Skip to main content

Advertisement

Log in

Engineering grass biomass for sustainable and enhanced bioethanol production

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Bioethanol from lignocellulosic biomass is a promising step for the future energy requirements. Grass is a potential lignocellulosic biomass which can be utilised for biorefinery-based bioethanol production. Grass biomass is a suitable feedstock for bioethanol production due to its all the year around production, requirement of less fertile land and noninterference with food system. However, the processes involved, i.e. pretreatment, enzymatic hydrolysis and fermentation for bioethanol production from grass biomass, are both time consuming and costly. Developing the grass biomass in planta for enhanced bioethanol production is a promising step for maximum utilisation of this valuable feedstock and, thus, is the focus of the present review. Modern breeding techniques and transgenic processes are attractive methods which can be utilised for development of the feedstock. However, the outcomes are not always predictable and the time period required for obtaining a robust variety is generation dependent. Sophisticated genome editing technologies such as synthetic genetic circuits (SGC) or clustered regularly interspaced short palindromic repeats (CRISPR) systems are advantageous for induction of desired traits/heritable mutations in a foreseeable genome location in the 1st mutant generation. Although, its application in grass biomass for bioethanol is limited, these sophisticated techniques are anticipated to exhibit more flexibility in engineering the expression pattern for qualitative and qualitative traits. Nevertheless, the fundamentals rendered by the genetics of the transgenic crops will remain the basis of such developments for obtaining biorefinery-based bioethanol concepts from grass biomass.

Abstract

Grasses which are abundant and widespread in nature epitomise attractive lignocellulosic feedstocks for bioethanol production. The complexity offered by the grass cell wall in terms of lignin recalcitrance and its binding to polysaccharides forms a barricade for its commercialization as a biofuel feedstock. Inspired by the possibilities for rewiring the genetic makeup of grass biomass for reduced lignin and lignin–polysaccharide linkages along with increase in carbohydrates, innovative approaches for in planta modifications are forging ahead. In this review, we highlight the progress made in the field of transgenic grasses for bioethanol production and focus our understanding on improvements of simple breeding techniques and post-harvest techniques for development in shortening of lignin–carbohydrate and carbohydrate–carbohydrate linkages. Further, we discuss about the designer lignins which are aimed for qualitable lignins and also emphasise on remodelling of polysaccharides and mixed-linkage glucans for enhancing carbohydrate content and in planta saccharification efficiency. As a final point, we discuss the role of synthetic genetic circuits and CRISPR systems in targeted improvement of cell wall components without compromising the plant growth and health. It is anticipated that this review can provide a rational approach towards a better understanding of application of in planta genetic engineering aspects for designing synthetic genetic circuits which can promote grass feedstocks for biorefinery-based bioethanol concepts.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abramson M, Shoseyov O, Shani Z (2010) Plant cell wall reconstruction toward improved lignocellulosic production and processability. Plant Sci 178:61–72

    Article  CAS  Google Scholar 

  • Abraham A, Mathew AK, Sindhu R, Pandey A, Binod P (2016) Potential of rice straw for bio-refining: an overview. Bioresour Technol 215:29–36

    Article  CAS  PubMed  Google Scholar 

  • Adler PR, Sanderson MA, Boateng AA, Weimer PJ, Jung HJ (2006) Biomass yield and biofuel quality of switchgrass harvested in fall or spring. Agron J 98:1518–1525

    Article  CAS  Google Scholar 

  • Anders N, Wilkinson MD, Lovegrove A, Freeman J, Tryfona T, Pellny TK, Weimar T, Mortimer JC et al (2012) Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proc Natl Acad Sci (USA) 109:989–993

    Article  Google Scholar 

  • Andres SN, Li ZM, Erie DA, Williams RS (2019) Ctp1 protein–DNA filaments promote DNA bridging and DNA double-strand break repair. J Biol Chem 294(9):3312–3320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aznar A, Chalvin C, Shih PM, Maimann M, Berit E, Birdseye DS, Loqué D, Scheller HV (2018) Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass. Biotechnol Biofuels 11:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee G, Car S, Scott-Craig J, Borrusch M, Walton J (2010) Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations. Biotechnol Biofuels 3:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartley LE, Peck ML, Kim SR, Ebert B, Manisseri C, Chiniquy DM, Sykes R, Gao L, Rautengarten C, Vega-Sánchez ME et al (2013) Overexpression of a BAHD acyltransferase, OsAt10, alters rice cell wall hydroxycinnamic acid content and saccharification. Plant Physiol 161:1615–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashline L, Lei L, Li SD, Gu Y (2014) Cell wall cytoskeleton, and cell expansion in higher plants. Mol Plant 7:586–600

    Article  CAS  PubMed  Google Scholar 

  • Baxter HL, Mazarei M, Labbe N, Kline LM, Cheng Q, Windham MT, Mann DG, Fu C, Ziebell A, Sykes RW, Rodriguez M Jr et al (2014) Two-year field analysis of reduced recalcitrance transgenic switchgrass. Plant Biotechnol J 12:914–924

    Article  PubMed  Google Scholar 

  • Bhatia R, Gallagher JA, Leonardo D, Bosch GM (2017) Genetic engineering of grass cell wall polysaccharides for biorefining. Plant Biotechnol J 15:1071–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biely P (2012) Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnol Adv 30:1575–1588

    Article  CAS  PubMed  Google Scholar 

  • Bosch M, Mayer CD, Cookson A, Donnison IS (2011) Identification of genes involved in cell wall biogenesis in grasses by differential gene expression profiling of elongating and non-elongating maize internodes. J Exp Bot 62:3545–3561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown DM, Goubet F, Wong VW, Goodacre R, Stephens E, Dupree P, Turner SR (2007) Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. Plant J 52:1154–1168

    Article  CAS  PubMed  Google Scholar 

  • Buanafina MMO (2009) Feruloylation in grasses: current and future perspectives. Mol Plant 2:861–872

    Article  CAS  Google Scholar 

  • Buanafina MM, Fescemyer HW, Sharma M, Shearer EA (2016) Functional testing of a PF02458 homologue of putative rice arabinoxylan feruloyl transferase genes in Brachypodium distachyon. Planta 243:659–674

    Article  CAS  PubMed  Google Scholar 

  • Burton RA, Collins HM, Kibble NAJ, Smith JA, Shirley NJ, Jobling SA, Henderson M (2011) Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-b-d-glucans and alters their fine structure. Plant Biotechnol J 9:117–135

    Article  CAS  PubMed  Google Scholar 

  • Caddick MX, Greenland AJ, Jepson I et al (1998) An ethanol inducible gene switch for plants used to manipulate carbon metabolism. Nat Biotech 16:177–180

    Article  CAS  Google Scholar 

  • Carpita NC (2012) Progress in the biological synthesis of the plant cell wall: new ideas for improving biomass for bioenergy. Curr Opin Biotechnol 23:330–337

    Article  CAS  PubMed  Google Scholar 

  • Carpita NC, McCann MC (2010) The maize mixed-linkage (1/3), (1/4)-b-d-glucan polysaccharide is synthesized at the Golgi membrane. Plant Physiol 153:1362–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandel AK, Chandrasekhar G, Silva MB, da Silva SS (2012) The realm of cellulases in biorefinery development. Crit Rev Biotechnol 32:187–202

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Shekiro J, Franden MA, Wang W, Zhang M, Kuhn E, Johnson DK (2012) The impacts of deacetylation prior to dilute acid pretreatment on the bioethanol process. Biotechnol Biofuels 5:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Kaeppler SM, Vogel KP, Casler MD (2016) Selection signatures in four lignin genes from switchgrass populations divergently selected for in vitro dry matter digestibility. PLoS One 11:e0167005. https://doi.org/10.1371/journal.pone.0167005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiniquy D, Sharma V, Schultink A, Baidoo EE, Rautengarten C, Cheng K, Carroll A, Ulvskov P, Harholt J, Keasling JD, Pauly M, Scheller HV, Ronald PC (2012) XAX1 from glycosyltransferase family 61 mediates xylosyl transfer to rice xylan. Proc Natl Acad Sci (USA) 109:17117–17122

    Article  Google Scholar 

  • Clifton-Brown J, McCalmont J, Hastings A (2017) Chapter-7: development of miscanthus as a bioenergy crop. In: Love J, Bryant JA. Biofuels and bioenergy. https://doi.org/10.1002/9781118350553.ch7

  • da Costa RMF, Pattathil S, Avci SU, Lee HSJ, Winters SPA, Hahn MG (2017) A cell wall reference profile for Miscanthus bioenergy crops highlights compositional and structural variations associated with development and organ origin. New Phytology 213:1710–1725

    Article  CAS  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Buanafina MMO, Fescemyer HW (2012) Modification of esterified cell wall phenolics increases vulnerability of tall fescue to insect herbivory. Planta 236:513–523

    Article  CAS  Google Scholar 

  • de Buanafina MMO, Iyer PR, Buanafina MF, Shearer EA (2017) Reducing cell wall feruloylation by expression of a fungal ferulic acid esterase in Festuca arundinacea modifies plant growth, leaf morphology and the turnover of cell wall arabinoxylans. PLoS One 12:e0185312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Lange O, Klavins E, Nemhauser J (2018) Synthetic genetic circuits in crop plants. Curr Opin Biotechnol 49:16–22

    Article  CAS  PubMed  Google Scholar 

  • De Souza AP, Kamei CLA, Torres AF, Pattathil S, Hahn MG, Trindade LM, Buckeridge MS (2015) How cell wall complexity influences saccharification efficiency in Miscanthus sinensis. J Exp Bot 66:4351–4365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Vries RP, Michelsen B, Poulsen CH, Kroon PA, van den Heuvel RH, Faulds CB, Williamson G, van den Hombergh JP, Visser J (1997) The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Appl Environ Microbiol 63:4638–4644

    PubMed  PubMed Central  Google Scholar 

  • Dumitrache A, Natzke J, Rodriguez M, Yee KL, Thompson OA, Poovaiah CR, Shen H, Mazarei M, Baxter HL et al (2017) Transgenic switchgrass (Panicum virgatum L.) targeted for reduced recalcitrance to bioconversion: a 2-year comparative analysis of field-grown lines modified for target gene or genetic element expression. Plant Biotechnol J 15(6):688–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doblin MS, Pettolino FA, Wilson SM, Campbell R, Burton RA, Fincher GB, Newbigin E, Bacic A (2009) A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-beta-D-glucan synthesis in transgenic Arabidopsis. Proc Natl Acad Sci USA 106:5996–6001

    Article  PubMed  Google Scholar 

  • Ebringerová A, Heinze T (2000) Xylan and xylan derivatives—biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21:542–556

    Article  Google Scholar 

  • Energy Information Administration (EIA) (2015) Reports. www.eia.gov/beta/international/analysis.php?iso=CHN. Accessed 14 May 2015

  • EUCARPIA (2018) Symposium on breeding for diversification, Witzenhausen. www.liveseed.eu/wpcontent/uploads/2018/03/breeding_for_diversification_February_2018. Accessed 19–21 Feb 2018

  • Eudes A, George A, Mukerjee P, Kim JS, Pollet B, Benke PI, Yang F, Mitra P, Sun L et al (2012) Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnol Journal 10:609–620

    Article  CAS  Google Scholar 

  • Eudes A, Liang Y, Mitra P, Loqué D (2014) Lignin bioengineering. Curr Opin Biotechnol 26:189–198

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, Lian X, Shen Q, Miller AJ, Xu G (2016) Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. PNAS 113:7118–7123

    Article  CAS  PubMed  Google Scholar 

  • Farrar K, Bryant DN, Turner L, Gallagher J, Thomas A, Farrell M, Humphreys MO, Donnison IS (2012) Breeding for bioethanol production in Lolium perenne L.: association of allelic variation with high water-soluble carbohydrate content. Bioenergy Res 5:149–157

    Article  CAS  PubMed  Google Scholar 

  • Feltus FA, Vandenbrink JP (2012) Bioenergy grass feedstock: current options and prospects for trait improvement using emerging genetic, genomic, and systems biology toolkits. Biotechnol Biofuels 5:80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francocci F, Bastianelli E, Lionetti V, Ferrari S, De Lorenzo G (2013) Analysis of pectin mutants and natural accessions of Arabidopsis highlights the impact of de-methyl-esterified homogalacturonan on tissue saccharification. Biotechnol Biofuels 6:163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gedye KR, Gonzalez-Hernandez JL, Owens V, Boe A (2012) Advances towards a Marker Assisted Selection Breeding Program in Prairie Cordgrass, a Biomass Crop. Int J Plant Genomics. https://doi.org/10.1155/2012/313545

    Article  PubMed  PubMed Central  Google Scholar 

  • Grabber JH, Schatz PF, Kim H, Lu F, Ralph J (2010) Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability. BMC Plant Biol 10:114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris P, Trethewey JK (2010) The distribution of ester-linked ferulic acid in the cell walls of angiosperms. Phytochem Rev 9:19–33

    Article  CAS  Google Scholar 

  • Hatfield RD, Rancour DM, Marita JM (2017) Grass cell walls: a story of cross-linking. Front Plant Sci 7:2056

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang C, He J, Min D, Lai C, Yong Q (2016) Understanding the non-productive enzyme adsorption and physicochemical properties of residual lignins in moso bamboo pretreated with sulfuric acid and kraft pulping. Appl Biochem Biotechnol 180:1508–1523

    Article  CAS  PubMed  Google Scholar 

  • Kering MK, Butler TJ, Biermacher JT, Guretzky JA (2012) Biomass yield and nutrient removal rates of perennial grasses under nitrogen fertilization. Bioenergy Res 5:61–70

    Article  Google Scholar 

  • Klose H, Günl M, Usadel B, Fischer R, Commandeur U (2013) Ethanol inducible expression of a mesophilic cellulase avoids adverse effects on plant development. Biotechnol Biofuels 6:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khakhar A, Leydon AR, Lemmex AC, Klavins E, Nemhauser JL (2018) Synthetic hormone-responsive transcription factors can monitor and reprogram plant development. Tools Resour 7:e34702

    Google Scholar 

  • Latarullo MB, Tavares EQ, Maldonado GP, Leite DC, Buckeridge MS (2016) Pectins, endopolygalacturonases and bioenergy. Front Plant Sci 7:140127

    Article  Google Scholar 

  • Lee CR, Sung BH, Lim KM, Kim MJ, Sohn MJ, Bae JH, Sohn JH (2017a) Co-fermentation using recombinant Saccharomyces cerevisiae yeast strains hyper-secreting different cellulases for the production of cellulosic bioethanol. Sci Rep 7:4428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Mo H, Kim JI, Chapple C (2017b) Genetic engineering of Arabidopsis to overproduce disinapoyl esters, potential lignin modification molecules. Biotechnol Biofuels 17:40

    Article  CAS  Google Scholar 

  • Lee Y, Park CH, Eun YL (2017c) Chemical modification of methanol-insoluble kraft lignin using oxypropylation under mild conditions for the preparation of bio-polyester. J Wood Chem Technol 37:334–342

    Article  CAS  Google Scholar 

  • Li WY, Jin AX, Liu CF, Sun RC, Zhang AP, Kennedy JF (2009) Homogeneous modification of cellulose with succinic anhydride in ionic liquid using 4-dimethylaminopyridine as a catalyst. Carbohydr Polym 78:389–395

    Article  CAS  Google Scholar 

  • Lionetti V, Francocci F, Ferrari S, Volpi C, Bellincampi D (2010) Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion. Proc Natl Acad Sci 107:616–621

    Article  PubMed  Google Scholar 

  • Liu W, Mazarei M, Rongjian Y, Peng Y, Shao Y, Baxter HL, Sykes RW, Turner GB et al (2018) Switchgrass (Panicum virgatum L.) promoters for green tissue-specific expression of the MYB4 transcription factor for reduced-recalcitrance transgenic switchgrass. Biotechnol Biofuels 11:122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo TM, Chang SH, Teo WS, Cho HS, Chang MW (2016) A two-layer gene circuit for decoupling cell growth from metabolite production. Cell Syst 3:133–143

    Article  CAS  PubMed  Google Scholar 

  • Lombardo L (2014) Genetic use restriction technologies: a review. Plant Biotechnol J 12:995–1005

    Article  PubMed  Google Scholar 

  • Lovegrove A, Wilkinson MD, Freeman J, Pellny TK, Tosi P, Saulnier L, Shewry PR (2013) RNA interference suppression of genes in glycosyl transferase families 43 and 47 in wheat starchy endosperm causes large decreases in arabinoxylan content. Plant Physiol 163:95–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacAdam JW, Grabber JH (2002) Relationship of growth cessation with the formation of diferulate cross-links and p-coumaroylated lignins in tall fescue leaf blades. Planta 215:785–793

    Article  CAS  PubMed  Google Scholar 

  • McHughen A, Smyth S (2008) US regulatory system for genetically modified [genetically modified organism (GMO), rDNA or transgenic] crop cultivars. Plant Biotechnol J 6(1):2–12

    PubMed  Google Scholar 

  • Mnich E, Vanholme R, Oyarce P, Liu S, Lu F, Goeminne G, Jorgensen B, Motawie MS, Boerjan W, Ralph J, Ulvskov P, Moller BL, Bjarnholt N, Harholt J (2017) Degradation of lignin β-aryl ether units in Arabidopsis thaliana expressing; LigD, LigF and LigG from Sphingomonas paucimobilis SYK-6. Plant Biotechnol J 15:581–593

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra S, Mishra C, Behera SS, Thatoi H (2017) Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass—a review. Renew Sustain Energy Rev 78:1007–1032

    Article  CAS  Google Scholar 

  • Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277

    Article  CAS  PubMed  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzappl M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Biores Technol 96:673–686

    Article  CAS  Google Scholar 

  • Moxley G, Gaspar AR, Higgins D, Xu H (2012) Structural changes of corn stover lignin during acid pretreatment. J Ind Microbiol Biotechnol 39:1289–1299

    Article  CAS  PubMed  Google Scholar 

  • Na CI, Jeffrey R, Fedenko LE, Sollenberger JEE (2016) Harvest management affects biomass composition responses of C4 perennial bioenergy grasses in the humid subtropical USA. GCB Bioenergy 8:1150–1161

    Article  CAS  Google Scholar 

  • Nelissen H, Moloney M, Inzé D (2014) Translational research: from pot to plot. Plant Biotechnol J 12:277–285

    Article  PubMed  Google Scholar 

  • Numan-Al-Mobin AM, Voeller K, Bilek H, Kozliak E, Kubatova A, Raynie D, Dixon D, Smirnova A (2016) Selective synthesis of phenolic compounds from alkali lignin in a mixture of sub- and supercritical fluids: catalysis by CO2. Energy Fuels 30:2137–2143

    Article  CAS  Google Scholar 

  • Park JJ, Yoo CG (2017) Defned tetra-allelic gene disruption of the 4-coumarate:coenzyme A ligase 1 (Pv4CL1) gene by CRISPR/Cas9 in switchgrass results in lignin reduction and improved sugar release. Biotechnol Biofuels 10(1):284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parthasarathi R, Romero RA, Redondo A, Gnanakaran S (2011) Theoretical study of the remarkably diverse linkages in lignin. J Phys Chem Lett 2:2660–2666

    Article  CAS  Google Scholar 

  • Pawar PM, Derba-Maceluch M, Chong SL, Gómez LD, Miedes E, Banasiak A, Ratke C (2016) Expression of fungal acetyl xylan esterase in Arabidopsis thaliana improves saccharification of stem lignocellulose. Plant Biotechnol J 14:387–397

    Article  CAS  PubMed  Google Scholar 

  • Pelloux J, Rusterucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 6:267–277

    Article  CAS  Google Scholar 

  • Peterson KM, Torii KU (2012) Long-term, high-resolution confocal time lapse imaging of Arabidopsis cotyledon epidermis during germination. J Vis Exp 70:e4426

    Google Scholar 

  • Quarton T, Ehrhard K, Lee J, Kannan S, Ma YL, Blerisnpj L (2018) Mapping the operational landscape of microRNAs in synthetic gene circuits. Syst Biol Appl 4:6

    Article  Google Scholar 

  • Rai KM, Thu SW, Balasubramanian VK, Cobos CJ, Disasa T, Mendu V (2016) Identification, characterization, and expression analysis of cell wall related genes in Sorghum bicolor (L.) Moench, a food, fodder, and biofuel crop. Front Plant Sci 7:1287

    PubMed  PubMed Central  Google Scholar 

  • Ralph J, Akiyama T, Kim H, Lu F, Schatz PF, Marita JM, Ralph SA, Reddy MSS, Chen F, Dixon RA (2006) Effects of coumarate 3-hydroxylase down-regulation on lignin structure. J Biol Chem 281:8843–8853

    Article  CAS  PubMed  Google Scholar 

  • Rennie EA, Scheller HV (2014) Xylan biosynthesis. Curr Opin Biotechnol 26:100–107

    Article  CAS  PubMed  Google Scholar 

  • Roslan HA, Salter MG, Wood CD, White MR, Croft KP, Robson F, Coupland G, Doonan J, Laufs P, Tomsett AB, Caddick MX (2001) Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. Plant J 2:225–235

    Article  Google Scholar 

  • Schaumberg KA, Antunes MS, Kassaw TK, Xu W, Zalewski CS, Medford JI, Prasad A (2016) Quantitative characterization of genetic parts and circuits for plant synthetic biology. Nat Methods 13:94–100

    Article  CAS  PubMed  Google Scholar 

  • Scheben A, Edwards D (2018) Towards a more predictable plant breeding pipeline with CRISPR/Cas-induced allelic series to optimize quantitative and qualitative traits. Curr Opin Plant Biol 45:1–8

    Article  CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  PubMed  Google Scholar 

  • Schreiber M, Wright F, MacKenzie K, Hedley PE, Schwerdt JG, Little A (2014) The barley genome sequence assembly reveals three additional members of the CslF (1,3;1,4)-β-Glucan synthase gene family. PLoS One 9(e90888):10

    Google Scholar 

  • Schultink A, Naylor D, Dama M, Pauly M (2015) The role of the plant-specific altered xyloglucan 9 protein in Arabidopsis cell wall polysaccharide O-acetylation. Plant Physiol 167:1271–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shadle G, Chen F, Srinivasa RMS, Jackson L, Nakashima J, Dixon RA (2007) Down-regulation of hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase in transgenic alfalfa affects lignification, development and forage quality. Phytochemistry 68:1521–1529

    Article  CAS  PubMed  Google Scholar 

  • Shahandeh H, Chou CY, Hons FM, Hussey MA (2011) Nutrient partitioning and carbon and nitrogen mineralization of switch grass plant parts. Commun Soil Sci Plant Anal 42:599–615

    Article  CAS  Google Scholar 

  • Shen H, Poovaiah CR, Ziebell A, Tschaplinski TJ, Pattathil S, Gjersing E, Engle NL (2013) Enhanced characteristics of genetically modifiedswitchgrass (Panicum virgatum L.) for high biofuel production. Biotechnol Biofuels 6:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith R, Slater FM (2011) Mobilization of minerals and moisture loss during senescence of the energy crops Miscanthus × giganteus, Arundo donax and Phalaris arundinacea in Wales, UK. Global Change Biol Bioenergy 3:148–157

    Article  CAS  Google Scholar 

  • Smith H, Whitelam GC (1997) The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. Plant Cell Environ 20:840–844

    Article  Google Scholar 

  • Sumiyoshi M, Nakamura A, Nakamura H, Hakata M, Ichikawa H, Hirochika H, Ishii T, Satoh SIH (2013) Increase in cellulose accumulation and improvement of saccharification by overexpression of arabinofuranosidase in rice. PLoS One 8:e78269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sykes RV (2014) Evaluation of traits associated with breeding for improved biomass and ethanol yield in switchgrass. PhD dissertation, University of Tennessee, https://trace.tennessee.edu/utk_graddiss/3204

  • Taketa S, You T, Tonooka T, Tsumuraya Y, Inagaki Y, Haruyama N, Larroque O (2012) Functional characterization of barley betaglucanless mutants demonstrates a unique role for CslF6 in (1,3;1,4)-b-d-glucan biosynthesis. J Exp Bot 63:381–392

    Article  CAS  PubMed  Google Scholar 

  • Talbert LE, Timothy DH, Burns JC, Rawlings JO, Moll RH (1983) Estimates of genetic parameters in switchgrass. Crop Sci 23:725–728. https://doi.org/10.2135/cropsci1983.0011183X002300040029x

    Article  Google Scholar 

  • Tan HT, Shirley NJ, Singh RR, Henderson M, Dhugga KS, Mayo GM, Fincher GB et al (2015) Powerful regulatory systems and post-transcriptional gene silencing resist increases in cellulose content in cell walls of barley. BMC Plant Biol 15:62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanholme R, Storme V, Vanholme B, Sundin L, Christensen JH et al (2012) A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Plant Cell 24:3506–3529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vega-Sanchez ME, Verhertbruggen Y, Scheller HV, Ronald PC (2013) Abundance of mixed linkage glucan in mature tissues and secondary cell walls of grasses. Plant Signal Behav 8:e23143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vega-Sanchez ME, Loque D, Lao J, Catena M, Verhertbruggen Y, Hert T, Yang F (2015) Engineering temporal accumulation of a low recalcitrance polysaccharide leads to increased C6 sugar content in plant cell walls. Plant Biotechnol J 13:903–914

    Article  CAS  PubMed  Google Scholar 

  • Venter M (2007) Synthetic promoters: genetic control through cis engineering. Trends Plant Sci 12:118–124

    Article  CAS  PubMed  Google Scholar 

  • Voorend W, Nelissen H, Vanholme R, De Vliegher A, Van BF, Boerjan W, Roldán-Ruiz I, Muylle H, Inzé D (2016) Overexpression of GA20-OXIDASE1 impacts plant height, biomass allocation and saccharification efficiency in maize. Plant Biotechnol J 14:997–1007

    Article  CAS  PubMed  Google Scholar 

  • Wagner A, Tobimatsu Y, Phillips L, Flint H, Geddes B, Lu F, Ralph J (2015) Syringyl lignin production in conifers: proof of concept in a Pine tracheary element system. Proc Natl Acad Sci USA 112:6218–6223

    Article  CAS  PubMed  Google Scholar 

  • Waramit N, Moore KJ, Heggenstaller AH (2011) Composition of native warmseason grasses for bioenergy production in response to nitrogen fertilization rate and harvest date. Agron J 103(3):655

    Article  Google Scholar 

  • Warnasooriya SN, Brutnell TP (2014) Enhancing the productivity of grasses under high-density planting by engineering light responses: from model systems to feedstocks. Exp J Bot 65:2825–2834. https://doi.org/10.1093/jxb/eru221

    Article  Google Scholar 

  • Weijde TVD, Kiesel A, Iqbal Y, Muylle H, Dolstra O, Richard GF, Lewandowski VI, Trindade LM (2017) Evaluation of Miscanthus sinensis biomass quality as feedstock for conversion into different bioenergy products. Gcb Bioenergy 9:176–190

    Article  CAS  Google Scholar 

  • Willis JD, Smith JA, Mazarei M, Zhang JY, Turner GB et al (2016) Downregulation of a UDP-Arabinomutase Gene in Switchgrass (Panicum virgatum L.). Results in increased cell wall lignin while reducing arabinose-glycans. Front Plant Sci 27:1580

    Google Scholar 

  • Wong DWS (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209

    Article  CAS  PubMed  Google Scholar 

  • Wuddineh WA, Mazarei M, Zhang JY (2016) Identification and overexpression of a knotted1-like transcription factor in switchgrass (Panicum virgatum) for lignocellulosic feedstock improvement. Front Plant Sci 7:520

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao C, Somerville C, Anderson CT (2014) Polygalacturonase involved in expansion1 functions in cell elongation and flower development in Arabidopsis. Plant Cell 26:1018–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu B, Escamilla-Treviño LL, Sathitsuksanoh N, Shen Z, Shen H, Zhang YH, Dixon RA, Zhao B (2011) Silencing of 4-coumarate:coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. New Phytol 192:611–625

    Article  CAS  PubMed  Google Scholar 

  • Yaich AI, Edlund U, Albertsson AC (2017) Transfer of biomatrix/wood cell interactions to hemicellulose-based materials to control water interaction. Chem Rev 117:8177–8207

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Pan X (2016) Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose. Biotechnol Bioeng 113:1213–1224. https://doi.org/10.1002/bit.25903

    Article  CAS  PubMed  Google Scholar 

  • Yao L, Chen C, Zheng X, Peng Z, Yang H, Xie Y (2016) Determination of lignin-carbohydrate complexes structure of wheat straw using carbon-13 isotope as a tracer. BioResources 11:6692–6707

    CAS  Google Scholar 

  • Yoon J, Cho L, Antt HW, Koh HJ, An G (2017) KNOX protein OSH15 induces grain shattering by repressing lignin biosynthesis genes. Plant Physiol 174:312–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Teng Q, Zhong R, Ye ZH (2016) Roles of Arabidopsis TBL34 and TBL35 in xylan acetylation and plant growth. Plant Sci 243:120–130

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Moates GK, Elliston A, Wilson DR, Coleman MJ, Waldron KW (2015) Simultaneous saccharification and fermentation of steam exploded duckweed: improvement of the ethanol yield by increasing yeast titre. Biores Technol 194:263–269

    Article  CAS  Google Scholar 

  • Zhao C, Fan X, Hou X, Zhu Y, Yue Y, Wu J (2017) Extended light exposure increases stem digestibility and biomass production of switchgrass. PLoS One 12(11):e0188349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu JL, Wang D, Gao C (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35(5):438–440

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonali Mohapatra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohapatra, S., Mishra, S.S., Bhalla, P. et al. Engineering grass biomass for sustainable and enhanced bioethanol production. Planta 250, 395–412 (2019). https://doi.org/10.1007/s00425-019-03218-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-019-03218-y

Keywords

Navigation