Skip to main content

Advertisement

Log in

Structural changes of corn stover lignin during acid pretreatment

  • Bioenergy/Biofuels/Biochemicals
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

In this study, raw corn stover was subjected to dilute acid pretreatments over a range of severities under conditions similar to those identified by the National Renewable Energy Laboratory (NREL) in their techno-economic analysis of biochemical conversion of corn stover to ethanol. The pretreated corn stover then underwent enzymatic hydrolysis with yields above 70 % at moderate enzyme loading conditions. The enzyme exhausted lignin residues were characterized by 31P NMR spectroscopy and functional moieties quantified and correlated to enzymatic hydrolysis yields. Results from this study indicated that both xylan solubilization and lignin degradation are important for improving the enzyme accessibility and digestibility of dilute acid pretreated corn stover. At lower pretreatment temperatures, there is a good correlation between xylan solubilization and cellulose accessibility. At higher pretreatment temperatures, lignin degradation correlated better with cellulose accessibility, represented by the increase in phenolic groups. During acid pretreatment, the ratio of syringyl/guaiacyl functional groups also gradually changed from less than 1 to greater than 1 with the increase in pretreatment temperature. This implies that more syringyl units are released from lignin depolymerization of aryl ether linkages than guaiacyl units. The condensed phenolic units are also correlated with the increase in pretreatment temperature up to 180 °C, beyond which point condensation reactions may overtake the hydrolysis of aryl ether linkages as the dominant reactions of lignin, thus leading to decreased cellulose accessibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ämmälahti E, Brunow G, Bardet M, Robert D, Kilpeläinen I (1998) Identification of side-chain structures in a poplar lignin using three-dimensional HMQC-HOHAHA NMR spectroscopy. J Agric Food Chem 46:5113–5117

    Article  Google Scholar 

  2. Argyropoulos DS (1994) Quantitative phosphorus-31 NMR analysis of six soluble lignins. J Wood Chem Technol 14:65–82

    Article  CAS  Google Scholar 

  3. Argyropoulos DS (2010) Heteronuclear NMR spectroscopy of lignins. In: Heitner C, Dimmel DR, Schmidt JA (eds) Lignin and lignans: advances in chemistry. CRC, Boca Raton, pp 245–265

    Chapter  Google Scholar 

  4. Argyropoulos DS, Bolker HI, Heitner C, Archipov Y (1993) 31P NMR spectroscopy in wood chemistry. Part IV. Lignin models: spin lattice relaxation times and solvent effects in 31P NMR. Holzforschung 47:50–56

    Article  CAS  Google Scholar 

  5. Balakshin M, Capanema E, Gracz H, Chang HM, Jameel H (2011) Quantification of lignin-carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233:1097–1110

    Article  PubMed  CAS  Google Scholar 

  6. Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S, Saddler J (2006) Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. J Biotechnol 125:198–209

    Article  PubMed  CAS  Google Scholar 

  7. Berlin A, Gilkes N, Kurabi A, Bura R, Tu M, Kilburn D, Saddler J (2005) Weak lignin-binding enzymes. Appl Biochem Biotechnol 121:163–170

    Article  PubMed  Google Scholar 

  8. Capanema EA, Balakshin MY, Kadla JF (2004) A comprehensive approach for quantitative lignin characterization by NMR spectroscopy. J Agric Food Chem 52:1850–1860

    Article  PubMed  CAS  Google Scholar 

  9. Crestini C, Argyropoulos DS (1997) Structural analysis of wheat straw lignin by quantitative 31P and 2D NMR spectroscopy. The occurrence of ester bonds and α-O-4 substructures. J Agric Food Chem 45:1212–1219

    Article  CAS  Google Scholar 

  10. Ede RM, Brunow G (1992) Application of two-dimensional homo- and heteronuclear correlation NMR spectroscopy to wood lignin structure determination. J Org Chem 57:1477–1480

    Article  CAS  Google Scholar 

  11. Guerra A, Filpponen I, Lucia LA, Saquing C, Baumberger S, Argyropoulos DS (2006) Toward a better understanding of the lignin isolation process from wood. J Agric Food Chem 54:5939–5947

    Article  PubMed  CAS  Google Scholar 

  12. Hames B, Ruiz R, Scarlata C, Sluiter A, Sluiter J, Templeton D (2008) Preparation of samples for compositional analysis. NREL/TP-510-42620

  13. Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M, Sexton D, Dudgeon D (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover

  14. Ishizawa C, Jeoh T, Adney W, Himmel M, Johnson D, Davis M (2009) Can delignification decrease cellulose digestibility in acid pretreated corn stover? Cellulose 16:677–686

    Article  CAS  Google Scholar 

  15. Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98:112–122

    Article  PubMed  CAS  Google Scholar 

  16. Kim S, Holtzapple MT (2006) Effect of structural features on enzyme digestibility of corn stover. Bioresour Technol 97:583–591

    Article  PubMed  CAS  Google Scholar 

  17. Kobayashi T, Kohn B, Holmes L, Faulkner R, Davis M, Maciel GE (2011) Molecular-level consequences of biomass pretreatment by dilute sulfuric acid at various temperatures. Energy Fuels 25:1790–1797

    Article  CAS  Google Scholar 

  18. Lai Y-Z (1990) Chemical degradation. In: Hon DNS, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker, New York, pp 455–523

    Google Scholar 

  19. Li J, Henriksson G, Gellerstedt G (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol 98:3061–3068

    Article  PubMed  CAS  Google Scholar 

  20. Li X, Ximenes E, Kim Y, Slininger M, Meilan R, Ladisch M, Chapple C (2010) Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment. Biotechnol Biofuels 3:1–7

    Article  Google Scholar 

  21. Nakagame S, Chandra RP, Kadla JF, Saddler JN (2011) Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin. Biotechnol Bioeng 108:538–548

    Article  PubMed  CAS  Google Scholar 

  22. Oefner PJ, Lanziner AH, Bonn G, Bobleter O (1992) Quantitative studies on furfural and organic acid formation during hydrothermal, acidic and alkaline degradation of d-xylose. Monatshefte für Chemie/Chem Mon 123:547–556

    Article  CAS  Google Scholar 

  23. Pan X, Xie D, Gilkes N, Gregg D, Saddler J (2005) Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Appl Biochem Biotechnol 124:1069–1079

    Article  Google Scholar 

  24. Piccolo C, Wiman M, Bezzo F, Lidén G (2010) Enzyme adsorption on SO2 catalyzed steam-pretreated wheat and spruce material. Enzym Microb Technol 46:159–169

    Article  CAS  Google Scholar 

  25. Rollin JA, Zhu Z, Sathitsuksanoh N, Zhang Y-HP (2011) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108:22–30

    Article  PubMed  CAS  Google Scholar 

  26. Sakakibara A (1980) A structural model of softwood lignin. Wood Sci Technol 14:89–100

    Article  CAS  Google Scholar 

  27. Samuel R, Pu Y, Raman B, Ragauskas A (2010) Structural characterization and comparison of switchgrass ball-milled lignin before and after dilute acid pretreatment. Appl Biochem Biotechnol 162:62–74

    Article  PubMed  CAS  Google Scholar 

  28. Sannigrahi P, Ragauskas A, Miller S (2008) Effects of two-stage dilute acid pretreatment on the structure and composition of lignin and cellulose in loblolly pine. BioEnergy Res 1:205–214

    Article  Google Scholar 

  29. Schell D, Farmer J, Newman M, McMillan J (2003) Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor. Appl Biochem Biotechnol 105:69–85

    Article  PubMed  Google Scholar 

  30. Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, Sluiter J, Templeton D, Wolfe J (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. NREL/TP-510-42621

  31. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. NREL/TP-510-42618

  32. Sluiter A, Payne C, Hyman D, Wolfe J (2008) Determination of insoluble solids in pretreated biomass material. NREL/TP-510-42627

  33. Zhu J, Verrill S, Liu H, Herian V, Pan X, Rockwood D (2011) On polydispersity of plant biomass recalcitrance and its effects on pretreatment optimization for sugar production. BioEnergy Res 4:201–210

    Article  Google Scholar 

  34. Zhu W, Houtman CJ, Zhu JY, Gleisner R, Chen KF (2012) Quantitative predictions of bioconversion of aspen by dilute acid and SPORL pretreatments using a unified combined hydrolysis factor (CHF). Process Biochem 47:785–791

    Article  CAS  Google Scholar 

  35. Zhu Y, Malten M, Torry-Smith M, McMillan JD, Stickel JJ (2011) Calculating sugar yields in high solids hydrolysis of biomass. Bioresour Technol 102:2897–2903

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that the experiments comply with the current laws of the USA. The authors also declare that they have no conflicting interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Moxley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moxley, G., Gaspar, A.R., Higgins, D. et al. Structural changes of corn stover lignin during acid pretreatment. J Ind Microbiol Biotechnol 39, 1289–1299 (2012). https://doi.org/10.1007/s10295-012-1131-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1131-z

Keywords

Navigation