopharyngeal carcinoma from endemic areas in the intensity-modulated radiotherapy era. J Natl Compr Canc Netw. 2017;15(7):913–9.

    Article  PubMed  Google Scholar 

  87. Tang LQ, Li CF, Li J, Chen WH, Chen QY, Yuan LX, et al. Establishment and validation of prognostic nomograms for endemic nasopharyngeal carcinoma. J Natl Cancer Inst. 2016;108(1).

  88. Lee VH, Kwong DL, Leung TW, Choi CW, O’Sullivan B, Lam KO, et al. The addition of pretreatment plasma Epstein-Barr virus DNA into the eighth edition of nasopharyngeal cancer TNM stage classification. Int J Cancer. 2019;144(7):1713–22.

    Article  CAS  PubMed  Google Scholar 

  89. Xu C, Chen YP, Liu X, Li WF, Chen L, Mao YP, et al. Establishing and applying nomograms based on the 8th edition of the UICC/AJCC staging system to select patients with nasopharyngeal carcinoma who benefit from induction chemotherapy plus concurrent chemoradiotherapy. Oral Oncol. 2017;69:99–107.

    Article  PubMed  Google Scholar 

  90. Chan ATC, Hui EP, Ngan RKC, Tung SY, Cheng ACK, Ng WT, Lee VHF, Ma BBY, Cheng HC, Wong FCS, Loong HHF, Tong M, Poon DMC, Ahuja AT, King AD, Wang K, Mo F, Zee BCY, Chan KCA, Lo YMD. Analysis of Plasma Epstein-Barr Virus DNA in Nasopharyngeal Cancer After Chemoradiation to Identify High-Risk Patients for Adjuvant Chemotherapy: A Randomized Controlled Trial. J Clin Oncol. 2018 Jul 10:JCO2018777847. https://doi.org/10.1200/JCO.2018.77.7847. Epub ahead of print. PMID: 29989858.

  91. Guo R, Tang LL, Mao YP, Du XJ, Chen L, Zhang ZC, et al. Proposed modifications and incorporation of plasma Epstein-Barr virus DNA improve the TNM staging system for Epstein-Barr virus-related nasopharyngeal carcinoma. Cancer. 2019;125(1):79–89.

    Article  CAS  PubMed  Google Scholar 

  92. Leung SF, Chan KC, Ma BB, Hui EP, Mo F, Chow KC, et al. Plasma Epstein-Barr viral DNA load at midpoint of radiotherapy course predicts outcome in advanced-stage nasopharyngeal carcinoma. Ann Oncol. 2014;25(6):1204–8.

    Article  CAS  PubMed  Google Scholar 

  93. Liu LT, Tang LQ, Chen QY, Zhang L, Guo SS, Guo L, et al. The prognostic value of plasma Epstein-Barr viral DNA and tumor response to neoadjuvant chemotherapy in advanced-stage nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2015;93(4):862–9.

    Article  CAS  PubMed  Google Scholar 

  94. Wheless SA, McKinney KA, Zanation AM. A prospective study of the clinical impact of a multidisciplinary head and neck tumor board. Otolaryngol Head Neck Surg. 2010;143(5):650–4.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wuthrick EJ, Zhang Q, Machtay M, Rosenthal DI, Nguyen-Tan PF, Fortin A, et al. Institutional clinical trial accrual volume and survival of patients with head and neck cancer. J Clin Oncol. 2015;33(2):156–64.

    Article  CAS  PubMed  Google Scholar 

  96. Lee NCJ, Kelly JR, An Y, Park HS, Judson BL, Burtness BA, et al. Radiation therapy treatment facility and overall survival in the adjuvant setting for locally advanced head and neck squamous cell carcinoma. Cancer. 2019;125(12):2018–26.

    Article  PubMed  Google Scholar 

  97. Caudell JJ, Gillison ML, Maghami E, Spencer S, Pfister DG, Adkins D, Birkeland AC, Brizel DM, Busse PM, Cmelak AJ, Colevas AD, Eisele DW, Galloway T, Geiger JL, Haddad RI, Hicks WL, Hitchcock YJ, Jimeno A, Leizman D, Mell LK, Mittal BB, Pinto HA, Rocco JW, Rodriguez CP, Savvides PS, Schwartz D, Shah JP, Sher D, St John M, Weber RS, Weinstein G, Worden F, Yang Bruce J, Yom SS, Zhen W, Burns JL, Darlow SD. NCCN Guidelines® Insights: Head and Neck Cancers, Version 1.2022. J Natl Compr Canc Netw. 2022 Mar;20(3):224–234. https://doi.org/10.6004/jnccn.2022.0016. PMID: 35276673.

  98. Pfister DG, Spencer S, Adelstein D, Adkins D, Anzai Y, Brizel DM, et al. Head and neck cancers, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2020;18(7):873–98.

    Article  PubMed  Google Scholar 

  99. Ellis MA, Graboyes EM, Wahlquist AE, Neskey DM, Kaczmar JM, Schopper HK, et al. Primary surgery vs radiotherapy for early stage oral cavity cancer. Otolaryngol Head Neck Surg. 2018;158(4):649–59.

    Article  PubMed  Google Scholar 

  100. Luryi AL, Chen MM, Mehra S, Roman SA, Sosa JA, Judson BL. Treatment factors associated with survival in early-stage oral cavity cancer: analysis of 6830 cases from the National Cancer Data Base. JAMA Otolaryngol Head Neck Surg. 2015;141(7):593–8.

    Article  PubMed  Google Scholar 

  101. Mitchell DA, Kanatas A, Murphy C, Chengot P, Smith AB, Ong TK. Margins and survival in oral cancer. Br J Oral Maxillofac Surg. 2018;56(9):820–9.

    Article  CAS  PubMed  Google Scholar 

  102. Sopka DM, Li T, Lango MN, Mehra R, Liu JC, Burtness B, et al. Dysplasia at the margin? Investigating the case for subsequent therapy in “low-risk” squamous cell carcinoma of the oral tongue. Oral Oncol. 2013;49(11):1083–7.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Genden EM, Kotz T, Tong CC, Smith C, Sikora AG, Teng MS, et al. Transoral robotic resection and reconstruction for head and neck cancer. Laryngoscope. 2011;121(8):1668–74.

    Article  PubMed  Google Scholar 

  104. Moore EJ, Olsen SM, Laborde RR, Garcia JJ, Walsh FJ, Price DL, et al. Long-term functional and oncologic results of transoral robotic surgery for oropharyngeal squamous cell carcinoma. Mayo Clin Proc. 2012;87(3):219–25.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Smith RV, Schiff BA, Garg M, Haigentz M. The impact of transoral robotic surgery on the overall treatment of oropharyngeal cancer patients. Laryngoscope. 2015;125(Suppl 10):S1–15.

    Article  PubMed  Google Scholar 

  106. Yeh DH, Tam S, Fung K, MacNeil SD, Yoo J, Winquist E, et al. Transoral robotic surgery vs. radiotherapy for management of oropharyngeal squamous cell carcinoma—a systematic review of the literature. Eur J Surg Oncol. 2015;41(12):1603–14.

    Article  CAS  PubMed  Google Scholar 

  107. Nichols AC, Theurer J, Prisman E, Read N, Berthelet E, Tran E, et al. Radiotherapy versus transoral robotic surgery and neck dissection for oropharyngeal squamous cell carcinoma (ORATOR): an open-label, phase 2, randomised trial. Lancet Oncol. 2019;20(10):1349–59.

    Article  CAS  PubMed  Google Scholar 

  108. Nichols AC, Theurer J, Prisman E, Read N, Berthelet E, Tran E, et al. Randomized trial of radiotherapy versus transoral robotic surgery for oropharyngeal squamous cell carcinoma: long-term results of the ORATOR Trial. J Clin Oncol. 2022;40(8):866–75.

    Article  CAS  PubMed  Google Scholar 

  109. Ferris RL, Flamand Y, Weinstein GS, Li S, Quon H, Mehra R, et al. Phase II randomized trial of transoral surgery and low-dose intensity modulated radiation therapy in resectable p16+ locally advanced oropharynx cancer: an ECOG-ACRIN Cancer Research Group Trial (E3311). J Clin Oncol. 2022;40(2):138–49.

    Article  CAS  PubMed  Google Scholar 

  110. Pfister DG, Laurie SA, Weinstein GS, Mendenhall WM, Adelstein DJ, American Society of Clinical O, et al. American Society of Clinical Oncology clinical practice guideline for the use of larynx-preservation strategies in the treatment of laryngeal cancer. J Clin Oncol. 2006;24(22):3693–704.

    Article  PubMed  Google Scholar 

  111. Ogol'tsova ES, Paches AI, Matiakin EG, Dvoirin VV, Fedotenko SP, Alferov VS, et al. [Comparative evaluation of the effectiveness of radiotherapy, surgery and combined treatment of stage I-II laryngeal cancer (T1-2NoMo) based on the data of a cooperative randomized study]. Vestn Otorinolaringol. 1990; p. 3–7.

  112. Aaltonen LM, Rautiainen N, Sellman J, Saarilahti K, Makitie A, Rihkanen H, et al. Voice quality after treatment of early vocal cord cancer: a randomized trial comparing laser surgery with radiation therapy. Int J Radiat Oncol Biol Phys. 2014;90(2):255–60.

    Article  PubMed  Google Scholar 

  113. Mo HL, Li J, Yang X, Zhang F, Xiong JW, Yang ZL, et al. Transoral laser microsurgery versus radiotherapy for T1 glottic carcinoma: a systematic review and meta-analysis. Lasers Med Sci. 2017;32(2):461–7.

    Article  PubMed  Google Scholar 

  114. Yoo J, Lacchetti C, Hammond JA, Gilbert RW, Neck Cancer Disease Site G. Role of endolaryngeal surgery (with or without laser) versus radiotherapy in the management of early (T1) glottic cancer: a systematic review. Head Neck. 2014;36(12):1807–19.

    Article  PubMed  Google Scholar 

  115. Guimaraes AV, Dedivitis RA, Matos LL, Aires FT, Cernea CR. Comparison between transoral laser surgery and radiotherapy in the treatment of early glottic cancer: a systematic review and meta-analysis. Sci Rep. 2018;8(1):11900.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Arshad H, Jayaprakash V, Gupta V, Cohan DM, Ambujakshan D, Rigual NR, et al. Survival differences between organ preservation surgery and definitive radiotherapy in early supraglottic squamous cell carcinoma. Otolaryngol Head Neck Surg. 2014;150(2):237–44.

    Article  PubMed  Google Scholar 

  117. Dahm JD, Sessions DG, Paniello RC, Harvey J. Primary subglottic cancer. Laryngoscope. 1998;108(5):741–6.

    Article  CAS  PubMed  Google Scholar 

  118. Coskun H, Mendenhall WM, Rinaldo A, Rodrigo JP, Suarez C, Strojan P, et al. Prognosis of subglottic carcinoma: Is it really worse? Head Neck. 2019;41(2):511–21.

    Article  PubMed  Google Scholar 

  119. MacNeil SD, Patel K, Liu K, Shariff S, Yoo J, Nichols A, et al. Survival of patients with subglottic squamous cell carcinoma. Curr Oncol. 2018;25(6):e569–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Marchiano E, Patel DM, Patel TD, Patel AA, Xue YE, Eloy JA, et al. Subglottic squamous cell carcinoma: a population-based study of 889 cases. Otolaryngol Head Neck Surg. 2016;154(2):315–21.

    Article  PubMed  Google Scholar 

  121. Paisley S, Warde PR, O’Sullivan B, Waldron J, Gullane PJ, Payne D, et al. Results of radiotherapy for primary subglottic squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2002;52(5):1245–50.

    Article  PubMed  Google Scholar 

  122. De Virgilio A, Iocca O, Malvezzi L, Di Maio P, Pellini R, Ferreli F, et al. The emerging role of robotic surgery among minimally invasive surgical approaches in the treatment of hypopharyngeal carcinoma: systematic review and meta-analysis. J Clin Med. 2019;8(2).

  123. Karatzanis AD, Psychogios G, Waldfahrer F, Zenk J, Hornung J, Velegrakis GA, et al. T1 and T2 hypopharyngeal cancer treatment with laser microsurgery. J Surg Oncol. 2010;102(1):27–33.

    Article  PubMed  Google Scholar 

  124. Martin A, Jackel MC, Christiansen H, Mahmoodzada M, Kron M, Steiner W. Organ preserving transoral laser microsurgery for cancer of the hypopharynx. Laryngoscope. 2008;118(3):398–402.

    Article  PubMed  Google Scholar 

  125. Park YM, Kim WS, De Virgilio A, Lee SY, Seol JH, Kim SH. Transoral robotic surgery for hypopharyngeal squamous cell carcinoma: 3-year oncologic and functional analysis. Oral Oncol. 2012;48(6):560–6.

    Article  PubMed  Google Scholar 

  126. Steiner W, Ambrosch P, Hess CF, Kron M. Organ preservation by transoral laser microsurgery in piriform sinus carcinoma. Otolaryngol Head Neck Surg. 2001;124(1):58–67.

    Article  CAS  PubMed  Google Scholar 

  127. Wang CC, Liu SA, Wu SH, Wang CP, Liang KL, Jiang RS, et al. Transoral robotic surgery for early T classification hypopharyngeal cancer. Head Neck. 2016;38(6):857–62.

    Article  PubMed  Google Scholar 

  128. Hall SF, Groome PA, Irish J, O’Sullivan B. Radiotherapy or surgery for head and neck squamous cell cancer: establishing the baseline for hypopharyngeal carcinoma? Cancer. 2009;115(24):5711–22.

    Article  PubMed  Google Scholar 

  129. Hall SF, Groome PA, Irish J, O’Sullivan B. The natural history of patients with squamous cell carcinoma of the hypopharynx. Laryngoscope. 2008;118(8):1362–71.

    Article  PubMed  Google Scholar 

  130. Garden AS, Morrison WH, Clayman GL, Ang KK, Peters LJ. Early squamous cell carcinoma of the hypopharynx: outcomes of treatment with radiation alone to the primary disease. Head Neck. 1996;18(4):317–22.

    Article  CAS  PubMed  Google Scholar 

  131. Hutchison IL, Ridout F, Cheung SMY, Shah N, Hardee P, Surwald C, et al. Nationwide randomised trial evaluating elective neck dissection for early stage oral cancer (SEND study) with meta-analysis and concurrent real-world cohort. Br J Cancer. 2019;121(10):827–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. D’Cruz AK, Vaish R, Kapre N, Dandekar M, Gupta S, Hawaldar R, et al. Elective versus therapeutic neck dissection in node-negative oral cancer. N Engl J Med. 2015;373(6):521–9.

    Article  CAS  PubMed  Google Scholar 

  133. Hasegawa Y, Tsukahara K, Yoshimoto S, Miura K, Yokoyama J, Hirano S, et al. Neck dissections based on sentinel lymph node navigation versus elective neck dissections in early oral cancers: a randomized, multicenter, and noninferiority trial. J Clin Oncol. 2021;39(18):2025–36.

    Article  CAS  PubMed  Google Scholar 

  134. Garrel R, Poissonnet G, Moya Plana A, Fakhry N, Dolivet G, Lallemant B, et al. Equivalence randomized trial to compare treatment on the basis of sentinel node biopsy versus neck node dissection in operable T1–T2N0 Oral and oropharyngeal cancer. J Clin Oncol. 2020;38(34):4010–8.

    Article  PubMed  Google Scholar 

  135. Cramer JD, Sridharan S, Ferris RL, Duvvuri U, Samant S. Sentinel Lymph Node Biopsy Versus Elective Neck Dissection for Stage I to II Oral Cavity Cancer. Laryngoscope. 2019;129(1):162–9.

    Article  PubMed  Google Scholar 

  136. Candela FC, Kothari K, Shah JP. Patterns of cervical node metastases from squamous carcinoma of the oropharynx and hypopharynx. Head Neck. 1990;12(3):197–203.

    Article  CAS  PubMed  Google Scholar 

  137. Lim YC, Koo BS, Lee JS, Lim JY, Choi EC. Distributions of cervical lymph node metastases in oropharyngeal carcinoma: therapeutic implications for the N0 neck. Laryngoscope. 2006;116(7):1148–52.

    Article  PubMed  Google Scholar 

  138. Koyfman SA, Ismaila N, Crook D, D’Cruz A, Rodriguez CP, Sher DJ, et al. Management of the neck in squamous cell carcinoma of the oral cavity and oropharynx: ASCO Clinical Practice Guideline. J Clin Oncol. 2019;37(20):1753–74.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Waldfahrer F, Hauptmann B, Iro H. Lymph node metastasis of glottic laryngeal carcinoma. Laryngorhinootologie. 2005;84(2):96–100.

    Article  CAS  PubMed  Google Scholar 

  140. Djordjevic V, Bukurov B, Arsovic N, Dimitrijevic M, Jesic S, Nesic V, et al. Prospective case-control study of efficacy of bilateral selective neck dissection in primary surgical treatment of supraglottic laryngeal cancers with clinically negative cervical findings (N0). Clin Otolaryngol. 2016;41(6):634–9.

    Article  CAS  PubMed  Google Scholar 

  141. Hicks WL Jr, Kollmorgen DR, Kuriakose MA, Orner J, Bakamjian VY, Winston J, et al. Patterns of nodal metastasis and surgical management of the neck in supraglottic laryngeal carcinoma. Otolaryngol Head Neck Surg. 1999;121(1):57–61.

    Article  PubMed  Google Scholar 

  142. Levendag P, Vikram B. The problem of neck relapse in early stage supraglottic cancer–results of different treatment modalities for the clinically negative neck. Int J Radiat Oncol Biol Phys. 1987;13(11):1621–4.

    Article  CAS  PubMed  Google Scholar 

  143. Lutz CK, Johnson JT, Wagner RL, Myers EN. Supraglottic carcinoma: patterns of recurrence. Ann Otol Rhinol Laryngol. 1990;99(1):12–7.

    Article  CAS  PubMed  Google Scholar 

  144. Agrawal A, Moon J, Davis RK, Sakr WA, Giri SP, Valentino J, et al. Transoral carbon dioxide laser supraglottic laryngectomy and irradiation in stage I, II, and III squamous cell carcinoma of the supraglottic larynx: report of Southwest Oncology Group Phase 2 Trial S9709. Arch Otolaryngol Head Neck Surg. 2007;133(10):1044–50.

    Article  PubMed  Google Scholar 

  145. Olsen KD, DeSanto LW, Pearson BW. Positive Delphian lymph node: clinical significance in laryngeal cancer. Laryngoscope. 1987;97(9):1033–7.

    Article  CAS  PubMed  Google Scholar 

  146. Plaat RE, de Bree R, Kuik DJ, van den Brekel MW, van Hattum AH, Snow GB, et al. Prognostic importance of paratracheal lymph node metastases. Laryngoscope. 2005;115(5):894–8.

    Article  PubMed  Google Scholar 

  147. Thaler ER, Montone K, Tucker J, Weinstein GS. Delphian lymph node in laryngeal carcinoma: a whole organ study. Laryngoscope. 1997;107(3):332–4.

    Article  CAS  PubMed  Google Scholar 

  148. Lucioni M, D’Ascanio L, De Nardi E, Lionello M, Bertolin A, Rizzotto G. Management of paratracheal lymph nodes in laryngeal cancer with subglottic involvement. Head Neck. 2018;40(1):24–33.

    Article  PubMed  Google Scholar 

  149. Amatsu M, Mohri M, Kinishi M. Significance of retropharyngeal node dissection at radical surgery for carcinoma of the hypopharynx and cervical esophagus. Laryngoscope. 2001;111(6):1099–103.

    Article  CAS  PubMed  Google Scholar 

  150. Chung EJ, Kim GW, Cho BK, Park HS, Rho YS. Pattern of lymph node metastasis in hypopharyngeal squamous cell carcinoma and indications for level VI lymph node dissection. Head Neck. 2016;38(Suppl 1):E1969–73.

    Article  PubMed  Google Scholar 

  151. Shah JP. Patterns of cervical lymph node metastasis from squamous carcinomas of the upper aerodigestive tract. Am J Surg. 1990;160(4):405–9.

    Article  CAS  PubMed  Google Scholar 

  152. Yoshimoto S, Kawabata K. Retropharyngeal node dissection during total pharyngolaryngectomy for hypopharyngeal cancer. Auris Nasus Larynx. 2005;32(2):163–7.

    Article  PubMed  Google Scholar 

  153. Braakhuis BJ, Brakenhoff RH, Leemans CR. Treatment choice for locally advanced head and neck cancers on the basis of risk factors: biological risk factors. Ann Oncol. 2012;23(Suppl 10):x173–7.

    Article  PubMed  Google Scholar 

  154. Brana I, Siu LL. Locally advanced head and neck squamous cell cancer: treatment choice based on risk factors and optimizing drug prescription. Ann Oncol. 2012;23(Suppl 10):x178–85.

    Article  PubMed  Google Scholar 

  155. Oliver RJ, Clarkson JE, Conway DI, Glenny A, Macluskey M, Pavitt S, et al. Interventions for the treatment of oral and oropharyngeal cancers: surgical treatment. Cochrane Database Syst Rev. 2007;4:CD006205.

    Google Scholar 

  156. Iyer NG, Tan DS, Tan VK, Wang W, Hwang J, Tan NC, et al. Randomized trial comparing surgery and adjuvant radiotherapy versus concurrent chemoradiotherapy in patients with advanced, nonmetastatic squamous cell carcinoma of the head and neck: 10-year update and subset analysis. Cancer. 2015;121(10):1599–607.

    Article  PubMed  Google Scholar 

  157. Robertson AG, Soutar DS, Paul J, Webster M, Leonard AG, Moore KP, et al. Early closure of a randomized trial: surgery and postoperative radiotherapy versus radiotherapy in the management of intra-oral tumours. Clin Oncol (R Coll Radiol). 1998;10(3):155–60.

    Article  CAS  PubMed  Google Scholar 

  158. Liao CT, Chang JT, Wang HM, Ng SH, Hsueh C, Lee LY, et al. Analysis of risk factors of predictive local tumor control in oral cavity cancer. Ann Surg Oncol. 2008;15(3):915–22.

    Article  PubMed  Google Scholar 

  159. Stenson KM, Kunnavakkam R, Cohen EE, Portugal LD, Blair E, Haraf DJ, et al. Chemoradiation for patients with advanced oral cavity cancer. Laryngoscope. 2010;120(1):93–9.

    PubMed  Google Scholar 

  160. Haughey BH, Hinni ML, Salassa JR, Hayden RE, Grant DG, Rich JT, et al. Transoral laser microsurgery as primary treatment for advanced-stage oropharyngeal cancer: a United States multicenter study. Head Neck. 2011;33(12):1683–94.

    Article  PubMed  Google Scholar 

  161. Forastiere AA, Weber RS, Trotti A. Organ preservation for advanced larynx cancer: issues and outcomes. J Clin Oncol. 2015;33(29):3262–8.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Lango MN, Egleston B, Fang C, Burtness B, Galloway T, Liu J, et al. Baseline health perceptions, dysphagia, and survival in patients with head and neck cancer. Cancer. 2014;120(6):840–7.

    Article  PubMed  Google Scholar 

  163. Vainshtein JM, Wu VF, Spector ME, Bradford CR, Wolf GT, Worden FP. Chemoselection: a paradigm for optimization of organ preservation in locally advanced larynx cancer. Expert Rev Anticancer Ther. 2013;13(9):1053–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wolf GT, Fisher SG, Hong WK, Hillman R, Spaulding M, Department of Veterans Affairs Laryngeal Cancer Study G, et al. Induction chemotherapy plus radiation compared with surgery plus radiation in patients with advanced laryngeal cancer. N Engl J Med. 1991;324(24):1685–90.

    Article  PubMed  Google Scholar 

  165. Spaulding MB, Fischer SG, Wolf GT. Tumor response, toxicity, and survival after neoadjuvant organ-preserving chemotherapy for advanced laryngeal carcinoma. The Department of Veterans Affairs Cooperative Laryngeal Cancer Study Group. J Clin Oncol. 1994;12(8):1592–9.

    Article  CAS  PubMed  Google Scholar 

  166. Lacas B, Carmel A, Landais C, Wong SJ, Licitra L, Tobias JS, et al. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 107 randomized trials and 19,805 patients, on behalf of MACH-NC Group. Radiother Oncol. 2021;156:281–93.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Forastiere AA, Goepfert H, Maor M, Pajak TF, Weber R, Morrison W, et al. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. N Engl J Med. 2003;349(22):2091–8.

    Article  CAS  PubMed  Google Scholar 

  168. Forastiere AA, Zhang Q, Weber RS, Maor MH, Goepfert H, Pajak TF, et al. Long-term results of RTOG 91–11: a comparison of three nonsurgical treatment strategies to preserve the larynx in patients with locally advanced larynx cancer. J Clin Oncol. 2013;31(7):845–52.

    Article  CAS  PubMed  Google Scholar 

  169. Yu J, Tsay C, Sasaki C, Son YH, Decker RH, Mehra S, et al. Brachytherapy and non-cancer mortality in patients with oral cavity and oropharynx SCCs. Oral Oncol. 2021;122: 105585.

    Article  PubMed  Google Scholar 

  170. Bauml JM, Vinnakota R, Anna Park YH, Bates SE, Fojo T, Aggarwal C, et al. Cisplatin every 3 weeks versus weekly with definitive concurrent radiotherapy for squamous cell carcinoma of the head and neck. J Natl Cancer Inst. 2019;111(5):490–7.

    Article  PubMed  Google Scholar 

  171. Mohamed A, Twardy B, Zordok MA, Ashraf K, Alkhoder A, Schrapp K, et al. Concurrent chemoradiotherapy with weekly versus triweekly cisplatin in locally advanced squamous cell carcinoma of the head and neck: Comparative analysis. Head Neck. 2019;41(5):1490–8.

    Article  PubMed  Google Scholar 

  172. Oliva M, Huang SH, Xu W, Su J, Hansen AR, Bratman SV, et al. Impact of cisplatin dose and smoking pack-years in human papillomavirus-positive oropharyngeal squamous cell carcinoma treated with chemoradiotherapy. Eur J Cancer. 2019;118:112–20.

    Article  CAS  PubMed  Google Scholar 

  173. Perez CA, Wu X, Amsbaugh MJ, Gosain R, Claudino WM, Yusuf M, et al. High-dose versus weekly cisplatin definitive chemoradiotherapy for HPV-related oropharyngeal squamous cell carcinoma of the head and neck. Oral Oncol. 2017;67:24–8.

    Article  CAS  PubMed  Google Scholar 

  174. Spreafico A, Huang SH, Xu W, Granata R, Liu CS, Waldron JN, et al. Impact of cisplatin dose intensity on human papillomavirus-related and -unrelated locally advanced head and neck squamous cell carcinoma. Eur J Cancer. 2016;67:174–82.

    Article  CAS  PubMed  Google Scholar 

  175. Szturz P, Wouters K, Kiyota N, Tahara M, Prabhash K, Noronha V, et al. Weekly low-dose versus three-weekly high-dose cisplatin for concurrent chemoradiation in locoregionally advanced non-nasopharyngeal head and neck cancer: a systematic review and meta-analysis of aggregate data. Oncologist. 2017;22(9):1056–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Sharma AKM, Bhasker S, Thakar A, Pramanik R, Biswas A, Kumar A, Sikka K, Singh AC, Mallick S, Kumar R, Deo SVS, Kakkar A, Baghmar S, Sehrawat A, Sethi P, Kumar A, Seth S, Upadhyay AD, Thulkar S. An open-label, noninferiority phase III RCT of weekly versus three weekly cisplatin and radical radiotherapy in locally advanced head and neck squamous cell carcinoma (ConCERT trial). In: J Clin Oncol 40 nsJ, 2022) 6004-6004., editor. ASCO; 2022; Chicago, IL; 2022.

  177. Go RS, Adjei AA. Review of the comparative pharmacology and clinical activity of cisplatin and carboplatin. J Clin Oncol. 1999;17(1):409–22.

    Article  CAS  PubMed  Google Scholar 

  178. Lokich J, Anderson N. Carboplatin versus cisplatin in solid tumors: an analysis of the literature. Ann Oncol. 1998;9(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  179. Fountzilas G, Ciuleanu E, Dafni U, Plataniotis G, Kalogera-Fountzila A, Samantas E, et al. Concomitant radiochemotherapy vs radiotherapy alone in patients with head and neck cancer: a Hellenic Cooperative Oncology Group Phase III Study. Med Oncol. 2004;21(2):95–107.

    Article  PubMed  Google Scholar 

  180. Denis F, Garaud P, Bardet E, Alfonsi M, Sire C, Germain T, et al. Final results of the 94–01 French Head and Neck Oncology and Radiotherapy Group randomized trial comparing radiotherapy alone with concomitant radiochemotherapy in advanced-stage oropharynx carcinoma. J Clin Oncol. 2004;22(1):69–76.

    Article  PubMed  Google Scholar 

  181. Haddad R, Sonis S, Posner M, Wirth L, Costello R, Braschayko P, et al. Randomized phase 2 study of concomitant chemoradiotherapy using weekly carboplatin/paclitaxel with or without daily subcutaneous amifostine in patients with locally advanced head and neck cancer. Cancer. 2009;115(19):4514–23.

    Article  CAS  PubMed  Google Scholar 

  182. Tao Y, Auperin A, Sire C, Martin L, Khoury C, Maingon P, Bardet E, Kaminsky MC, Lapeyre M, Chatellier T, Alfonsi M, Pointreau Y, Jadaud E, Géry B, Zawadi A, Tourani JM, Laguerre B, Coutte A, Racadot S, Hasbini A, Malaurie E, Borel C, Meert N, Cornely A, Ollivier N, Casiraghi O, Sun XS, Bourhis J. Improved Outcome by Adding Concurrent Chemotherapy to Cetuximab and Radiotherapy for Locally Advanced Head and Neck Carcinomas: Results of the GORTEC 2007-01 Phase III Randomized Trial. J Clin Oncol. 2018 Jun 7:JCO2017762518. doi: 10.1200/JCO.2017.76.2518. Epub ahead of print. PMID: 29878867.

  183. Patil VM NV, Menon NS, Laskar S, Budrukkar A, Swain M, Bhattacharjee A, Balaji A, Chaturvedi P, Chaukar DA, Pai PS, Nair SV, Purandare N, Agrawal A, Puranik A, Nawale KP, Mathrudev V, Prabhash K. Results of Phase III randomized trial for use of docetaxel as a radiosensitizer in patients with head and neck cancer unsuitable for cisplatin-based chemoradiation. In: J Clinical Oncol. 40 nsJ, 2022) LBA6003-LBA6003., editor. ASCO; 2022; Chicago, IL; 2022.

  184. Dassonville O, Formento JL, Francoual M, Ramaioli A, Santini J, Schneider M, et al. Expression of epidermal growth factor receptor and survival in upper aerodigestive tract cancer. J Clin Oncol. 1993;11(10):1873–8.

    Article  CAS  PubMed  Google Scholar 

  185. Grandis JR, Tweardy DJ. Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res. 1993;53(15):3579–84.

    CAS  PubMed  Google Scholar 

  186. Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354(6):567–78.

    Article  CAS  PubMed  Google Scholar 

  187. Rosenthal DI, Harari PM, Giralt J, Bell D, Raben D, Liu J, et al. Association of human papillomavirus and p16 status with outcomes in the IMCL-9815 phase III registration trial for patients with locoregionally advanced oropharyngeal squamous cell carcinoma of the head and neck treated with radiotherapy with or without cetuximab. J Clin Oncol. 2016;34(12):1300–8.

    Article  CAS  PubMed  Google Scholar 

  188. Gillison ML, Trotti AM, Harris J, Eisbruch A, Harari PM, Adelstein DJ, et al. Radiotherapy plus cetuximab or cisplatin in human papillomavirus-positive oropharyngeal cancer (NRG Oncology RTOG 1016): a randomised, multicentre, non-inferiority trial. Lancet. 2019;393(10166):40–50.

    Article  CAS  PubMed  Google Scholar 

  189. Mehanna H, Robinson M, Hartley A, Kong A, Foran B, Fulton-Lieuw T, et al. Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-positive oropharyngeal cancer (De-ESCALaTE HPV): an open-label randomised controlled Phase III trial. Lancet. 2019;393(10166):51–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Rischin D, King M, Kenny L, Porceddu S, Wratten C, Macann A, et al. Randomized trial of radiation therapy with weekly cisplatin or cetuximab in low-risk HPV-associated oropharyngeal cancer (TROG 1201)—a Trans-Tasman Radiation Oncology Group Study. Int J Radiat Oncol Biol Phys. 2021;111(4):876–86.

    Article  PubMed  Google Scholar 

  191. Gebre-Medhin M, Brun E, Engstrom P, Haugen Cange H, Hammarstedt-Nordenvall L, Reizenstein J, et al. ARTSCAN III: a randomized phase III study comparing chemoradiotherapy with cisplatin versus cetuximab in patients with locoregionally advanced head and neck squamous cell cancer. J Clin Oncol. 2021;39(1):38–47.

    Article  CAS  PubMed  Google Scholar 

  192. Giralt J, Trigo J, Nuyts S, Ozsahin M, Skladowski K, Hatoum G, et al. Panitumumab plus radiotherapy versus chemoradiotherapy in patients with unresected, locally advanced squamous-cell carcinoma of the head and neck (CONCERT-2): a randomised, controlled, open-label phase 2 trial. Lancet Oncol. 2015;16(2):221–32.

    Article  CAS  PubMed  Google Scholar 

  193. Siu LL, Waldron JN, Chen BE, Winquist E, Wright JR, Nabid A, et al. Effect of standard radiotherapy with cisplatin vs accelerated radiotherapy with panitumumab in locoregionally advanced squamous cell head and neck carcinoma: a randomized clinical trial. JAMA Oncol. 2017;3(2):220–6.

    Article  PubMed  Google Scholar 

  194. Ang KK, Zhang Q, Rosenthal DI, Nguyen-Tan PF, Sherman EJ, Weber RS, et al. Randomized phase III trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. J Clin Oncol. 2014;32(27):2940–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Patil VM, Noronha V, Joshi A, Agarwal J, Ghosh-Laskar S, Budrukkar A, et al. A randomized Phase III trial comparing nimotuzumab plus cisplatin chemoradiotherapy versus cisplatin chemoradiotherapy alone in locally advanced head and neck cancer. Cancer. 2019;125(18):3184–97.

    Article  CAS  PubMed  Google Scholar 

  196. Mesia R, Henke M, Fortin A, Minn H, Yunes Ancona AC, Cmelak A, et al. Chemoradiotherapy with or without panitumumab in patients with unresected, locally advanced squamous-cell carcinoma of the head and neck (CONCERT-1): a randomised, controlled, open-label phase 2 trial. Lancet Oncol. 2015;16(2):208–20.

    Article  CAS  PubMed  Google Scholar 

  197. Martins RG, Parvathaneni U, Bauman JE, Sharma AK, Raez LE, Papagikos MA, et al. Cisplatin and radiotherapy with or without erlotinib in locally advanced squamous cell carcinoma of the head and neck: a randomized phase II trial. J Clin Oncol. 2013;31(11):1415–21.

    Article  CAS  PubMed  Google Scholar 

  198. Stuart J, Wong PAT-S, Saba NF, Shenouda G, Bumpous J, Wallace RE, Chung CH, El-Naggar AK, Gwede CK, Burtness B, Tennant P, Dunlap ME, Mell LK, Spencer S, Stokes WA, Yao M, Mitchell DL, Harris J, Curran WJ, Le Q-T. TRYHARD, a randomized phase II trial (RTOG Foundation 3501) of concurrent accelerated radiation plus cisplatin (cis) with or without lapatinib (Lap) for stage III- IV Non-HPV head and neck carcinoma (HNC). Journal of Clinical Oncology 39, no. 15_suppl (May 20, 2021) 6014-6014. In: 2021 ASCO Annual Meeting; 2021.

  199. Lee NY, Ferris RL, Psyrri A, Haddad RI, Tahara M, Bourhis J, et al. Avelumab plus standard-of-care chemoradiotherapy versus chemoradiotherapy alone in patients with locally advanced squamous cell carcinoma of the head and neck: a randomised, double-blind, placebo-controlled, multicenter, Phase III trial. Lancet Oncol. 2021;22(4):450–62.

    Article  CAS  PubMed  Google Scholar 

  200. Tao YXS, Sire C, Martin L, Alfonsi M, Prevost JB, Rives M, Lafond C, Tourani JM, Biau J, Geoffrois L, Coutte A, Liem X, Vauleon E, Drouet F, Pechery A, Guigay J, Wanneveich M, Aupérin A, Bourhis J. LBA38—pembrolizumab versus cetuximab, concomitant with radiotherapy (RT) in locally advanced head and neck squamous cell carcinoma (LA-HNSCC): Results of the GORTEC 2015-01 “PembroRad” randomized trial. Annals of Oncology (2020) 31 (suppl_4): S1142-S1215. 10.1016/annonc/annonc325. In: ESMO Virtual Congress 2020; 2020.

  201. Bourhis J TY, Sun X, Sire C, Martin L, Liem X, Coutte A, Pointreau Y, Thariat J, Miroir J, Rolland F, Kaminsky M, Borel C, Maillard A, Sinigaglia L, Guigay J, Saada-Bouzid E, Even C, Aupérin A. LBA35-Avelumab-cetuximab-radiotherapy versus standards of care in patients with locally advanced squamous cell carcinoma of head and neck (LA-SCCHN): randomized phase III GORTEC-REACH trial. In: AoOsS-S, editor. ESMO; 2021; 2021 https://doi.org/10.1016/annonc/annonc741.

  202. Machiels J TY, Burtness B, Tahara M, Rischin D, Alves GV, Lima IPF, Hughes BGM, Pointreau Y, Aksoy S, Laban S, Greil R, Burian M, Hetnal M, Licitra LF, Swaby R, Zhang Y, Gumuscu B, Bidadi B, Siu LL. LBA5 - Primary results of the phase III KEYNOTE-412 study: pembrolizumab (pembro) with chemoradiation therapy (CRT) vs placebo plus CRT for locally advanced (LA) head and neck squamous cell carcinoma (HNSCC). In: AoOsS-S, editor. ESMO; 2022; Paris; 2022 https://doi.org/10.1016/annonc/annonc1089.

  203. Clump DA ZD, Skinner HD, Ohr J, Fenton MJ, Normolle DP, Beitler JJ, Bauman JE, Ferris RL. A randomized phase II study evaluating concurrent or sequential fixed-dose immune therapy in combination with cisplatin and intensity-modulated radiotherapy in intermediate- or high-risk, previously untreated, locally advanced head and neck cancer (LA SCCHN). Journal of Clinical Oncology 40, no. 16_suppl (June 01, 2022) 6007-6007. In: J Clin Oncol 40 sa, editor. ASCO; 2022; Chicago, IL; 2022.

  204. Sun XS, Tao Y, Le Tourneau C, Pointreau Y, Sire C, Kaminsky MC, et al. Debio 1143 and high-dose cisplatin chemoradiotherapy in high-risk locoregionally advanced squamous cell carcinoma of the head and neck: a double-blind, multicentre, randomised, phase 2 study. Lancet Oncol. 2020;21(9):1173–87.

    Article  CAS  PubMed  Google Scholar 

  205. Bourhis J LTC, Calderon B, Martin L, Sire C, Pointreau Y, Ramee J, Coutte A, Boisselier P, Kaminsky-Forrett M, Delord J, Clatot F, Sun X, Villa J, Magne N, Elicin O, Damstrup L, Gollmer K, Crompton P, Tao Y. LBA33 - 5-year overall survival (OS) in patients (pts) with locally advanced squamous cell carcinoma of the head and neck (LA SCCHN) treated with xevinapant + chemoradiotherapy (CRT) vs placebo + CRT in a randomized, phase II study. In: AoOsS-S, editor. ESMO; 2022; Paris; 2022 https://doi.org/10.1016/annonc/annonc1089.

  206. Middleton MR, Dean E, Evans TRJ, Shapiro GI, Pollard J, Hendriks BS, et al. Phase 1 study of the ATR inhibitor berzosertib (formerly M6620, VX-970) combined with gemcitabine +/- cisplatin in patients with advanced solid tumours. Br J Cancer. 2021;125(4):510–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Bhatia A CZ, Bruce J, Steuer CE, Zandberg DP, Riess JW, Mitchell D, Davis TH, Patel M, Kaur V, Arnold S, Owonikoko TK. 656MO - Phase I study of M6620 (VX-970, berzosertib) in combination with cisplatin and XRT in patients with locally advanced head and neck squamous cell carcinoma. In: AoOsS-S, editor. ESMO; 2022; Paris; 2022. https://doi.org/10.1016/annonc/annonc1056.

  208. Hitt R, Lopez-Pousa A, Martinez-Trufero J, Escrig V, Carles J, Rizo A, et al. Phase III study comparing cisplatin plus fluorouracil to paclitaxel, cisplatin, and fluorouracil induction chemotherapy followed by chemoradiotherapy in locally advanced head and neck cancer. J Clin Oncol. 2005;23(34):8636–45.

    Article  PubMed  Google Scholar 

  209. Janoray G, Pointreau Y, Garaud P, Chapet S, Alfonsi M, Sire C, et al. Long-term results of a multicenter randomized phase iii trial of induction chemotherapy with cisplatin, 5-fluorouracil, +/- docetaxel for larynx preservation. J Natl Cancer Inst. 2016;108(4).

  210. Lorch JH, Goloubeva O, Haddad RI, Cullen K, Sarlis N, Tishler R, et al. Induction chemotherapy with cisplatin and fluorouracil alone or in combination with docetaxel in locally advanced squamous-cell cancer of the head and neck: long-term results of the TAX 324 randomised Phase III trial. Lancet Oncol. 2011;12(2):153–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Posner MR, Hershock DM, Blajman CR, Mickiewicz E, Winquist E, Gorbounova V, et al. Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. N Engl J Med. 2007;357(17):1705–15.

    Article  CAS  PubMed  Google Scholar 

  212. Vermorken JB, Remenar E, van Herpen C, Gorlia T, Mesia R, Degardin M, et al. Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. N Engl J Med. 2007;357(17):1695–704.

    Article  CAS  PubMed  Google Scholar 

  213. Cohen EE, Karrison TG, Kocherginsky M, Mueller J, Egan R, Huang CH, et al. Phase III randomized trial of induction chemotherapy in patients with N2 or N3 locally advanced head and neck cancer. J Clin Oncol. 2014;32(25):2735–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Geoffrois L, Martin L, De Raucourt D, Sun XS, Tao Y, Maingon P, et al. Induction chemotherapy followed by cetuximab radiotherapy is not superior to concurrent chemoradiotherapy for head and neck carcinomas: results of the GORTEC 2007–02 phase III randomized trial. J Clin Oncol. 2018;36(31):3077–83.

    Article  CAS  PubMed  Google Scholar 

  215. Ghi MG, Paccagnella A, Ferrari D, Foa P, Alterio D, Codeca C, et al. Induction TPF followed by concomitant treatment versus concomitant treatment alone in locally advanced head and neck cancer. A phase II-III trial. Ann Oncol. 2017;28(9):2206–12.

    Article  CAS  PubMed  Google Scholar 

  216. Haddad R, O’Neill A, Rabinowits G, Tishler R, Khuri F, Adkins D, et al. Induction chemotherapy followed by concurrent chemoradiotherapy (sequential chemoradiotherapy) versus concurrent chemoradiotherapy alone in locally advanced head and neck cancer (PARADIGM): a randomised Phase III trial. Lancet Oncol. 2013;14(3):257–64.

    Article  CAS  PubMed  Google Scholar 

  217. Hitt R, Grau JJ, Lopez-Pousa A, Berrocal A, Garcia-Giron C, Irigoyen A, et al. A randomized phase III trial comparing induction chemotherapy followed by chemoradiotherapy versus chemoradiotherapy alone as treatment of unresectable head and neck cancer. Ann Oncol. 2014;25(1):216–25.

    Article  CAS  PubMed  Google Scholar 

  218. Uppaluri R, Campbell KM, Egloff AM, Zolkind P, Skidmore ZL, Nussenbaum B, et al. Neoadjuvant and adjuvant pembrolizumab in resectable locally advanced, human papillomavirus-unrelated head and neck cancer: a multicenter, Phase II trial. Clin Cancer Res. 2020;26(19):5140–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Schoenfeld JD, Hanna GJ, Jo VY, Rawal B, Chen YH, Catalano PS, et al. Neoadjuvant nivolumab or nivolumab plus ipilimumab in untreated oral cavity squamous cell carcinoma: a phase 2 open-label randomized clinical trial. JAMA Oncol. 2020;6(10):1563–70.

    Article  PubMed  Google Scholar 

  220. Vos JL, Elbers JBW, Krijgsman O, Traets JJH, Qiao X, van der Leun AM, et al. Neoadjuvant immunotherapy with nivolumab and ipilimumab induces major pathological responses in patients with head and neck squamous cell carcinoma. Nat Commun. 2021;12(1):7348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Wise-Draper TM, Gulati S, Palackdharry S, Hinrichs BH, Worden FP, Old MO, et al. Phase II clinical trial of neoadjuvant and adjuvant pembrolizumab in resectable local-regionally advanced head and neck squamous cell carcinoma. Clin Cancer Res. 2022;28(7):1345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Bernier J, Domenge C, Ozsahin M, Matuszewska K, Lefebvre JL, Greiner RH, et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med. 2004;350(19):1945–52.

    Article  CAS  PubMed  Google Scholar 

  223. Cooper JS, Pajak TF, Forastiere AA, Jacobs J, Campbell BH, Saxman SB, et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med. 2004;350(19):1937–44.

    Article  PubMed  Google Scholar 

  224. Cooper JS, Zhang Q, Pajak TF, Forastiere AA, Jacobs J, Saxman SB, et al. Long-term follow-up of the RTOG 9501/intergroup phase III trial: postoperative concurrent radiation therapy and chemotherapy in high-risk squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys. 2012;84(5):1198–205.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Bernier J, Cooper JS. Chemoradiation after surgery for high-risk head and neck cancer patients: how strong is the evidence? Oncologist. 2005;10(3):215–24.

    Article  PubMed  Google Scholar 

  226. Bernier J, Cooper JS, Pajak TF, van Glabbeke M, Bourhis J, Forastiere A, et al. Defining risk levels in locally advanced head and neck cancers: a comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (# 9501). Head Neck. 2005;27(10):843–50.

    Article  PubMed  Google Scholar 

  227. Noronha V, Joshi A, Patil VM, Agarwal J, Ghosh-Laskar S, Budrukkar A, et al. Once-a-week versus once-every-3-weeks cisplatin chemoradiation for locally advanced head and neck cancer: a phase III randomized noninferiority trial. J Clin Oncol. 2018;36(11):1064–72.

    Article  CAS  PubMed  Google Scholar 

  228. Kiyota NMT, Fujii H, Yamazaki T, Mitani H, Iwae S, Fujimoto Y, Onozawa Y, Hanai N, Ogawa T, Hara H, Monden N, Shimura E, Minami S, Fujii T, Tanaka K, Kodaira T, Mizusawa J, Nakamura K, Hayashi R. Phase II/III trial of post-operative chemoradiotherapy comparing 3-weekly cisplatin with weekly cisplatin in high-risk patients with squamous cell carcinoma of head and neck (JCOG1008). J Clin Oncol. 2020;38(15_suppl):6502 (2020 ASCO Annual Meeting; 2020).

    Article  Google Scholar 

  229. Cooper JS, Fortpied C, Gregoire V, Le QT, Pajak TF, Zhang QE, et al. The role of postoperative chemoradiation for oropharynx carcinoma: a critical appraisal revisited. Cancer. 2017;123(1):12–6.

    Article  PubMed  Google Scholar 

  230. Trifiletti DM, Smith A, Mitra N, Grover S, Lukens JN, Cohen RB, et al. Beyond positive margins and extracapsular extension: evaluating the utilization and clinical impact of postoperative chemoradiotherapy in resected locally advanced head and neck cancer. J Clin Oncol. 2017;35(14):1550–60.

    Article  PubMed  Google Scholar 

  231. Skinner HD, Sandulache VC, Ow TJ, Meyn RE, Yordy JS, Beadle BM, et al. TP53 disruptive mutations lead to head and neck cancer treatment failure through inhibition of radiation-induced senescence. Clin Cancer Res. 2012;18(1):290–300.

    Article  CAS  PubMed  Google Scholar 

  232. Masica DL, Li S, Douville C, Manola J, Ferris RL, Burtness B, et al. Predicting survival in head and neck squamous cell carcinoma from TP53 mutation. Hum Genet. 2015;134(5):497–507.

    Article  CAS  PubMed  Google Scholar 

  233. Poeta ML, Manola J, Goldwasser MA, Forastiere A, Benoit N, Califano JA, et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med. 2007;357(25):2552–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Zenga J, Wilson M, Adkins DR, Gay HA, Haughey BH, Kallogjeri D, et al. Treatment outcomes for T4 oropharyngeal squamous cell carcinoma. JAMA Otolaryngol Head Neck Surg. 2015;141(12):1118–27.

    Article  PubMed  Google Scholar 

  235. Saito Y, Hayashi R, Iida Y, Mizumachi T, Fujii T, Matsumoto F, et al. Optimization of therapeutic strategy for p16-positive oropharyngeal squamous cell carcinoma: multi-institutional observational study based on the national Head and Neck Cancer Registry of Japan. Cancer. 2020;126(18):4177–87.

    Article  CAS  PubMed  Google Scholar 

  236. Chera BS, Amdur RJ, Tepper JE, Tan X, Weiss J, Grilley-Olson JE, et al. Mature results of a prospective study of deintensified chemoradiotherapy for low-risk human papillomavirus-associated oropharyngeal squamous cell carcinoma. Cancer. 2018;124(11):2347–54.

    Article  CAS  PubMed  Google Scholar 

  237. Yom SS, Torres-Saavedra P, Caudell JJ, Waldron JN, Gillison ML, Xia P, et al. Reduced-dose radiation therapy for HPV-associated oropharyngeal carcinoma (NRG Oncology HN002). J Clin Oncol. 2021;39(9):956–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Wopken K, Bijl HP, van der Schaaf A, van der Laan HP, Chouvalova O, Steenbakkers RJ, et al. Development of a multivariable normal tissue complication probability (NTCP) model for tube feeding dependence after curative radiotherapy/chemo-radiotherapy in head and neck cancer. Radiother Oncol. 2014;113(1):95–101.

    Article  PubMed  Google Scholar 

  239. Marur S, Li S, Cmelak AJ, Gillison ML, Zhao WJ, Ferris RL, et al. E1308: Phase II trial of induction chemotherapy followed by reduced-dose radiation and weekly cetuximab in patients with HPV-associated resectable squamous cell carcinoma of the oropharynx- ECOG-ACRIN Cancer Research Group. J Clin Oncol. 2017;35(5):490–7.

    Article  CAS  PubMed  Google Scholar 

  240. Chen AM, Felix C, Wang PC, Hsu S, Basehart V, Garst J, et al. Reduced-dose radiotherapy for human papillomavirus-associated squamous-cell carcinoma of the oropharynx: a single-arm, phase 2 study. Lancet Oncol. 2017;18(6):803–11.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Rosenberg AJ, Agrawal N, Pearson A, Gooi Z, Blair E, Cursio J, et al. Risk and response adapted de-intensified treatment for HPV-associated oropharyngeal cancer: optima paradigm expanded experience. Oral Oncol. 2021;122: 105566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Miccio JA, Verma V, Kelly J, Kann BH, An Y, Park HS, et al. Impact of contralateral lymph nodal involvement and extranodal extension on survival of surgically managed HPV-positive oropharyngeal cancer staged with the AJCC eighth edition. Oral Oncol. 2019;99:104447.

    Article  PubMed  Google Scholar 

  243. Quon H, O’Malley BW Jr, Weinstein GS. Transoral robotic surgery and a paradigm shift in the management of oropharyngeal squamous cell carcinoma. J Robot Surg. 2010;4(2):79–86.

    Article  PubMed  Google Scholar 

  244. Ferris RL, Flamand Y, Holsinger FC, Weinstein GS, Quon H, Mehra R, et al. A novel surgeon credentialing and quality assurance process using transoral surgery for oropharyngeal cancer in ECOG-ACRIN Cancer Research Group Trial E3311. Oral Oncol. 2020;110: 104797.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Moore EJ, Van Abel KM, Routman DM, Lohse CM, Price KAR, Neben-Wittich M, et al. Human papillomavirus oropharynx carcinoma: aggressive de-escalation of adjuvant therapy. Head Neck. 2021;43(1):229–37.

    Article  PubMed  Google Scholar 

  246. Chua MLK, Wee JTS, Hui EP, Chan ATC. Nasopharyngeal carcinoma. Lancet. 2016;387(10022):1012–24.

    Article  PubMed  Google Scholar 

  247. Bei JX, Zuo XY, Liu WS, Guo YM, Zeng YX. Genetic susceptibility to the endemic form of NPC. Chin Clin Oncol. 2016;5(2):15.

    Article  PubMed  Google Scholar 

  248. Dai W, Zheng H, Cheung AK, Tang CS, Ko JM, Wong BW, et al. Whole-exome sequencing identifies MST1R as a genetic susceptibility gene in nasopharyngeal carcinoma. Proc Natl Acad Sci U S A. 2016;113(12):3317–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Li YY, Chung GT, Lui VW, To KF, Ma BB, Chow C, et al. Exome and genome sequencing of nasopharynx cancer identifies NF-kappaB pathway activating mutations. Nat Commun. 2017;18(8):14121.

    Article  Google Scholar 

  250. Lin DC, Meng X, Hazawa M, Nagata Y, Varela AM, Xu L, et al. The genomic landscape of nasopharyngeal carcinoma. Nat Genet. 2014;46(8):866–71.

    Article  CAS  PubMed  Google Scholar 

  251. Zhang L, MacIsaac KD, Zhou T, Huang PY, Xin C, Dobson JR, et al. Genomic analysis of nasopharyngeal carcinoma reveals TME-based subtypes. Mol Cancer Res. 2017;15(12):1722–32.

    Article  CAS  PubMed  Google Scholar 

  252. Zheng H, Dai W, Cheung AK, Ko JM, Kan R, Wong BW, et al. Whole-exome sequencing identifies multiple loss-of-function mutations of NF-kappaB pathway regulators in nasopharyngeal carcinoma. Proc Natl Acad Sci U S A. 2016;113(40):11283–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Chang ET, Liu Z, Hildesheim A, Liu Q, Cai Y, Zhang Z, et al. Active and passive smoking and risk of nasopharyngeal carcinoma: a population-based case-control study in Southern China. Am J Epidemiol. 2017;185(12):1272–80.

    Article  PubMed  PubMed Central  Google Scholar 

  254. Guo X, Johnson RC, Deng H, Liao J, Guan L, Nelson GW, et al. Evaluation of nonviral risk factors for nasopharyngeal carcinoma in a high-risk population of Southern China. Int J Cancer. 2009;124(12):2942–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Liu Z, Chang ET, Liu Q, Cai Y, Zhang Z, Chen G, et al. Quantification of familial risk of nasopharyngeal carcinoma in a high-incidence area. Cancer. 2017;123(14):2716–25.

    Article  CAS  PubMed  Google Scholar 

  256. Tsao SW, Yip YL, Tsang CM, Pang PS, Lau VM, Zhang G, et al. Etiological factors of nasopharyngeal carcinoma. Oral Oncol. 2014;50(5):330–8.

    Article  PubMed  Google Scholar 

  257. Au KH, Ngan RKC, Ng AWY, Poon DMC, Ng WT, Yuen KT, et al. Treatment outcomes of nasopharyngeal carcinoma in modern era after intensity modulated radiotherapy (IMRT) in Hong Kong: a report of 3328 patients (HKNPCSG 1301 study). Oral Oncol. 2018;77:16–21.

    Article  CAS  PubMed  Google Scholar 

  258. Lee N, Harris J, Garden AS, Straube W, Glisson B, Xia P, et al. Intensity-modulated radiation therapy with or without chemotherapy for nasopharyngeal carcinoma: radiation therapy oncology group phase II trial 0225. J Clin Oncol. 2009;27(22):3684–90.

    Article  PubMed  PubMed Central  Google Scholar 

  259. Li XY, Chen QY, Sun XS, Liu SL, Yan JJ, Guo SS, et al. Ten-year outcomes of survival and toxicity for a phase III randomised trial of concurrent chemoradiotherapy versus radiotherapy alone in stage II nasopharyngeal carcinoma. Eur J Cancer. 2019;110:24–31.

    Article  PubMed  Google Scholar 

  260. Tang LL, Guo R, Zhang N, Deng B, Chen L, Cheng ZB, et al. Effect of radiotherapy alone vs radiotherapy with concurrent chemoradiotherapy on survival without disease relapse in patients with low-risk nasopharyngeal carcinoma: a randomized clinical trial. JAMA. 2022;328(8):728–36.

    Article  PubMed  Google Scholar 

  261. Blanchard P, Lee A, Marguet S, Leclercq J, Ng WT, Ma J, et al. Chemotherapy and radiotherapy in nasopharyngeal carcinoma: an update of the MAC-NPC meta-analysis. Lancet Oncol. 2015;16(6):645–55.

    Article  PubMed  Google Scholar 

  262. Cao SM, Yang Q, Guo L, Mai HQ, Mo HY, Cao KJ, et al. Neoadjuvant chemotherapy followed by concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: a phase III multicentre randomised controlled trial. Eur J Cancer. 2017;75:14–23.

    Article  CAS  PubMed  Google Scholar 

  263. Sun Y, Li WF, Chen NY, Zhang N, Hu GQ, Xie FY, et al. Induction chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: a Phase III, multicentre, randomised controlled trial. Lancet Oncol. 2016;17(11):1509–20.

    Article  CAS  PubMed  Google Scholar 

  264. Yang Q, Cao SM, Guo L, Hua YJ, Huang PY, Zhang XL, et al. Induction chemotherapy followed by concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: long-term results of a phase III multicentre randomised controlled trial. Eur J Cancer. 2019;119:87–96.

    Article  CAS  PubMed  Google Scholar 

  265. Zhang B, Li MM, Chen WH, Zhao JF, Chen WQ, Dong YH, et al. Association of chemoradiotherapy regimens and survival among patients with nasopharyngeal carcinoma: a systematic review and meta-analysis. JAMA Netw Open. 2019;2(10): e1913619.

    Article  PubMed  PubMed Central  Google Scholar 

  266. Zhang Y, Chen L, Hu GQ, Zhang N, Zhu XD, Yang KY, et al. Gemcitabine and cisplatin induction chemotherapy in nasopharyngeal carcinoma. N Engl J Med. 2019;381(12):1124–35.

    Article  CAS  PubMed  Google Scholar 

  267. Chen YP, Liu X, Zhou Q, Yang KY, Jin F, Zhu XD, et al. Metronomic capecitabine as adjuvant therapy in locoregionally advanced nasopharyngeal carcinoma: a multicentre, open-label, parallel-group, randomised, controlled, Phase III trial. Lancet. 2021;398(10297):303–13.

    Article  CAS  PubMed  Google Scholar 

  268. Miao JLW, Tan SH, Li J-G, Yi J, Zhang Y, Gong X, Yanqun X, Chen Q-Y, Chen M, Lv X, Xia W, Tang L-Q, Deng X-W, Guo X, Mai H-Q, Han F, Chua MLK, Zhao C. Adjuvant capecitabine in locoregionally advanced nasopharyngeal carcinoma: A multicenter randomized controlled phase III trial. J Clin Oncol. 2021;39(15_suppl):6005 (ASCO Annual Meeting; 2021).

    Article  Google Scholar 

  269. Liu YP, Wen YH, Tang J, Wei Y, You R, Zhu XL, et al. Endoscopic surgery compared with intensity-modulated radiotherapy in resectable locally recurrent nasopharyngeal carcinoma: a multicentre, open-label, randomised, controlled, Phase III trial. Lancet Oncol. 2021;22(3):381–90.

    Article  PubMed  Google Scholar 

  270. Mai HQ, Chen QY, Chen D, Hu C, Yang K, Wen J, et al. Toripalimab or placebo plus chemotherapy as first-line treatment in advanced nasopharyngeal carcinoma: a multicenter randomized Phase III trial. Nat Med. 2021;27(9):1536–43.

    Article  CAS  PubMed  Google Scholar 

  271. Yang Y, Qu S, Li J, Hu C, Xu M, Li W, et al. Camrelizumab versus placebo in combination with gemcitabine and cisplatin as first-line treatment for recurrent or metastatic nasopharyngeal carcinoma (CAPTAIN-1st): a multicentre, randomised, double-blind, Phase III trial. Lancet Oncol. 2021;22(8):1162–74.

    Article  CAS  PubMed  Google Scholar 

  272. Zhang L YY, Pan J, Chen X, Sun Y, Wang H RATIONALE-309: updated progression-free survival (PFS), PFS after next line of treatment, and overall survival from a Phase III double-blind trial of tislelizumab versus placebo, plus chemotherapy, as first-line treatment for recurrent/metastatic nasopharyngeal cancer. Journal of Clinical Oncology 40, no. 36_suppl (December 20, 2022) 384950-384950.2022.

  273. Chan ATC LV, Hong R, Ahn M, Chong WQ, Kim S, Fuang HG, Caguioa PB Results of KEYNOTE-122: A phase III study of pembrolizumab (pembro) monotherapy vs chemotherapy (chemo) for platinum-pretreated, recurrent or metastatic (R/M) nasopharyngeal carcinoma (NPC). Annals of Oncology (2021) 32 (suppl_5): S786-S817. 10.1016/annonc/annonc704. ESMO. 2021.

  274. Toh HCYM, Wang H, Hsieh C, Chitapanarux I, Ho KF, Hong R, Ang M, Colevas D, Sirachainan E, Lertbutsayanukul C, Ho GF, Samol J, Huang Z, Tan C, Ding C, Myo A. Randomized phase III VANCE study: gemcitabine and carboplatin (GC) followed by Epstein Barr virus-specific autologous cytotoxic T lymphocytes (EBV-CTL) versus the same chemotherapy as first-line treatment for advanced nasopharyngeal carcinoma (NPC). Ann Oncol. 2022;33(suppl_7):S295–322. https://doi.org/10.1016/annonc/annonc1056. (ESMO; 2022).

    Article  Google Scholar 

  275. Wright CM, Lee DY, Shimunov D, Carmona R, Barsky AR, Sun L, et al. Definitive tumor directed therapy confers a survival advantage for metachronous oligometastatic HPV-associated oropharyngeal cancer following trans-oral robotic surgery. Oral Oncol. 2021;121: 105509.

    Article  PubMed  Google Scholar 

  276. Argiris A, Li S, Ghebremichael M, Egloff AM, Wang L, Forastiere AA, et al. Prognostic significance of human papillomavirus in recurrent or metastatic head and neck cancer: an analysis of Eastern Cooperative Oncology Group trials. Ann Oncol. 2014;25(7):1410–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Fakhry C, Zhang Q, Nguyen-Tan PF, Rosenthal D, El-Naggar A, Garden AS, et al. Human papillomavirus and overall survival after progression of oropharyngeal squamous cell carcinoma. J Clin Oncol. 2014;32(30):3365–73.

    Article  PubMed  PubMed Central  Google Scholar 

  278. Vermorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359(11):1116–27.

    Article  CAS  PubMed  Google Scholar 

  279. Burtness B, Harrington KJ, Greil R, Soulieres D, Tahara M, de Castro Jr. G, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, Phase III study. Lancet. 2019;394(10212):1915–28.

    Article  CAS  PubMed  Google Scholar 

  280. Dzienis MRCJ, Fuentes CS, Hansen AR, Nordlinger MJ, Pastor AV, Oppelt P, Neki A, Gregg RW, Lima IPF, Franke FA, da Cunha Jr GF, Tseng JE, Loree T, Joshi AJ, mccarthy JS, Naicker N, Sidi Y, Gumuscu B, De Castro Jr G,. Pembrolizumab (pembro) + carboplatin (carbo) + paclitaxel (pacli) as first-line (1L) therapy in recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC): phase IV KEYNOTE-B10 study. Ann Oncol. 2022;33(suppl_7):S295–322. https://doi.org/10.1016/annonc/annonc1056. (ESMO; 2022).

    Article  Google Scholar 

  281. Emancipator K, Huang L, Aurora-Garg D, Bal T, Cohen EEW, Harrington K, et al. Comparing programmed death ligand 1 scores for predicting pembrolizumab efficacy in head and neck cancer. Mod Pathol. 2021;34(3):532–41.

    Article  CAS  PubMed  Google Scholar 

  282. Cohen EEW, Soulieres D, Le Tourneau C, Dinis J, Licitra L, Ahn MJ, et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, Phase III study. Lancet. 2019;393(10167):156–67.

    Article  CAS  PubMed  Google Scholar 

  283. Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–67.

    Article  PubMed  PubMed Central  Google Scholar 

  284. Herbst RS, Langer CJ. Epidermal growth factor receptors as a target for cancer treatment: the emerging role of IMC-C225 in the treatment of lung and head and neck cancers. Semin Oncol. 2002;29(1 Suppl 4):27–36.

    Article  CAS  PubMed  Google Scholar 

  285. Machiels JP, Haddad RI, Fayette J, Licitra LF, Tahara M, Vermorken JB, et al. Afatinib versus methotrexate as second-line treatment in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck progressing on or after platinum-based therapy (LUX-Head & Neck 1): an open-label, randomised Phase III trial. Lancet Oncol. 2015;16(5):583–94.

    Article  CAS  PubMed  Google Scholar 

  286. Seiwert TY, Fayette J, Cupissol D, Del Campo JM, Clement PM, Hitt R, et al. A randomized, phase II study of afatinib versus cetuximab in metastatic or recurrent squamous cell carcinoma of the head and neck. Ann Oncol. 2014;25(9):1813–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Vermorken JB, Trigo J, Hitt R, Koralewski P, Diaz-Rubio E, Rolland F, et al. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J Clin Oncol. 2007;25(16):2171–7.

    Article  CAS  PubMed  Google Scholar 

  288. Mountzios G, Rampias T, Psyrri A. The mutational spectrum of squamous-cell carcinoma of the head and neck: targetable genetic events and clinical impact. Ann Oncol. 2014;25(10):1889–900.

    Article  CAS  PubMed  Google Scholar 

  289. Untch BR, Dos Anjos V, Garcia-Rendueles MER, Knauf JA, Krishnamoorthy GP, Saqcena M, et al. Tipifarnib inhibits HRAS-driven dedifferentiated thyroid cancers. Cancer Res. 2018;78(16):4642–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Gilardi M, Wang Z, Proietto M, Chilla A, Calleja-Valera JL, Goto Y, et al. Tipifarnib as a precision therapy for HRAS-mutant head and neck squamous cell carcinomas. Mol Cancer Ther. 2020;19(9):1784–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Ho AL, Brana I, Haddad R, Bauman J, Bible K, Oosting S, et al. Tipifarnib in head and neck squamous cell carcinoma with HRAS mutations. J Clin Oncol. 2021;39(17):1856–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Ferris RL, Haddad R, Even C, Tahara M, Dvorkin M, Ciuleanu TE, et al. Durvalumab with or without tremelimumab in patients with recurrent or metastatic head and neck squamous cell carcinoma: EAGLE, a randomized, open-label phase III study. Ann Oncol. 2020;31(7):942–50.

    Article  CAS  PubMed  Google Scholar 

  293. Argiris AKH, Tahara M, Ferris RL, Gillison M, Fayette J, Daste A, Koralewski P, Mesia Nin R, Saba NF, Mak M, Álvarez Avitia MA, Guminski A, Müller-Richter U, Kiyota N, Roberts M, Khan TA, Miller-Moslin K, Wei L, Robert Haddad R. Nivolumab (N) + ipilimumab (I) vs EXTREME as first-line (1L) treatment (tx) for recurrent/metastatic squamous cell carcinoma of the head and neck (R/M SCCHN): final results of CheckMate 651. Annals of Oncology (2021) 32 (suppl_5): S1283-S1346. 10.1016/annonc/annonc741. In: ESMO Congress; 2021: European Society for Medical Oncology (ESMO) Congress 2021; September 16-21, 2021. Abstract LBA36; 2021.

  294. Yentz S, Smith D. Indoleamine 2,3-Dioxygenase (IDO) Inhibition as a Strategy to Augment Cancer Immunotherapy. BioDrugs. 2018;32(4):311–7.

    Article  CAS  PubMed  Google Scholar 

  295. Mitchell TC, Hamid O, Smith DC, Bauer TM, Wasser JS, Olszanski AJ, et al. Epacadostat plus pembrolizumab in patients with advanced solid tumors: phase I results from a multicenter, open-label phase I/II trial (ECHO-202/KEYNOTE-037). J Clin Oncol. 2018;36(32):3223–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Long GV, Dummer R, Hamid O, Gajewski TF, Caglevic C, Dalle S, et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a Phase III, randomised, double-blind study. Lancet Oncol. 2019;20(8):1083–97.

    Article  CAS  PubMed  Google Scholar 

  297. Kontos F, Michelakos T, Kurokawa T, Sadagopan A, Schwab JH, Ferrone CR, et al. B7–H3: an attractive target for antibody-based immunotherapy. Clin Cancer Res. 2021;27(5):1227–35.

    Article  CAS  PubMed  Google Scholar 

  298. Zhang SS, Tang J, Yu SY, Ma LI, Wang F, Xie SL, et al. Expression levels of B7–H3 and TLT-2 in human oral squamous cell carcinoma. Oncol Lett. 2015;10(2):1063–8.

    Article  PubMed  PubMed Central  Google Scholar 

  299. Sacco AG, Chen R, Worden FP, Wong DJL, Adkins D, Swiecicki P, et al. Pembrolizumab plus cetuximab in patients with recurrent or metastatic head and neck squamous cell carcinoma: an open-label, multi-arm, non-randomised, multicentre, phase 2 trial. Lancet Oncol. 2021;22(6):883–92.

    Article  CAS  PubMed  Google Scholar 

  300. Chung CH, Bonomi M, Steuer CE, Li J, Bhateja P, Johnson M, et al. Concurrent cetuximab and nivolumab as a second-line or beyond treatment of patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results of phase I/II study. Cancers (Basel). 2021;13(5).

  301. Yang J, Yan J, Liu B. Targeting VEGF/VEGFR to Modulate Antitumor Immunity. Front Immunol. 2018;9:978.

    Article  PubMed  PubMed Central  Google Scholar 

  302. Taylor MH, Lee CH, Makker V, Rasco D, Dutcus CE, Wu J, et al. Phase IB/II trial of lenvatinib plus pembrolizumab in patients with advanced renal cell carcinoma, endometrial cancer, and other selected advanced solid tumors. J Clin Oncol. 2020;38(11):1154–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Saba NF EA, McCook-Veal A, Patel M, Schmitt NC, Stokes WA, Bates JE, Rudra S, Abousaud MI, Muzaffar J, Kirtane K, Teng Y, Steuer CE, Shin DM, Liu Y, Chung CH. A phase II trial of pembrolizumab and cabozantinib in patients (pts) with recurrent metastatic head and neck squamous cell carcinoma (RMHNSCC). 2022: J Clin Oncol 40. 2022 (suppl 16; abstr 6008).

  304. Amatore F, Gorvel L, Olive D. Role of Inducible Co-Stimulator (ICOS) in cancer immunotherapy. Expert Opin Biol Ther. 2020;20(2):141–50.

    Article  CAS  PubMed  Google Scholar 

  305. Solinas C, Gu-Trantien C, Willard-Gallo K. The rationale behind targeting the ICOS-ICOS ligand costimulatory pathway in cancer immunotherapy. ESMO Open. 2020;5(1).

  306. Sousa LG, Rajapakshe K, Rodriguez Canales J, Chin RL, Feng L, Wang Q, Barrese TZ, Massarelli E, William W, Johnson FM, Ferrarotto R, Wistuba I, Coarfa C, Lee J, Wang J, Melief CJM, Curran MA, Glisson BS. ISA101 and nivolumab for HPV-16+ cancer: updated clinical efficacy and immune correlates of response. J Immunother Cancer. 2022 Feb;10(2):e004232. https://doi.org/10.1136/jitc-2021-004232. PMID: 35193933; PMCID: PMC9066369.

  307. Morris VK, Jazaeri AA, Westin SN, Pettaway CA, George S, Huey R, Onstad M, Tu S-M, Wang J, Shafer A, Johnson B, Xiao L, Vining DJ, Guo M, Yuan Y, Frumovitz MM. Phase II trial of MEDI0457 and durvalumab for patients with recurrent/metastatic HPV-associated cancers. J Clin Oncol. 2021;39(15 suppl):2595–2595 (ASCO Annual Meeting; 2021).

    Article  Google Scholar 

  308. Chung CHCA, Adkins DR, Park JC, Rodriguez CP, Gibson MK, Sukari A, Burtness BA, Johnson F, Julian RA, Saba NF, Dunn LA, Seiwert TY, Worden FP, Muzaffar J, Haddad RY, Gabrail NY, Bauman JE, Chaney M, Agensky L, Goel A, Lynam R, Margossian SP, Moniz RJ, Quayle SN, Pienta K, Levisetti M, Pai SI. A phase 1 study of CUE-101, a novel HPV16 E7-pHLA-IL2-Fc fusion protein, as monotherapy and in combination with pembrolizumab in patients with recurrent/metastatic HPV16+ head and neck cancer. J Immunother Cancer. 2022;10(Suppl 2):A1–1595 (SITC Annual Meeting; 2022).

    Google Scholar 

  309. Pellom ST, Smalley Rumfield C, Morillon YM, 2nd, Roller N, Poppe LK, Brough DE, et al. Characterization of recombinant gorilla adenovirus HPV therapeutic vaccine PRGN-2009. JCI Insight. 2021;6(7).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aarti Bhatia.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Competing Interests

Aarti Bhatia: Research funding from Boehringer-Ingelheim and Genentech. Consultant fees from Regeneron, Sanofi-Genzyme, and Merck. Barbara Burtness: Consulting for Cue Biopharma, Debio, Genentech, IO Biotech, Kura, ALX Oncology, Merck, Merck KgA, Vaccinex, Exelexis, Glaxo Smith Kline. Research funding from Bristol Myers Squibb, Cue BioPharma, Exelexis, Merck, Merck KgA, RBN.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Both authors AB and BB consent to the publication of this manuscript.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Authors' contributions

Both authors AB and BB contributed equally to the preparation of this manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, A., Burtness, B. Treating Head and Neck Cancer in the Age of Immunotherapy: A 2023 Update. Drugs 83, 217–248 (2023). https://doi.org/10.1007/s40265-023-01835-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-023-01835-2

Navigation