Skip to main content
Log in

5-Azacytidine combined with 2,4-D improves somatic embryogenesis of Acca sellowiana (O. Berg) Burret by means of changes in global DNA methylation levels

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

DNA methylation is an epigenetic regulatory mechanism of gene expression which can be associated with developmental phases and in vitro morphogenetic competence in plants. The present work evaluated the effects of 5-azacytidine (AzaC) and 2,4-dichlorophenoxyacetic acid (2,4-D) on Acca sellowiana somatic embryogenesis (SE) and global DNA methylation levels by high-performance liquid chromatography mass spectrometry (HPLC/MS/MS). 2,4-D-free treatments revealed no somatic embryo formation in both accessions tested. Treatments supplemented with 2,4-D pulse plus AzaC in the culture medium resulted in increased embryo formation. In AzaC-free treatment, HPLC/MS/MS analysis showed a gradual increase in methylation levels in cultures of both accessions tested during SE induction. Treatment with AzaC and 2,4-D-free resulted in a marked decrease in methylation for both accessions, ranging from 37.6 to 20.8 %. In treatment with 2,4-D and AzaC combined, the 85 accession showed increasing global methylation levels. Otherwise, the 101X458 accession, in the same treatment, showed a decrease between 10 and 20 days, followed by an increase after 30 days (39.5, 36.2 and 41.6 %). These results indicate that 2,4-D pulse combined with AzaC improves SE induction. However, the conversion phase showed that although positively influencing SE induction, AzaC had a dysregulatory effect on the stage of autotrophic plant formation, resulting in significantly lower conversion rates. The results suggest that DNA methylation dramatically influences SE in Acca sellowiana, and global DNA methylation dynamics are related to morphogenetic response.

Key message 5-Azacytidine combined with 2,4-D increases the number of Acca sellowiana somatic embryos. Global DNA methylation is directly affected by these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Belchev I, Tchorbadjieva M, Pantchev I (2004) Effect of 5-azacytidine on callus induction and plant regeneration potential in anther culture of wheat (Triticum aestivum L.). Bulg J Plant Physiol 30:45–50

    CAS  Google Scholar 

  • Cangahuala-Inocente GC, Steiner N, Santos M, Guerra MP (2004) Morphological analysis and histochemistry of Feijoa sellowiana somatic embryogenesis. Protoplasma 224:33–40

    PubMed  CAS  Google Scholar 

  • Cangahuala-Inocente GC, Caprestano CA, Ducroquet JPHJ, Guerra MP (2007) Competência embriogenética em tecidos florais de Acca sellowiana (Myrtaceae). Rev Bras Biol 5:87–89

    Google Scholar 

  • Cangahuala-Inocente GC, Steiner N, Maldonado SB, Guerra MP (2009) Patterns of protein and carbohydrate accumulation during somatic embryogenesis of Acca sellowiana. Pesq Agropec Bras 44:217–224

    Article  Google Scholar 

  • Canhoto JM, Cruz GS (1996) Histodifferentiation of somatic embryos in cotyledons of pineapple guava (Feijoa sellowiana Berg.). Protoplasma 191:34–45

    Article  Google Scholar 

  • Castilho A, Neves N, Rufini-Castiglione M, Viegas W, Heslop-Harrison JS (1999) 5-Methylcytosine distribution and genome organization in Triticale before and after treatment with 5-azacytidine. J Cell Sci 112:4397–4404

    PubMed  CAS  Google Scholar 

  • Chakrabarty D, Yu KW, Paek KY (2003) Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleuterococcus senticosus). Plant Sci 165:61–68

    Article  CAS  Google Scholar 

  • Christman JK (2002) 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21:5483–5495

    Article  PubMed  CAS  Google Scholar 

  • Dal Vesco LL, Guerra MP (2001) The effectiveness of nitrogen sources in Feijoa (Feijoa sellowiana Berg) somatic embryogenesis. Plant Cell Tiss Org Cult 64:19–25

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Finatto T, dos Santos KL, Steiner N, Bizzocchi L, Holderbaum DF, Ducroquet JPHJ, Guerra MP, Nodari RO (2011) Late-acting self-incompatibility in Acca sellowiana (Myrtaceae). Aust J Bot 59:53–60

    Article  Google Scholar 

  • Finnegan EJ (2010) DNA methylation: a dynamic regulator of genome organization and gene expression in plants. In: Pua EC, Davey MR (eds) Plant developmental biology—biotechnological perspectives, vol 2. Springer, Berlin, pp 295–323

  • Guerra MP, Pescador R, Dal Vesco LL, Nodari RO, Ducroquet JPHJ (1997) In vitro morphogenesis in Feijoa sellowiana: somatic embryogenesis and plant regeneration. Acta Hort 452:27–36

    Google Scholar 

  • Guerra MP, Dal Vesco LL, Ducroquet JPHJ, Nodari RO, Reis MS (2001) Somatic embryogenesis in goiabeira-serrana: genotype response, auxinic shock and synthetic seeds. Rev Bras Fisiol Veg 13:117–128

    Article  Google Scholar 

  • Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N, Bulski A, Albuisson J, Heredia F, Audigier, Bouchez G, Dillmann C, Guerche P, Hospital F, Colot V (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5:e1000530

  • Johnston JW, Harding K, Bremner DH, Souch G, Green J, Lynch PT, Grout B, Benson EE (2005) HPLC analysis of plant DNA methylation: a study of critical methodological factors. Plant Physiol Biochem 43:844–853

    Article  PubMed  CAS  Google Scholar 

  • Leljak-Levanic D, Bauer N, Mihaljevic S, Jelaska S (2004) Changes in DNA methylation during somatic embryogenesis in Cucurbita pepo L. Plant Cell Rep 23:120–127

    Article  PubMed  CAS  Google Scholar 

  • Li W, Liu H, Cheng ZJ, Su YH, Han HN, Zhang Y, Zhang XS (2011) DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling. PLoS Genet 7:e1002243

    Article  PubMed  CAS  Google Scholar 

  • Lo Schiavo F, Pitto L, Giuliano G, Torti G, Nuti-Ronchi V, Marazzati D, Vergara R, Orselli S, Terzi M (1989) DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiations, hormones and hypomethylating drugs. TAG 77:325–331

    Article  CAS  Google Scholar 

  • Lu G, Wu X, Chen B, Gao G, Xu K, Li X (2006) Detection of DNA methylation changes during seed germination in rapeseed (Brassica napus). Chin Sci Bull 2:182–190

    Article  Google Scholar 

  • Marsoni M, Bracale M, Espen L, Prinsi B, Negri AS, Vannini C (2008) Proteomic analysis of somatic embryogenesis in Vitis vinifera. Plant Cell Rep 27:347–356

    Article  PubMed  CAS  Google Scholar 

  • Morel GM, Wetmore RH (1951) Tissue culture of monocotyledons. Am J Bot 38:138–140

    Article  CAS  Google Scholar 

  • Msogoya TJ, Grout BW, Roberts A (2011) Reduction in genome size and DNA methylation alters plant and fruit development in tissue culture induced off-type banana (Musa spp.). J Anim Plant Sci 3:1450–1456

    Google Scholar 

  • Neelakandan AK, Wang K (2012) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 31:597–620

    Article  PubMed  CAS  Google Scholar 

  • Noceda C, Salaj T, Pérez M, Viejo M, Cañal MN, Salaj J, Rodriguez R (2009) DNA demethylation and decrease on free polyamines is associated with the embryogenic capacity of Pinus nigra Arn. cell culture. Trees 23:1285–1293

    Article  CAS  Google Scholar 

  • Pescador R, Kerbauy GB, Viviani D, Kraus JE (2008) Anomalous somatic embryos in Acca sellowiana (O. Berg). Rev Bras Bot 31:155–164

    Article  Google Scholar 

  • Pescador R, Kerbauy GB, Santos DYAC, Dal Vesco LL, Fraga HPF, Guerra MP (2012) Comparative study of reserve lipid accumulation during somatic and zygotic Acca sellowiana (O. Berg.) Burret embryogenesis. Acta Physiol Plant 34:771–778

    Article  CAS  Google Scholar 

  • Pfluger J, Zambryski PC (2001) Cell growth: the power of symplastic isolation. Curr Biol 11:436–439

    Article  Google Scholar 

  • Rabinowicz PD, Palmer LE, May BP, Hemann MT, Lowe SW, Mccombie WR, Martienssen RA (2003) Genes and transposons are differentially methylated in plants, but not in mammals. Gen Res 13:2658–2664

    Article  CAS  Google Scholar 

  • Ramchandani S, Bhattacharya SK, Cervoni M, Szyf M (1999) DNA methylation is a reversible biological signal. PNAS 96:6107–6112

    Article  PubMed  CAS  Google Scholar 

  • Reis E, Batista MT, Canhoto JM (2008) Effect and analysis of phenolic compounds during somatic embryogenesis induction in Feijoa sellowiana Berg. Protoplasma 232:193–202

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-García L, Cervera MT, Martínez-Zapater JM (2005) DNA methylation increases throughout Arabidopsis development. Planta 222:301–306

    Article  PubMed  Google Scholar 

  • Santos D, Fevereiro P (2002) Loss of DNA methylation affects somatic embryogenesis in Medicago truncatula. Plant Cell Tiss Org Cult 70:155–161

    Article  CAS  Google Scholar 

  • Santos KL, Guries RP, Nodari RO, Peroni N (2009) Traditional knowledge and management of Feijoa (Acca sellowiana) in southern Brazil. Econ Bot 63:204–214

    Article  Google Scholar 

  • Song L, James SR, Kazim L, Karpf AR (2005) Specific method for the determination of genomic DNA methylation by liquid chromatography–electrospray ionization tandem mass spectrometry. Anal Chem 77:504–510

    Article  PubMed  CAS  Google Scholar 

  • Stefanello S, Dal Vesco LL, Ducroquet JPHJ, Nodari RO, Guerra MP (2005) Somatic embryogenesis from floral tissues of Feijoa (Feijoa sellowiana Berg). Sci Hort 105:117–126

    Article  CAS  Google Scholar 

  • Tatra GS, Miranda J, Chinnappa CC, Reid DM (2000) Effect of light quality and 5-azacytidine on genomic methylation and stem elongation in two ecotypes of Stellaria longipes. Physiol Plant 109:313–321

    Article  CAS  Google Scholar 

  • Tautorus TE, Fowke LC, Dunstan DI (1991) Somatic embryogenesis in conifers. Can J Bot 69:1873–1899

    Article  Google Scholar 

  • Tokuji Y, Takano S, Tonomura M, Tanaka S, Igari T, Watanabe T (2011) Influence of 5′-azacytidine on promoting recovery of cell competence for shoot organogenesis in Arabidopsis. Plant Cell Tiss Org Cult 106:289–297

    Article  CAS  Google Scholar 

  • Valledor L, Hasbún R, Meijón M, Rodríguez JL, Santamaría E, Viejo M, Berdasco M, Feito I, Fraga MF, Cañal MJ, Rodríguez R (2007) Involvement of DNA methylation in tree development and micropropagation. Plant Cell Tiss Org Cult 91:75–86

    Article  CAS  Google Scholar 

  • Vanyushin BF, Bakeeva LE, Zamyatnina VA, Aleksandrushkina NI (2004) Apoptosis in plants: specific features of plant apoptotic cells and effect of various factors and agents. Int Rev Cytol 233:135–179

    Article  PubMed  CAS  Google Scholar 

  • Von Aderkas P, Bonga JM (2000) Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiol 20:921–928

    Article  Google Scholar 

  • Von Arnold S, Eriksson T (1981) In vitro studies of adventitious shoot formation in Pinus contorta. Can J Bot 59:870–874

    Article  Google Scholar 

  • Wang QM, Wang YZ, Sun LL, Gao FZ, Sun W, He J, Gao X, Wang L (2012) Direct and indirect organogenesis of Clivia miniata and assessment of DNA methylation changes in various regenerated plantlets. Plant Cell Rep 30:1283–1296

    Article  Google Scholar 

  • Xu M, Li X, Korban SS (2004) DNA-methylation alterations and exchanges during in vitro cellular differentiation in rose (Rosa hybrida L.). Theor Appl Genet 109:899–910

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto N, Kobayashi N, Togashi T, Mori Y, Kikuchi K, Kuriyama K, Tokuji Y (2005) Formation of embryogenic cell clumps from carrot epidermal cells is suppressed by 5-azacytidine, a DNA methylation inhibitor. J Plant Physiol 162:47–54

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    PubMed  Google Scholar 

  • Zluvova J, Janousek B, Vyskot B (2001) Immunohistochemical study of DNA methylation dynamics during plant development. J Exp Bot 365:2265–2273

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Faruk José Nome Aguilera for helping in the mass spectrometry analysis. This work was supported by CNPq, FAPESC and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel P. Guerra.

Additional information

Communicated by L. Jouanin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5577 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fraga, H.P.F., Vieira, L.N., Caprestano, C.A. et al. 5-Azacytidine combined with 2,4-D improves somatic embryogenesis of Acca sellowiana (O. Berg) Burret by means of changes in global DNA methylation levels. Plant Cell Rep 31, 2165–2176 (2012). https://doi.org/10.1007/s00299-012-1327-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-012-1327-8

Keywords

Navigation