Skip to main content
Log in

Development of a multi-enzymatic cascade reaction for the synthesis of trans-3-hydroxy-l-proline from l-arginine

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Naturally occurring l-hydroxyproline in its four regio- and stereoisomeric forms has been explored as a possible precursor for pharmaceutical agents, yet the selective synthesis of trans-3-hydroxy-l-proline has not been achieved. Our aim was to develop a novel biocatalytic asymmetric method for the synthesis of trans-3-hydroxy-l-proline. So far, we focused on the rhizobial arginine catabolic pathway: arginase and ornithine cyclodeaminase are involved in l-arginine degradation to l-proline via l-ornithine. We hypothesized that trans-3-hydroxy-l-proline should be synthesized if arginase and ornithine cyclodeaminase act on (2S,3S)-3-hydroxyarginine and (2S,3S)-3-hydroxyornithine, respectively. To test this hypothesis, we cloned the genes of l-arginine 3-hydroxylase, arginase, and ornithine cyclodeaminase and overexpressed them in Escherichia coli, with subsequent enzyme purification. After characterization and optimization of each enzyme, a three-step procedure involving l-arginine 3-hydroxylase, arginase, and ornithine cyclodeaminase (in this order) was performed using l-arginine as a starting substrate. At the second step of the procedure, putative hydroxyornithine was formed quantitatively by arginase from (2S,3S)-3-hydroxyarginine. Nuclear magnetic resonance and chiral high-performance liquid chromatography analyses revealed that the absolute configuration of this compound was (2S,3S)-3-hydroxyornithine. In the last step of the procedure, trans-3-hydroxy-l-proline was synthesized selectively by ornithine cyclodeaminase from (2S,3S)-3-hydroxyornithine. Thus, we successfully developed a novel synthetic route, comprised of three reactions, to convert l-arginine to trans-3-hydroxy-l-proline. The excellent selectivity makes this procedure simpler and more efficient than conventional chemical synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelal AT (1979) Arginine catabolism by microorganisms. Annu Rev Microbiol 33:139–168

    Article  PubMed  CAS  Google Scholar 

  • Alam S, Wang SC, Ruzicka FJ, Frey PA, Wedekind JE (2004) Crystallization and X-ray diffraction analysis of ornithine cyclodeaminase from Pseudomonas putida. Acta Crystallogr D Biol Crystallogr 60:941–944

    Article  PubMed  CAS  Google Scholar 

  • Baud D, Saaidi PL, Monfleur A, Harari M, Cuccaro J, Fossey A, Besnard M, Debard A, Mariage A, Pellouin V, Petit JL, Salanoubat M, Weissenbach J, de Berardinis V, Zaparucha A (2014) Synthesis of mono- and dihydroxylated amino acids with new α-ketoglutarate-dependent dioxygenases: biocatalytic oxidation of C–H bonds. ChemCatChem 6:3012–3017

    Article  CAS  Google Scholar 

  • Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    PubMed  CAS  Google Scholar 

  • Bewley MC, Jeffrey PD, Patchett ML, Kanyo ZF, Baker EN (1999) Crystal structures of Bacillus caldovelox arginase in complex with substrate and inhibitors reveal new insights into activation, inhibition and catalysis in the arginase superfamily. Structure 7:435–448

    Article  PubMed  CAS  Google Scholar 

  • Bhushan R, Bruckner H (2004) Marfey’s reagent for chiral amino acid analysis: a review. Amino Acids 27:231–247

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Yue Q, Zhang X, Xiang M, Wang C, Li S, Che Y, Ortiz-Lopez FJ, Bills GF, Liu X, An Z (2013) Genomics-driven discovery of the pneumocandin biosynthetic gene cluster in the fungus Glarea lozoyensis. BMC Genomics 14:339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Connors N, Petersen L, Hughes R, Saini K, Olewinski R, Salmon P (2000) Residual fructose and osmolality affect the levels of pneumocandins B0 and C0 produced by Glarea lozoyensis. Appl Microbiol Biotechnol 54:814–818

    Article  PubMed  CAS  Google Scholar 

  • DeMong DE, Williams RM (2001) An efficient asymmetric synthesis of (2S,3S)- and (2R,3R)-β-hydroxyornithine. Tetrahedron Lett 42:183–185

    Article  CAS  Google Scholar 

  • Dessaux Y, Petit A, Tempe J, Demarez M, Legrain C, Wiame JM (1986) Arginine catabolism in Agrobacterium strains: role of the Ti plasmid. J Bacteriol 166:44–50

    PubMed  PubMed Central  CAS  Google Scholar 

  • Digiovanni MC, Misiti D, Zappia G, Dellemonache G (1993) A stereoselective synthesis of 3(R)-hydroxy-2(S)-ornithine. Tetrahedron 49:11321–11328

    Article  CAS  Google Scholar 

  • Durand JO, Larcheveque M, Petit Y (1998) Reductive cyanation: a key step for a short synthesis of (−)-(2S,3S)-3-hydroxyproline. Tetrahedron Lett 39:5743–5746

    Article  CAS  Google Scholar 

  • Fujii Y, Kabumoto H, Nishimura K, Fujii T, Yanai S, Takeda K, Tamura N, Arisawa A, Tamura T (2009) Purification, characterization, and directed evolution study of a vitamin D3 hydroxylase from Pseudonocardia autotrophica. Biochem Biophys Res Commun 385:170–175

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara S, Nagai Y (1981) Bovine renal cortex type I collagen: high contents of 3- and 4-hydroxyprolines. J Biochem 89:1397–1401

    PubMed  CAS  Google Scholar 

  • Goodman JL, Wang S, Alam S, Ruzicka FJ, Frey PA, Wedekind JE (2004) Ornithine cyclodeaminase: structure, mechanism of action, and implications for the μ-crystallin family. Biochemistry 43:13883–13891

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ, Ju S (1992) Biosynthesis of acivicin. 3. Incorporation of ornithine and N δ-hydroxyornithine. J Am Chem Soc 114:10166–10172

    Article  CAS  Google Scholar 

  • Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Hara R, Kino K (2009) Characterization of novel 2-oxoglutarate dependent dioxygenases converting l-proline to cis-4-hydroxy-l-proline. Biochem Biophys Res Commun 379:882–886

    Article  PubMed  CAS  Google Scholar 

  • Hashizume H, Hirosawa S, Sawa R, Muraoka Y, Ikeda D, Naganawa H, Igarashi M (2004) Tripropeptins, novel antimicrobial agents produced by Lysobacter sp. II. Structure elucidation. J Antibiot (Tokyo) 57:52–58

    Article  CAS  Google Scholar 

  • Helmetag V, Samel SA, Thomas MG, Marahiel MA, Essen LO (2009) Structural basis for the erythro-stereospecificity of the l-arginine oxygenase VioC in viomycin biosynthesis. FEBS J 276:3669–3682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herdeis C, Hubmann HP, Lotter H (1994) Chiral pool synthesis of trans-(2S,3S)-3-hydroxyproline and castanodiol from S-pyroglutamic acid. Tetrahedron Asymmetry 5:119–128

    Article  CAS  Google Scholar 

  • Houwaart S, Youssar L, Hüttel W (2014) Pneumocandin biosynthesis: involvement of a trans-selective proline hydroxylase. Chembiochem 15:2365–2369

    Article  PubMed  CAS  Google Scholar 

  • Hughes P, Clardy J (1989) Total synthesis of 3(S)-carboxy-4(S)-hydroxy-2,3,4,5-tetrahydropyridazine, an unusual amino-acid constituent of luzopeptin-A. J Org Chem 54:3260–3264

    Article  CAS  Google Scholar 

  • Irreverre F, Witkop B, Robertson AV, Morita K (1962) Isolation and synthesis of 3-hydroxy-l-proline. Biochem Biophys Res Commun 8:453–455

    Article  CAS  Google Scholar 

  • Kim J, Mayfield JE (1997) Brucella abortus arginase and ornithine cyclodeaminase genes are similar to Ti plasmid arginase and ornithine cyclodeaminase. Biochim Biophys Acta 1354:55–57

    Article  PubMed  CAS  Google Scholar 

  • Kite GC, Alison PC, Burke A, Simmonds MS, Blaney WM, Fellows LE (1995) Accumulation of trans-3-hydroxy-l-proline by seeds and leaves of the edible Madagascan legume Lemuropisum edule H. Perrier. Kew Bull 50:585–590

    Article  Google Scholar 

  • Krol WJ, Mao SS, Steele DL, Townsend CA (1991) Stereochemical correlation of proclavaminic acid and syntheses of erythro- and threo-l-β-hydroxyornithine from an improved vinylglycine synthon. J Org Chem 56:728–731

    Article  CAS  Google Scholar 

  • Kumar TP, Chandrasekhar S (2012) Asymmetric syntheses of all stereoisomers of 3-hydroxyproline; a constituent of several bioactive compounds. Synthesis 44:2889–2894

    Article  CAS  Google Scholar 

  • Lee JH, Kang JE, Yang MS, Kang KY, Park KH (2001) Efficient synthesis of 3-hydroxyprolines and 3-hydroxyprolinols from sugars. Tetrahedron 57:10071–10076

    Article  CAS  Google Scholar 

  • Maarsingh H, Zaagsma J, Meurs H (2009) Arginase: a key enzyme in the pathophysiology of allergic asthma opening novel therapeutic perspectives. Br J Pharmacol 158:652–664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsuoka T, Miyakoshi S, Tanzawa K, Nakahara K, Hosobuchi M, Serizawa N (1989) Purification and characterization of cytochrome P-450sca from Streptomyces carbophilus. ML-236B (compactin) induces a cytochrome P-450sca in Streptomyces carbophilus that hydroxylates ML-236B to pravastatin sodium (CS-514), a tissue-selective inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme-A reductase. Eur J Biochem 184:707–713

    Article  PubMed  CAS  Google Scholar 

  • Mori H, Shibasaki T, Yano K, Ozaki A (1997) Purification and cloning of a proline 3-hydroxylase, a novel enzyme which hydroxylates free l-proline to cis-3-hydroxy-l-proline. J Bacteriol 179:5677–5683

    PubMed  PubMed Central  CAS  Google Scholar 

  • Morita K, Irreverre F, Sakiyama F, Witkop B (1963) One-step synthesis and enzymatic resolution of cis- and trans-3-hydroxyproline. J Am Chem Soc 85:2832–2834

    Article  CAS  Google Scholar 

  • Muth WL, Costilow RN (1974) Ornithine cyclase (Deaminating): II. Properties of the homogenous enzyme. J Biol Chem 249:7457–7462

    PubMed  CAS  Google Scholar 

  • Ogawa J, Shimizu S (1999) Microbial enzymes: new industrial applications from traditional screening methods. Trends Biotechnol 17:13–21

    Article  PubMed  CAS  Google Scholar 

  • Pandey SK, Kumar P (2006) Enantioselective synthesis of (2R,3R)- and (2S,3S)-β-hydroxyornithine. Tetrahedron Lett 47:4167–4169

    Article  CAS  Google Scholar 

  • Petersen LA, Hughes DL, Hughes R, DiMichele L, Salmon P, Connors N (2001) Effects of amino acid and trace element supplementation on pneumocandin production by Glarea lozoyensis: impact on titer, analogue levels, and the identification of new analogues of pneumocandin B0. J Ind Microbiol Biotechnol 26:216–221

    Article  PubMed  CAS  Google Scholar 

  • Petersen L, Olewinski R, Salmon P, Connors N (2003) Novel proline hydroxylase activities in the pneumocandin-producing fungus Glarea lozoyensis responsible for the formation of trans 3- and trans 4-hydroxyproline. Appl Microbiol Biotechnol 62:263–267

    Article  PubMed  CAS  Google Scholar 

  • Ramaswamy SG (1983) Preparation of 14C-3-hydroxyproline from 14C-proline by peroxidation. J Labelled Comp Radiopharm 20:233–242

    Article  CAS  Google Scholar 

  • Rao BV, Krishna UM, Gurjar MK (1997) Stereoselective synthesis of [2S,3R]-β-hydroxy ornithine. Synth Commun 27:1335–1345

    Article  CAS  Google Scholar 

  • Ricciardolo FL, Zaagsma J, Meurs H (2005) The therapeutic potential of drugs targeting the arginase pathway in asthma. Expert Opin Investig Drugs 14:1221–1231

    Article  PubMed  CAS  Google Scholar 

  • Sans N, Schroder G, Schroder J (1987) The Noc region of Ti plasmid C58 codes for arginase and ornithine cyclodeaminase. Eur J Biochem 167:81–87

    Article  PubMed  CAS  Google Scholar 

  • Sans N, Schindler U, Schroder J (1988) Ornithine cyclodeaminase from Ti plasmid C58: DNA sequence, enzyme properties and regulation of activity by arginine. Eur J Biochem 173:123–130

    Article  PubMed  CAS  Google Scholar 

  • Schindler U, Sans N, Schroder J (1989) Ornithine cyclodeaminase from octopine Ti plasmid Ach5: identification, DNA sequence, enzyme properties, and comparison with gene and enzyme from nopaline Ti plasmid C58. J Bacteriol 171:847–854

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schwartz RE, Sesin DF, Joshua H, Wilson KE, Kempf AJ, Goklen KA, Kuehner D, Gailliot P, Gleason C, White R, Inamine E, Bills G, Salmon P, Zitano L (1992) Pneumocandins from Zalerion arboricola. I. Discovery and isolation. J Antibiot (Tokyo) 45:1853–1866

    Article  CAS  Google Scholar 

  • Sheehan JC, Mania D, Nakamura S, Stock JA, Maeda K (1968) The structure of telomycin. J Am Chem Soc 90:462–470

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki T, Mori H, Chiba S, Ozaki A (1999) Microbial proline 4-hydroxylase screening and gene cloning. Appl Environ Microbiol 65:4028–4031

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shibasaki T, Mori H, Ozaki A (2000) Enzymatic production of trans-4-hydroxy-l-proline by regio- and stereospecific hydroxylation of l-proline. Biosci Biotechnol Biochem 64:746–750

    Article  PubMed  CAS  Google Scholar 

  • Sinha S, Tilve S, Chandrasekaran S (2005) A convenient synthesis of trans-3-hydroxy-l-proline. Arkivoc 209–217

  • Soto MJ, Vandillewijn P, Olivares J, Toro N (1994) Ornithine cyclodeaminase activity in Rhizobium meliloti. FEMS Microbiol Lett 119:209–213

    Article  CAS  Google Scholar 

  • Suksamrarn S, Suwannapoch N, Aunchai N, Kuno M, Ratananukul P, Haritakun R, Jansakul C, Ruchirawat S (2005) Ziziphine N, O, P and Q, new antiplasmodial cyclopeptide alkaloids from Ziziphus oenoplia var. brunoniana. Tetrahedron 61:1175–1180

    Article  CAS  Google Scholar 

  • Sung ML, Fowden L (1968) trans-3-Hydroxy-l-proline: a constituent of Delonix regia. Phytochemistry 7:2061–2063

    Article  CAS  Google Scholar 

  • Szymanovicz G, Mercier O, Randoux A (1978) A new method of preparation and some properties of 3-hydroxyproline. Biochimie 60:499–503

    Article  PubMed  CAS  Google Scholar 

  • Utagawa T (2004) Production of arginine by fermentation. J Nutr 134(10 Suppl):2854S–2857S

    PubMed  CAS  Google Scholar 

  • Wityak J, Gould SJ, Hein SJ, Keszler DA (1987) A 1,3-dipolar cycloaddition route to the 3(R)- and 3(S)-hydroxy-2(S)-arginines. J Org Chem 52:2179–2183

    Article  CAS  Google Scholar 

  • Yin X, Zabriskie TM (2004) VioC is a non-heme iron, α-ketoglutarate-dependent oxygenase that catalyzes the formation of 3S-hydroxy-l-arginine during viomycin biosynthesis. Chembiochem 5:1274–1277

    Article  PubMed  CAS  Google Scholar 

  • Zheng X, Feng CG, Ye JL, Huang PQ (2005) Samarium diiodide promoted generation and asymmetric hydroxyalkylation of N, O-diprotected (3S)-3-pyrrolidinol 2-carbanions. Org Lett 7:553–556

Download references

Acknowledgements

This work was supported in part by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 15 K18677 (to R.H.).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryotaro Hara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 405 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hara, R., Kitatsuji, S., Yamagata, K. et al. Development of a multi-enzymatic cascade reaction for the synthesis of trans-3-hydroxy-l-proline from l-arginine. Appl Microbiol Biotechnol 100, 243–253 (2016). https://doi.org/10.1007/s00253-015-6992-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6992-4

Keywords

Navigation