Skip to main content

Advertisement

Log in

Properties, metabolisms, and applications of l-proline analogues

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Due to the unique role of l-proline in the folding and structure of protein, a variety of synthetic proline analogues have been developed. l-Proline analogues have been proven to be valuable reagents for studying cellular metabolism and the regulation of macromolecule synthesis in both prokaryotic and eukaryotic cells. In addition to these fundamental researches, they are useful compounds for industrial use. For instance, microorganisms that overproduce l-proline have been obtained by isolating mutants resistant to l-proline analogues. They are also promising candidates for tuning the biological, pharmaceutical, or physicochemical properties of naturally occurring or de novo designed peptides. Among l-proline analogues, l-azetidine-2-carboxylic acid (l-AZC) is a toxic non-proteinogenic amino acid originally found in lily of the valley plants and trans-4-hydroxy-l-proline (4-l-THOP) is the most abundant component of mammalian collagen. Many hydroxyprolines (HOPs), such as 4-l-THOP and cis-4-hydroxy-l-proline (4-l-CHOP), are useful chiral building blocks for the organic synthesis of pharmaceuticals. In addition, l-AZC and 4-l-CHOP, which are potent inhibitors of cell growth, have been tested for their antitumor activity in tissue culture and in vivo. In this review, we describe the recent discoveries regarding the physiological properties and microbial production and metabolism of l-proline analogues, particularly l-AZC and HOPs. Their applications in fundamental research and industrial use are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam E, Norton IL (1964) Purification and properties of inducible hydroxyproline 2-epimerase from Pseudomonas. J Biol Chem 239:1525–1535

    Google Scholar 

  • Adams E, Leonard F (1980) Metabolism of proline and the hydroxyproline. Ann Rev Biochem 49:1005–1061

    Article  PubMed  CAS  Google Scholar 

  • Ananthan J, Goldberg AL, Voellmy R (1986) Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 232:522–524

    Article  PubMed  CAS  Google Scholar 

  • Aoki M, Suto K, Komatsu M, Kamimura A, Morishita K, Yamasaki M, Takao T (2012) Increasing effect of an oral intake l-hydroxyproline on the soluble collagen content of skin and collagen fragments in rat serum. Biosci Biotechnol Biochem 76:1242–1244

    PubMed  CAS  Google Scholar 

  • Bach TMH, Hara R, Kino K, Ohtsu I, Yoshida N, Takagi H (2013) Microbial production of N-acetyl cis-4-hydroxy-l-proline by coexpression of the Rhizobium l-proline cis-4-hydroxylase and the yeast N-acetyltransferase Mpr1. Appl Microbiol Biotechnol 97:247–257

    Article  PubMed  CAS  Google Scholar 

  • Bontoux MC, Gelo-Pujic M (2006) Microbial screening in hydroxylation of l-proline. Tetrahedron Lett 47:9073–9076

    Article  CAS  Google Scholar 

  • Buku A, Wieland T, Bodenmuller H, Faulstich H (1980) Amaniamide, a new toxin of Amanita virosa mushrooms. Experientia 36:33–34

    Article  PubMed  CAS  Google Scholar 

  • Carpenter JF, Crowe JH (1988) Modes of stabilization of a protein by organic solutes during desiccation. Cryobiology 25:459–470

    Article  CAS  Google Scholar 

  • Chekler ELP, Butera JA, Di L, Swillo RE, Morgan GA, Rossman EI, Huselton C, Larsen BD, Hennan JK (2009) Discovery of a class of potent gap-junction modifiers as novel antiarrhythmic agents. Bioorg Med Chem Lett 19:4551–4554

    Article  CAS  Google Scholar 

  • Chen C, Dickman MB (2005) Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc Natl Acad Sci USA 102:3459–3464

    Article  PubMed  CAS  Google Scholar 

  • Clare BW, Ferro V, Skelton BW, Stick RV, White AH (1993) Approaches to synthesis of retronecine from some pyrrolidine precursors. Aust J Chem 46:805–824

    Article  CAS  Google Scholar 

  • Csonka LN (1981) Proline over-production results in enhanced osmotolerance in Salmonella typhimurium. Mol Gen Genet 182:82–86

    Article  PubMed  CAS  Google Scholar 

  • Csonka LN, Gelvin SB, Goodner BW, Orser CS, Siemieniak D, Slightom JL (1988) Nucleotide sequence of a mutation in the proB gene of Escherichia coli that confers proline overproduction and enhanced tolerance to osmotic stress. Gene 64:199–205

    Article  PubMed  CAS  Google Scholar 

  • Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45:569–606

    Article  PubMed  CAS  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Dho JC, Fleet GWJ, Peach JM, Prout K, Smith PW (1986) Synthesis of 2R,3S,4R-dihydroxyproline from d-rionolactone. Tetrahedron Lett 27:5203–5204

    Article  Google Scholar 

  • Dicosimo R, Fager SK, Gavagan JE (2001) Producing diastereomers of 4-hydroxyproline using 4-hp epimerase from Serratia marcescens or Acinetobacter baumanni. United Stated Patent 6204050

  • Du X, Takagi H (2005) N-acetyltransferase Mpr1 confers freeze tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. J Bacteriol 138:391–397

    CAS  Google Scholar 

  • Du X, Takagi H (2007) N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Appl Microbiol Biotechnol 75:1343–1351

    Article  PubMed  CAS  Google Scholar 

  • Eldridge CF, Bunge RP, Bunge MB (1988) Effect of cis-4-hydroxy-l-proline, an inhibitor of Schwann cell differentiation, on the secretion of collagens and noncollagenous protein by Schwann cells. Exp Cell Res 174:491–501

    Article  PubMed  CAS  Google Scholar 

  • Elijah A, Leonard F (1980) Metabolism of proline and the hydroxyproline. Ann Rev Biochem 49:1005–1061

    Article  Google Scholar 

  • Faulstich H, Buku A, Bodenmuller H, Wieland T (1980) Virotoxins: actin-binding cyclic peptides of Amanita virosa mushrooms. Biochemistry 19:3334–3343

    Article  PubMed  CAS  Google Scholar 

  • Fleet GW, Karpas A, Dwek RA, Fellows LE, Tyms AS, Petursson S, Namgoong SK, Ramsden NG, Smith PW, Son JC (1988) Inhibition of HIV replication by amino-sugar derivative. FEBS Lett 237:128–132

    Article  PubMed  CAS  Google Scholar 

  • Fowden L (1956) Azetidine-2-carboxylic acid: a new cyclic imino acid occurring in plants. Biochem J 64:323–332

    PubMed  CAS  Google Scholar 

  • Fowden L, Richmond MH (1963) Replacement of proline by azetidine-2-carboxylic acid during biosynthesis of protein. Biochim Biophys Acta 71:459–461

    Article  CAS  Google Scholar 

  • Fujii K, Ikai Y, Oka H, Suzuki M, Harada K (1997) A non empirical method using LC/MS for determination of the absolute configuration of constituent amino acids in a peptide: combination of Marfey’s method with mass spectrometry and its practical application. Anal Chem 69:5146–5151

    Article  CAS  Google Scholar 

  • Gray DO (1972) trans-4-Hydroxymethyl-d-proline from Eriobotrya japonica. Phytochemistry 11:751–756

    Article  CAS  Google Scholar 

  • Gross C, Felsheim R, Wackett LP (2008) Genes and enzymes of azetidine-2-carboxylate metabolism: detoxification and assimilation of an antibiotic. J Bacteriol 190:4859–4864

    Article  PubMed  CAS  Google Scholar 

  • Haitani Y, Nakata M, Sasaki T, Uchida A, Takagi H (2009) Engineering of the yeast ubiquitin ligase Rsp5: isolation of a new variant that induces constitutive inactivation of the general amino acid permease Gap1. FEMS Yeast Res 9:73–86

    Article  PubMed  CAS  Google Scholar 

  • Hara R, Kino K (2009) Characterization of novel 2-oxoglutarate dependent dioxygenases converting l-proline to cis-4-hydroxy-l-proline. Biochem Biophys Res Commun 379:882–886

    Article  PubMed  CAS  Google Scholar 

  • Harris CM, Schneider MJ, Ungemach FS, Hill JE, Harris TM (1988) Biosynthesis of the toxic indolizidine alkaloids slaframine and swainsonine in Rhizoctonia leguminicola: metabolism of 1-hydroindolizidines. J Am Chem Soc 110:940–949

    Article  CAS  Google Scholar 

  • Hashizume J, Hattori S, Igarashi M, Akamatsu Y (2004) Tripropeptin E, a new tripropeptin group antibiotic produced by Lysobacter sp. BMK333-48F3. J Antibiot 57:394–403

    Article  PubMed  CAS  Google Scholar 

  • Hibi T, Yamamoto H, Nakamura G, Takagi H (2009) Crystallization and preliminary crystallographic analysis of N-acetyltransferase Mpr1 from Saccharomyces cerevisiae. Acta Crystallogr Sect F: Struct Biol Cryst Commun 65(Pt 2):169–172

    Article  CAS  Google Scholar 

  • Hill RK, Rhee SW, Isono K, Crout DHG, Suhadolnik RJ (1981) Stereospecificity of the enzymatic dehydrogenation in the biosynthesis of 3-ethylidene-l-azetidine-2-carboxylic acid from isoleucine by Streptomyces cacaoi. Biochemistry 20:7040–7042

    Article  PubMed  CAS  Google Scholar 

  • Hoa BTM, Hibi T, Nasuno R, Matsuo G, Sasano Y, Takagi H (2012) Production of N-acetyl cis-4-hydroxy-l-proline by the yeast N-acetyltransferase Mpr1. J Biosci Bioeng 114:160–165

    Article  PubMed  CAS  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DP (2000) Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Hosoya T, Matsuoka T, Serizawa N, Furuya K (1995) Two morphological groups derived from Clonostachys cylindrospora and their relationship to trans-4-l-proline productivity. Mycoscience 36:193–197

    Article  CAS  Google Scholar 

  • Hottiger T, De Virgilio C, Hall MN, Boller T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Eur J Biochem 219:187–193

    Article  PubMed  CAS  Google Scholar 

  • Ignatova Z, Gierasch LM (2006) Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc Natl Acad Sci USA 103:13357–13361

    Article  PubMed  CAS  Google Scholar 

  • Iinoya K, Kotani T, Sasano Y, Takagi H (2009) Engineering of the yeast antioxidant enzyme Mpr1 for enhanced activity and stability. Biotechnol Bioeng 103:341–352

    Article  PubMed  CAS  Google Scholar 

  • Ishchuk OP, Abbas CA, Sibirny AA (2010) Heterologous expression of Saccharomyces cerevisiae MPR1 gene confers tolerance to ethanol and l-azetidine-2-carboxylic acid in Hansenula polymorpha. J Ind Microbiol Biotechnol 37:213–218

    Article  PubMed  CAS  Google Scholar 

  • Johnston RM, Chu LN, Liu M, Goldberg SL, Goswami A, Patel RN (2009) Hydroxylation of l-proline to cis-3-hydroxy-l-proline by recombinant Escherichia coli expressing a synthetic l-proline-3-hydroxylase gene. Enzym Micro Tech 45:484–490

    Article  CAS  Google Scholar 

  • Katz E, Kamal F, Mason K (1979) Biosynthesis of trans-4-hydroxy-l-proline by Streptomyces griseoviridus. J Biol Chem 254:6684–6690

    Google Scholar 

  • Katz ED, Prockop DJ, Udenfriend S (1962) Precursors of the hydroxyproline and ketoproline in actinomycin. J Biol Chem 237:1585–1588

    PubMed  CAS  Google Scholar 

  • Kaul S, Sharma SS, Mehta IK (2008) Free radical scavenging potential of l-proline: evidence from in vitro assays. Amino Acids 34:315–320

    Article  PubMed  CAS  Google Scholar 

  • Kelley PM, Schlesinger MJ (1978) In vitro synthesis of heat-shock proteins by mRNAs from chicken embryo fibroblasts. Cell 15:1277–1286

    Article  PubMed  CAS  Google Scholar 

  • Kimura Y, Nakamori S, Takagi H (2002) Polymorphism of the MPR1 gene required for toxic proline analogue resistance in the Saccharomyces cerevisiae complex species. Yeast 19:1437–1445

    Article  PubMed  CAS  Google Scholar 

  • Klohs WD, Steinkampf RW, Wicha MS, Mertus AE, Tunac JB, Leopold WR (1985) Collagen-production inhibitors evaluated as antitumor argents. J Natl Cancer Inst 75:353–359

    PubMed  CAS  Google Scholar 

  • Koehn F, Longley RE, Reed J (1992) Microcolins A and B new immunosuppressive peptides from the blue–green alga Lyngbya majuscula. J Nat Prod 55:613–619

    Article  PubMed  CAS  Google Scholar 

  • Krishnan N, Dickman MB, Becker DF (2008) Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic Biol Med 44:671–681

    Article  PubMed  CAS  Google Scholar 

  • Kuttan R, Radhakrishnan AN (1970) The biosynthesis of cis-4-hydroxy-l-proline in sandal (Santalum album L.). Biochem J 117:1015–1017

    PubMed  CAS  Google Scholar 

  • Lasko PF, Brandriss MC (1981) Proline transport in Saccharomyces cerevisiae. J Bacteriol 148:241–247

    PubMed  CAS  Google Scholar 

  • Laursen R (1992) Reflection on the structure of mussel adhesive protein. Results Probl Cell Differentiation 19:52–72

    Google Scholar 

  • Lawrence CC, Sobey WJ, Field RA, Baldwin JE, Schofield CJ (1996) Purification and initial characterization of proline 4-hydroxylase from Streptomyces griseoviridus P8648: a 2-oxoacid, ferrous-dependent dioxygenase involved in etamycin biosynthesis. Biochem J 313:185–191

    PubMed  CAS  Google Scholar 

  • Leete E (1964) The biosynthesis of azetidine-2-carboxylic acid. J Am Chem Soc 86:3162

    Article  CAS  Google Scholar 

  • Leete E, Louters LL, Rao H, Prakash S (1986) Biosynthesis of azetidine-2-carboxylic acid in Convallaria majalis: studies with N-15 labelled precursors. Phytochemistry 25:2753–2758

    Article  CAS  Google Scholar 

  • Lubec B, Mallingher R, Radner W, Vycudilik W, Hausler J, Lubec G (1993) Cis 3 hydroxyproline reduces glomerular basement membrane thickness and collagen type IV synthesis in diabetic rats. Amino Acids 4:249–254

    CAS  Google Scholar 

  • Matsuoka T, Serizawa N, Hosoya T, Furuya K (1994) Isolated cultures of microorganism of Clonostachys cylindrospora, Gliocladium and Nectria gliocladioides. US Patent 5,407,826

  • Matsuoka T, Furuya K, Serizawa N (1995) Fermentation production of cis-4-hydroxy-l-proline by Helicocerus oryzae and Acrocylindrium oryzae. Biosci Biotechnol Biochem 58:1747–1748

    Article  Google Scholar 

  • Mizzen LA, Welch WJ (1988) Characterization of the thermotolerant cell. I. effects of protein synthesis activity and the regulation of heat-shock protein 70 expression. J Cell Biol 106:1105–1116

    Article  PubMed  CAS  Google Scholar 

  • Mohanty AP, Matysik J (2001) Effect of proline on the production of single oxygen. Amino Acids 21:195–200

    Article  PubMed  Google Scholar 

  • Mori H, Shibasaki T, Yano K, Ozaki A (1997) Purification and cloning of a proline 3-hydroxylase, a novel enzyme which hydroxylate free l-proline to cis-3-hydroxy-l-proline. J Bacteriol 179:5677–5683

    PubMed  CAS  Google Scholar 

  • Mori H, Shibasaki Y, Uozaki K, Ochiai K, Ozaki A (1996) Detection of novel proline 3-hydroxylase activities in Streptomyces and Bacillus spp. by regio- and stereospecific hydroxylation of l-proline. Appl Environ Microbiol 62:1903–1907

    PubMed  CAS  Google Scholar 

  • Morita Y, Nakamori S, Takagi H (2003) l-Proline accumulation and freeze tolerance of Saccharomyces cerevisiae are caused by a mutation in the PRO1 gene encoding γ-glutamyl kinase. Appl Environ Microbiol 69:212–219

    Article  PubMed  CAS  Google Scholar 

  • Mueller C, Emmrich J, Jaster R, Braun D, Liebe S, Sparmann G (2006) cis-Hydroxyproline-induced inhibition of pancreatic cancer cell growth is mediated by endoplasmic reticulum stress. World J Gastroenterol 12:1569–1576

    PubMed  CAS  Google Scholar 

  • Mulzer J, Meier A (1996) Total synthesis of cis- and trans-3-hydroxy-d-proline and (+)-detoxin. J Org Chem 61:566–572

    Article  PubMed  CAS  Google Scholar 

  • Nakajima T, Volcani BE (1969) 3,4-Dihydroxyproline: a new amino acid in diatom cell walls. Science 164:1400–1401

    Google Scholar 

  • Navnath BK, Kasture VM, Dhavale DD (2010) Total synthesis of natural cis-3-hydroxy-l-proline from d-glucose. Tetrahdron Lett 51:6745–6747

    Article  CAS  Google Scholar 

  • Nishimura A, Kawahara N, Takagi H (2013) The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. Biochem Biophys Res Commun 430:137–143

    Article  PubMed  CAS  Google Scholar 

  • Nishimura A, Kotani T, Sasano Y, Takagi H (2010) An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced arginine synthesis and its physiological role. FEMS Yeast Res 10:687–698

    Article  PubMed  CAS  Google Scholar 

  • Nishimura A, Nasuno R, Takagi H (2012) The proline metabolism intermediate Δ1-pyrroline-5-carboxylate directly inhibits the mitochondrial respiration in budding yeast. FEBS Lett 586:2411–2416

    Article  PubMed  CAS  Google Scholar 

  • Nomura M, Nakamori S, Takagi H (2003) Characterization of novel acetyltransferases found in budding and fission yeasts that detoxify a proline analogue, azetidine-2-carboxylic acid. J Biochem 133:67–74

    Article  PubMed  CAS  Google Scholar 

  • Nomura M, Takagi H (2004) Role of the yeast acetyltransferase Mpr1 in oxidative stress: regulation of oxygen reactive species caused by a toxic proline catabolism intermediate. Proc Natl Acad Sci USA 101:12616–12621

    Article  PubMed  CAS  Google Scholar 

  • Ogawa-Mitsuhashi K, Sagane K, Kuromitsu J, Takagi H, Tsukahara K (2009) MPR1 as a novel selection marker in Saccharomyces cerevisiae. Yeast 26:587–593

    Article  PubMed  CAS  Google Scholar 

  • Olszewski U, Ellinger A, Zeillinger R, Baumgartner G, Hamilton G (2008) Involvement of 14-3-3sigma in cytotoxicity of cis-4-hydroxy-l-proline (CHP) against epithelial tumor cell lines. FEBS Proceedings, C2-152.

  • Omura S, Fujimoto T, Otoguro K, Matsuzaki K, Moriguchi R, Tanaka J, Sasaki Y (1991) Lactacystin a novel microbial metabolite, induces neuritogenesis of neuroblastoma cells. J Antibiot 44:113–116

    Article  PubMed  CAS  Google Scholar 

  • Onishi MY, Okumura R, Okamoto R, Ishikura T (1984) Proline hydroxylation by cell free extract of a streptomycete. Biochem Biophys Res Commun 120:45–51

    Article  PubMed  CAS  Google Scholar 

  • Peterson PJ, Fowden L (1963) Different specificities of proline-activating enzymes from some plant species. Nature 200:148–151

    Article  CAS  Google Scholar 

  • Petersen L, Hughes D, Hughes R, DiMichele L, Salmon P, Connors N (2001) Effects of amino acid and trace element supplementation on the pneumocandin production by Glarea lozoyensis: impact on titer, analogues levels, and the identification of new analogues of pneumocandin B0. J Ind Microbiol Biotechnol 26:216–221

    Article  PubMed  CAS  Google Scholar 

  • Piatnitski CEL, Butera JA, Di L, Swillo RE, Morgan GA, Rossman EI, Huselton C, Larsen BD, Hennan JK (2009) Discovery of a class of potent gap-junction modifiers as novel antiarrhythmic agents. Bioorg Med Chem Lett 19:4551–4555

    Article  CAS  Google Scholar 

  • Poiani GJ, Riley DJ, Fox JD, Kemnitzer JE, Gean KF, Kohn J (1994) Conjugates of cis-4-hydroxy-l-proline and poly(PEG-Lys), a water soluble poly(ether urethane): synthesis and evaluation of antifibrotic effects in vitro and in vivo. Bioconjugate Chem 5:621–630

    Article  CAS  Google Scholar 

  • Puska M, Yli-Urpo A, Vallittu P, Airola K (2005) Synthesis and characterization of polyamide of trans-4-hydroxy-l-proline used as porogen filler in acrylic bone cement. J Biomater Appl 19:287–301

    Article  PubMed  CAS  Google Scholar 

  • Rajendrakumar CSV, Suryanarayana T, Reddy AR (1997) DNA helix destabilization by proline and betaine: possible role in the salinity tolerance process. FEBS Lett 410:201–205

    Article  PubMed  CAS  Google Scholar 

  • Reese LM, Cutler KO, Deutch CE (1996) Sensitivity of Escherichia coli to proline analogues during osmotic stress and anaerobiosis. Lett Appl Microbiol 22:202–205

    Article  PubMed  CAS  Google Scholar 

  • Remuzon P (1996) Trans-4-hydroxy-l-proline, a useful and versatile chiral starting block. Tetrahedron 52:13803–13835

    Article  CAS  Google Scholar 

  • Riley DJ, Berg RA, Edelman NH, Prockop DJ (1980) Prevention of collagen deposition following pulmonary oxygen toxicity in the rat by cis-4-hydroxy-l-proline. J Clin Invest 65:643–651

    Article  PubMed  CAS  Google Scholar 

  • Rosenbloom J, Prockop D (1971) Incorporation of cis-hydroxyproline into protocollagen and collagen. J Biol Chem 246:1549–1555

    PubMed  CAS  Google Scholar 

  • Rowe RC, Sheskey PJ, Weller PJ (2003) Polyethylene glycols. In: Rowe RC, Sheskey PJ, Weller PJ (eds) Handbook of pharmaceutical excipients, 6th edn. Pharmaceutical Press, London, pp 517–522

    Google Scholar 

  • Rubenstein E (2000) Biologic effects of and clinical disorders caused by nonprotein amino acids. Medicine 79:80–89

    Article  PubMed  CAS  Google Scholar 

  • Rubenstein E, Zhou H, Krasinska KM, Chien A, Becker CH (2006) Azetidine-2-carboxylic acid in garden beets (Beta vulgaris). Phytochemistry 67:898–903

    Article  PubMed  CAS  Google Scholar 

  • Rudd MT, McCauley JA, Butcher JW, Romano JJ, McIntyre CJ, Nguyen KT, Gilbert KJ, Bush KJ, Holloway MK, Swestock J, Wan BL, Carroll SS, DiMuzio JM, Graham DJ, Ludmerer SW, Stahlhut MW, Fandozzi CM, Trainor N, Olsen DB, Vacca JP, Liverton NJ (2011) Discovery of MK-1220: a macrocyclic inhibitor of hepatitis C virus NS3/4A protease with improved preclinical plasma exposure. ACS Med Chem Lett 2:207–212

    Article  CAS  Google Scholar 

  • Rudolph AS, Crowe JH (1985) Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiology 22:367–377

    Article  PubMed  CAS  Google Scholar 

  • Samuel D, Kumar TKS, Ganesh G, Jayaraman G, Yang PW, Chang MM, Trivedi VD, Wang SL, Hwang KC, Chang DK, Yu C (2000) Proline inhibits aggregation during protein refolding. Protein Sci 9:344–352

    Article  PubMed  CAS  Google Scholar 

  • Sasano Y, Haitani Y, Hashida K, Ohtsu I, Shima J, Takagi H (2012) Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker’s yeast. Microb Cell Fact 11:40. doi:10.1186/1475-2859-11-40

    Article  PubMed  CAS  Google Scholar 

  • Sasano Y, Takahashi S, Shima J, Takagi H (2010) Antioxidant N-acetyltransferase Mpr1/2 of industrial baker’s yeast enhances fermentation ability after air-drying stress in bread dough. Int J Food Microbiol 138:181–185

    Article  PubMed  CAS  Google Scholar 

  • Schwartz RE, Giacobbe RA, Bland JA (1989) L-671,329, a new antifungal agent. I. Fermentation and isolation. J Antibiot 42:163–170

    Article  PubMed  CAS  Google Scholar 

  • Sekine T, Kawaguchi A, Hamano Y, Takagi H (2007) Desensitization of feedback inhibition of the yeast γ-glutamyl kinase enhances proline accumulation and freezing tolerance. Appl Environ Microbiol 73:4011–4019

    Article  PubMed  CAS  Google Scholar 

  • Sheehan JC, Mania D, Nakamura S, Stock JA, Maeda K (1968) The structure of telomycin. J Am Chem Soc 90:462–470

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki T, Hashimoto S, Mori H, Ozaki A (2000a) Construction of novel hydroxyproline-producing recombinant Escherichia coli by introducing a proline 4-hydroxylase gene. J Biosci Bioeng 90:522–525

    PubMed  CAS  Google Scholar 

  • Shibasaki T, Mori H, Chiba S, Ozaki A (1999) Microbial proline 4-hydroxylase screening and gene cloning. Appl Environ Microbiol 65:4028–4031

    PubMed  CAS  Google Scholar 

  • Shibasaki T, Mori H, Ozaki A (2000b) Enzymatic production of trans-4-hydroxy-l-proline by regio- and stereospecific hydroxylation of l-proline. Biosci Biotechnol Biochem 64:746–750

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki T, Mori H, Ozaki A (2000c) Cloning of an isozyme of proline 3-hydroxylase and its purification from recombinant Escherichia coli. Biotech Lett 22:1967–1973

    Article  CAS  Google Scholar 

  • Shichiri M, Hoshikawa C, Nakamori S, Takagi H (2001) A novel acetyltransferase found in Saccharomyces cerevisiae Σ1278b that detoxifies a proline analogue, azetidine-2-carboxylic acid. J Biol Chem 276:41998–42002

    Article  PubMed  CAS  Google Scholar 

  • Schobert B, Tschesche H (1978) Unusual solution properties of proline and its interaction with proteins. Biochim Biophys Acta 541:270–277

    Article  PubMed  CAS  Google Scholar 

  • Shoulder MD, Kotch FW, Chouhary A, Guzei IA, Raines RT (2010) The aberrance of the 4S diastereomer of 4-hydroxyproline. J Am Chem Soc 132:10857–10865

    Article  CAS  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  • Sugiura M, Kisumi M (1985) Proline-hyperproducing strains of Serratia marcescens: enhancement of proline analog-mediated growth inhibition by increasing osmotic stress. Appl Environ Microbiol 49:782–786

    PubMed  CAS  Google Scholar 

  • Sung ML, Fowden L (1971) Imino acid biosynthesis in Delonix regia. Phytochemistry 10:1523–1528

    Article  CAS  Google Scholar 

  • Takagi H, Iwamoto F, Nakamori S (1997) Isolation of freeze-tolerant laboratory strain of Saccharomyces cerevisiae from proline-analogue-resistant mutants. Appl Microbiol Biotechnol 47:405–411

    Article  PubMed  CAS  Google Scholar 

  • Takagi H, Sakai K, Morida K, Nakamori S (2000a) Proline accumulation by mutation or disruption of the proline oxidase gene improves resistance to freezing and desiccation stresses in Saccharomyces cerevisiae. FEMS Microbiol Lett 184:103–108

    Article  PubMed  CAS  Google Scholar 

  • Takagi H, Shichiri M, Takemura M, Mohri M, Nakamori S (2000b) Saccharomyces cerevisiae Σ1278b has novel genes of the N-acetyltransferase gene superfamily required for l-proline analogue resistance. J Bacteriol 182:4249–4256

    Article  PubMed  CAS  Google Scholar 

  • Takagi H, Takaoka M, Kawaguchi A, Kubo K (2005) Effect of l-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae. Appl Environ Microbiol 71:8656–8662

    Article  PubMed  CAS  Google Scholar 

  • Tan EM, Ryhanen LU (1983) Proline analogues inhibit human skin fibroblast growth and collagen production in culture. J Invest Dermatol 80:261–267

    Article  PubMed  CAS  Google Scholar 

  • Terao Y, Nakamori S, Takagi H (2003) Gene dosage effect of l-proline biosynthetic enzymes on l-proline accumulation and freeze tolerance in Saccharomyces cerevisiae. Appl Environ Microbiol 69:6527–6532

    Article  PubMed  CAS  Google Scholar 

  • Trotter EW, Kao CMF, Berenfeld L, Botstein D, Petsko GA, Gray JV (2002) Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae. J Biol Chem 277:44817–44825

    Article  PubMed  CAS  Google Scholar 

  • Tsai FY, Zhang XH, Ulanov A, Widholm JM (2010) The application of the yeast N-acetyltransferase MPR1 gene and the proline analogue l-azetidine-2-carboxylic acid as a selectable marker system for plant transformation. J Exp Bot 61:2561–2573

    Article  PubMed  CAS  Google Scholar 

  • Vetting MW, de Carvalho LP S, Yu M, Hegde SS, Magnet S, Roderick SL, Blanchard JS (2005) Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys 433:212–226

    Article  PubMed  CAS  Google Scholar 

  • Wada M, Okabe K, Kataoka M, Shimizu S, Yokota A, Takagi H (2008) Distribution of l-azetidine-2-carboxylate N-acetyltransferase in yeast. Biosci Biotech Biochem 72:582–586

    Article  CAS  Google Scholar 

  • Wantanabe J, Nakad N, Sawairi S, Shimada H, Ohshima S, Kamiyama T, Arisawa M (1994) Cyclothialidine, a novel DNA gyrase inhibitor. I. Screening, taxonomy, fermentation and biological activity. J Antibiot 47:32–38

    Article  Google Scholar 

  • Wieland T (1968) Poisonous principles of mushrooms of the genus Amanita. Four-carbon amines acting on the central nervous system and cell-destroying cyclic peptides are produced. Science 159:946–952

    Article  PubMed  CAS  Google Scholar 

  • Wohlrab A, Lamer R, VanNieuwenhze MS (2007) Total synthesis of plusbacin A3: a depsipeptide antibiotic active against vancomycin-resistant bacteria. J Am Chem Soc 129:4175–4177

    Article  PubMed  CAS  Google Scholar 

  • Wright NP, Nolan S (2001) N-acetyl-l-hydroxyproline: chromosome aberration test in CHL cells in vitro. SPL project number 732/092. SafePharm Laboratories Ltd., Derby

  • Yeung KF, Lee KM, Woodard RW (1998) Isolation and identification of two l-azetidine-2-carboxylic acid-degrading soil microorganisms, Enterobacter agglomerans and Enterobacter amnigenus. J Nat Prod 61:207–211

    Article  PubMed  CAS  Google Scholar 

  • Yokota S, Yanagi H, Yura T, Kubota H (2000) Upregulation of cytosolic chaperonin CCT subunits during recovery from chemical stress that causes accumulation of unfolded proteins. Eur J Biochem 267:1658–1664

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga F, Nakamori S (1983) Production of amino acids. In: Herrmann KM, Sommerville RL (eds) Amino acids: biosynthesis and genetic regulation. Addison-Wesley Publishing Company, London, pp 405–429

    Google Scholar 

  • Zhang XH, Takagi H, Widholm JM (2004) Expression of a novel yeast gene that detoxifies the proline analog azetidine-2-carboxylate confers resistance during tobacco seed germination, callus and shoot formation. Plant Cell Rep 22:615–622

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Takagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bach, T.M.H., Takagi, H. Properties, metabolisms, and applications of l-proline analogues. Appl Microbiol Biotechnol 97, 6623–6634 (2013). https://doi.org/10.1007/s00253-013-5022-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5022-7

Keywords

Navigation