Skip to main content

Advertisement

Log in

A survey of yeast from the Yarrowia clade for lipid production in dilute acid pretreated lignocellulosic biomass hydrolysate

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Yarrowia lipolytica is an oleaginous yeast species that has attracted attention as a model organism for synthesis of single cell oil. Among over 50 isolates of Y. lipolytica identified, only a few of the strains have been studied extensively. Furthermore, 12 other yeast species were recently assigned to the Yarrowia clade, and most are not well characterized in terms of cell growth and lipid accumulation, especially in industrially relevant conditions. In the present study, we investigated biomass and lipid production by 57 yeast isolates, representing all 13 species in the Yarrowia clade, on a non-detoxified dilute acid-pretreated switchgrass hydrolysate under highly aerobic conditions. The objective was to compare yeast physiology during growth in an abundant, low-cost biomass feedstock and to expand diversity of genetically tractable, oleaginous yeasts available for lipid research. Screening of 45 Y. lipolytica isolates demonstrated considerable variation within the species in terms of lipid accumulation (min = 0.1 g/L; max = 5.1 g/L; mean = 2.3 g/L); three strains (NRRL YB-420, YB-419, and YB-392) were especially promising for cellulosic biomass conversion with average improvements of 43, 57, and 64%, respectively, in final lipid titer as compared to control strain W29. Subsequently, evaluation of strains from 13 distinct species in the Yarrowia clade identified Candida phangngensis PT1-17 as the top lipid producer with a maximum titer of 9.8 g/L lipid, which was over twofold higher than the second-best species in the clade (Candida hollandica NRRL Y-48254). A small set of the most promising strains from the screenings was further characterized to evaluate inhibitor tolerance, lipid production kinetics, and fatty acid distribution. We expect that the results of this study will pave the way for new biotechnological applications involving previously overlooked and under-characterized strains within the Yarrowia clade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida JR, Modig T, Petersson A, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82(4):340–349

    Article  CAS  Google Scholar 

  • Barth G, Gaillardin C (1996) Yarrowia lipolytica. In: Wolf W (ed) Nonconventional yeasts in biotechnology. Springer, Berlin, pp. 313–388

    Chapter  Google Scholar 

  • Beopoulos A, Cescut J, Haddouche R, Uribelarrea J-L, Molina-Jouve C, Nicaud J-M (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48(6):375–387

    Article  CAS  PubMed  Google Scholar 

  • Beopoulos A, Nicaud JM, Gaillardin C (2011) An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol 90(4):1193–1206

    Article  CAS  PubMed  Google Scholar 

  • Blazeck J, Hill A, Liu L, Knight R, Miller J, Pan A, Otoupal P, Alper HS (2014) Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun 5:3131

    Article  PubMed  Google Scholar 

  • Chang CF, Chen CC, Lee CF, Liu SM (2013) Identifying and characterizing Yarrowia keelungensis sp. nov., an oil-degrading yeast isolated from the sea surface microlayer. Antonie Van Leeuwenhoek 104(6):1117–1123

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Beckerich J, Gaillardin C (1997) One-step transformation of the dimorphic yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 48(2):232–235

    Article  CAS  PubMed  Google Scholar 

  • de Albuquerque TL, da Silva IJ, de Macedo GR, Rocha MVP (2014) Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochem 49(11):1779–1789

    Article  Google Scholar 

  • Dien BS, Slininger PJ, Kurtzman CP, Moser BR, O’Bryan PJ (2016a) Identification of superior lipid producing Lipomyces and Myxozyma yeasts. AIMS Environ Sci 3(1):1–20

    Article  Google Scholar 

  • Dien BS, Zhu J, Slininger PJ, Kurtzman CP, Moser BR, O’Bryan PJ, Gleisner R, Cotta MA (2016b) Conversion of SPORL pretreated Douglas fir forest residues into microbial lipids with oleaginous yeasts. RSC Adv 6(25):20695–20705

    Article  CAS  Google Scholar 

  • Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Marck C, Neuvéglise C, Talla E (2004) Genome evolution in yeasts. Nature 430(6995):35–44

    Article  PubMed  Google Scholar 

  • Ellis EM (2002) Microbial aldo-keto reductases. FEMS Microbiol Lett 216(2):123–131

    Article  CAS  PubMed  Google Scholar 

  • Fickers P, Benetti P-H, Wache Y, Marty A, Mauersberger S, Smit M, Nicaud J-M (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5(6–7):527–543

    Article  CAS  PubMed  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62(2):334–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groenewald M, Smith MT (2013) The teleomorph state of Candida deformans Langeron & Guerra and description of Yarrowia yakushimensis comb. nov. Antonie Van Leeuwenhoek 103(5):1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Groenewald M, Boekhout T, Neuvéglise C, Gaillardin C, Van Dijck PW, Wyss M (2014) Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential. Crit Rev Microbiol 40(3):187–206

    Article  CAS  PubMed  Google Scholar 

  • Izard J, Limberger RJ (2003) Rapid screening method for quantitation of bacterial cell lipids from whole cells. J Microbiol Methods 55(2):411–418

    Article  CAS  PubMed  Google Scholar 

  • Jin M, Slininger PJ, Dien BS, Waghmode S, Moser BR, Orjuela A, da Costa Sousa L, Balan V (2015) Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges. Trends Biotechnol 33(1):43–54

    Article  CAS  PubMed  Google Scholar 

  • Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112

    Article  PubMed  Google Scholar 

  • Kitcha S, Cheirsilp B (2011) Screening of oleaginous yeasts and optimization for lipid production using crude glycerol as a carbon source. Energy Procedia 9:274–282

    Article  Google Scholar 

  • Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86(10):1059–1070

    Article  CAS  Google Scholar 

  • Knutsen AK, Robert V, Poot G, Epping W, Figge M, Holst-Jensen A, Skaar I, Smith MT (2007) Polyphasic re-examination of Yarrowia lipolytica strains and the description of three novel Candida species: Candida oslonensis sp. nov., Candida alimentaria sp. nov. and Candida hollandica sp. nov. Int J Syst Evol Microbiol 57(10):2426–2435

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman CP (2005) New species and a new combination in the Hyphopichia and Yarrowia yeast clades. Antonie Van Leeuwenhoek 88(2):121–130

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman C (2011) Yarrowia van der Walt & von Arx (1980). In: Kurtzman C, Fell J, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp. 927–929

    Chapter  Google Scholar 

  • Kurtzman CP, Price NP, Ray KJ, Kuo T-M (2010) Production of sophorolipid biosurfactants by multiple species of the Starmerella (Candida) bombicola yeast clade. FEMS Microbiol Lett 311(2):140–146

    Article  CAS  PubMed  Google Scholar 

  • Ledesma-Amaro R, Nicaud J-M (2016) Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog Lipid Res 61:40–50

    Article  CAS  PubMed  Google Scholar 

  • Libkind D, Sommaruga R, Zagarese H, van Broock M (2005) Mycosporines in carotenogenic yeasts. Syst Appl Microbiol 28(8):749–754

    Article  CAS  PubMed  Google Scholar 

  • Limtong S, Youngmanitchai W, Kawasaki H, Seki T (2008) Candida phangngensis sp. nov., an anamorphic yeast species in the Yarrowia clade, isolated from water in mangrove forests in Phang-Nga Province, Thailand. Int J Syst Evol Microbiol 58(2):515–519

    Article  CAS  PubMed  Google Scholar 

  • Lindner P (1922) Das Problem der biologischen Fettbildung und Fettgewinnung. Angew Chem 35(19):110–114

    Article  CAS  Google Scholar 

  • Liu L, Alper HS (2014) Draft genome sequence of the oleaginous yeast Yarrowia lipolytica PO1f, a commonly used metabolic engineering host. Genome Announc 2(4):e00652–e00614

    PubMed  PubMed Central  Google Scholar 

  • Madzak C, Tréton B, Blanchin-Roland S (2000) Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica. J Mol Microbiol Biotechnol 2(2):207–216

    CAS  PubMed  Google Scholar 

  • Mäkinen K (1992) Dietary prevention of dental caries by xylitol-clinical effectiveness and safety. J Appl Nutr 44(1):16–28

    Google Scholar 

  • McNeill J, Barrie F, Buck W, Demoulin V, Greuter W, Hawksworth D, Herendeen P, Knapp S, Marhold K, Prado J (2012) International code of nomenclature for algae, fungi, and plants (Melbourne Code). Regnum Veg 154(1):208

    Google Scholar 

  • Michely S, Gaillardin C, Nicaud J-M, Neuvéglise C (2013) Comparative physiology of oleaginous species from the Yarrowia clade. PLoS One 8(5):e63356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy E, Niss M, Dlauchy D, Arneborg N, Nielsen DS, Péter G (2013) Yarrowia divulgata fa, sp. nov., a yeast species from animal-related and marine sources. Int J Syst Evol Microbiol 63(12):4818–4823

    Article  PubMed  Google Scholar 

  • Nagy E, Dlauchy D, Medeiros AO, Péter G, Rosa CA (2014) Yarrowia porcina sp. nov. and Yarrowia bubula fa sp. nov., two yeast species from meat and river sediment. Antonie Van Leeuwenhoek 105(4):697–707

    Article  CAS  PubMed  Google Scholar 

  • Nicaud JM (2012) Yarrowia lipolytica. Yeast 29(10):409–418

    Article  CAS  PubMed  Google Scholar 

  • Nilsson A, Gorwa-Grauslund MF, Hahn-Hägerdal B, Lidén G (2005) Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose. Appl Environ Microbiol 71(12):7866–7871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan L-X, Yang D-F, Shao L, Li W, Chen G-G, Liang Z-Q (2009) Isolation of the oleaginous yeasts from the soil and studies of their lipid-producing capacities. Food Technol Biotechnol 47(2):215–220

    CAS  Google Scholar 

  • Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G (2002a) Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol 58(3):308–312

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I (2002b) Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J Appl Microbiol 92(4):737–744

    Article  CAS  PubMed  Google Scholar 

  • Perlack RD, Eaton LM, Turhollow Jr AF, Langholtz MH, Brandt CC, Downing ME, Graham RL, Wright LL, Kavkewitz JM, Shamey AM (2011) US billion-ton update: biomass supply for a bioenergy and bioproducts industry. USDoE. Oak Ridge, TN, Oak Ridge National Laboratory

  • Qiao K, Abidi SHI, Liu H, Zhang H, Chakraborty S, Watson N, Ajikumar PK, Stephanopoulos G (2015) Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab Eng 29:56–65

    Article  CAS  PubMed  Google Scholar 

  • Rakicka M, Kieroń A, Hapeta P, Neuvéglise C, Lazar Z (2016) Sweet and sour potential of yeast from the Yarrowia clade. Biomass Bioenergy 92:48–54

    Article  CAS  Google Scholar 

  • Ratledge C (1991) Microorganisms for lipids. Acta Biotechnol 11(5):429–438

    Article  CAS  Google Scholar 

  • Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez GM, Hussain MS, Gambill L, Gao D, Yaguchi A, Blenner M (2016) Engineering xylose utilization in Yarrowia lipolytica by understanding its cryptic xylose pathway. Biotechnol Biofuels 9(1):149

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu DD, Kim Y, Kim J (1984) Effect of air supplement on the performance of continuous ethanol fermentation system. Biotechnol Bioeng 26(1):12–16

    Article  CAS  PubMed  Google Scholar 

  • Ryu S, Hipp J, Trinh CT (2016) Activating and elucidating metabolism of complex sugars in Yarrowia lipolytica. Appl Environ Microbiol 82(4):1334–1345

    Article  CAS  PubMed Central  Google Scholar 

  • Sanchez RG, Karhumaa K, Fonseca C, Nogué VS, Almeida JR, Larsson CU, Bengtsson O, Bettiga M, Hahn-Hägerdal B, Gorwa-Grauslund MF (2010) Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol Biofuels 3(1):1

    Article  Google Scholar 

  • Schneiter R, Daum G (2006) Extraction of yeast lipids. Yeast Protocol 41–45. doi:10.1385/1-59259-958-3:041

  • Sitepu I, Ignatia L, Franz A, Wong D, Faulina S, Tsui M, Kanti A, Boundy-Mills K (2012) An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species. J Microbiol Methods 91(2):321–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sitepu IR, Sestric R, Ignatia L, Levin D, German JB, Gillies LA, Almada LAG, Boundy-Mills KL (2013) Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species. Bioresour Technol 144(0):360–369

    Article  CAS  PubMed  Google Scholar 

  • Sitepu I, Selby T, Lin T, Zhu S, Boundy-Mills K (2014) Carbon source utilization and inhibitor tolerance of 45 oleaginous yeast species. J Ind Microbiol Biotechnol 41(7):1061–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slininger PJ, Dien BS, Kurtzman CP, Moser BR, Bakota EL, Thompson SR, O’Bryan PJ, Cotta MA, Balan V, Jin M (2016) Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers. Biotechnol Bioeng 113(8):1676–1690

    Article  CAS  PubMed  Google Scholar 

  • Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thevenieau F, Nicaud J-M, Gaillardin C (2009) Applications of the non-conventional yeast Yarrowia lipolytica. (ed) Yeast biotechnology: diversity and applications. Springer, pp 589–613

  • Träff K, Jönsson LJ, Hahn-Hägerdal B (2002) Putative xylose and arabinose reductases in Saccharomyces cerevisiae. Yeast 19(14):1233–1241

    Article  PubMed  Google Scholar 

  • Tsigie YA, Wang C-Y, Truong C-T, Y-H J (2011) Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresour Technol 102(19):9216–9222

    Article  CAS  PubMed  Google Scholar 

  • Tsigie YA, Wang C-Y, Kasim NS, Diem Q-D, Huynh L-H, Ho Q-P, Truong C-T, Ju Y-H (2012) Oil production from Yarrowia lipolytica Po1g using rice bran hydrolysate. Biomed Res Int 2012

  • Vogel K, Mitchell R, Casler M, Sarath G (2014) Registration of ‘Liberty’ switchgrass. J Plant Regist 8(3):242–247

    Article  Google Scholar 

  • Wang J, Li R, Lu D, Ma S, Yan Y, Li W (2009) A quick isolation method for mutants with high lipid yield in oleaginous yeast. World J Microbiol Biotechnol 25(5):921–925

    Article  CAS  Google Scholar 

  • Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A, Eliot D, Lasure L, Jones S (2004) Top value added chemicals from biomass, vol. 1: results of screening for potential candidates from sugars and synthesis gas. USDoE. Golden, CO, National Renewable Energy Laboratory

  • Yu X, Zheng Y, Dorgan KM, Chen S (2011) Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol 102(10):6134–6140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Novozymes for the kind donation of enzymes and the ARS Culture Collection and Mr. James Swezey for providing many of the yeast strains used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce S. Dien.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Disclaimer

The mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Electronic supplementary material

ESM 1

(PDF 366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quarterman, J., Slininger, P.J., Kurtzman, C.P. et al. A survey of yeast from the Yarrowia clade for lipid production in dilute acid pretreated lignocellulosic biomass hydrolysate. Appl Microbiol Biotechnol 101, 3319–3334 (2017). https://doi.org/10.1007/s00253-016-8062-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-8062-y

Keywords

Navigation